1. 14 2月, 2017 1 次提交
  2. 10 2月, 2017 2 次提交
    • T
      x86/tsc: Make the TSC ADJUST sanitizing work for tsc_reliable · 5f2e71e7
      Thomas Gleixner 提交于
      When the TSC is marked reliable then the synchronization check is skipped,
      but that also skips the TSC ADJUST sanitizing code. So on a machine with a
      wreckaged BIOS the TSC deviation between CPUs might go unnoticed.
      
      Let the TSC adjust sanitizing code run unconditionally and just skip the
      expensive synchronization checks when TSC is marked reliable.
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Olof Johansson <olof@lixom.net>
      Link: http://lkml.kernel.org/r/20170209151231.491189912@linutronix.deSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      5f2e71e7
    • T
      x86/tsc: Avoid the large time jump when sanitizing TSC ADJUST · f2e04214
      Thomas Gleixner 提交于
      Olof reported that on a machine which has a BIOS wreckaged TSC the
      timestamps in dmesg are making a large jump because the TSC value is
      jumping forward after resetting the TSC ADJUST register to a sane value.
      
      This can be avoided by calling the TSC ADJUST saniziting function before
      initializing the per cpu sched clock machinery. That takes the offset into
      account and avoid the time jump.
      
      What cannot be avoided is that the 'Firmware Bug' warnings on the secondary
      CPUs are printed with the large time offsets because it would be too much
      effort and ugly hackery to print those warnings into a buffer and emit them
      after the adjustemt on the starting CPUs. It's a firmware bug and should be
      fixed in firmware. The weird timestamps are collateral damage and just
      illustrate the sillyness of the BIOS folks:
      
      [    0.397445] smp: Bringing up secondary CPUs ...
      [    0.402100] x86: Booting SMP configuration:
      [    0.406343] .... node  #0, CPUs:      #1
      [1265776479.930667] [Firmware Bug]: TSC ADJUST differs: Reference CPU0: -2978888639075328 CPU1: -2978888639183101
      [1265776479.944664] TSC ADJUST synchronize: Reference CPU0: 0 CPU1: -2978888639183101
      [    0.508119]  #2
      [1265776480.032346] [Firmware Bug]: TSC ADJUST differs: Reference CPU0: -2978888639075328 CPU2: -2978888639183677
      [1265776480.044192] TSC ADJUST synchronize: Reference CPU0: 0 CPU2: -2978888639183677
      [    0.607643]  #3
      [1265776480.131874] [Firmware Bug]: TSC ADJUST differs: Reference CPU0: -2978888639075328 CPU3: -2978888639184530
      [1265776480.143720] TSC ADJUST synchronize: Reference CPU0: 0 CPU3: -2978888639184530
      [    0.707108] smp: Brought up 1 node, 4 CPUs
      [    0.711271] smpboot: Total of 4 processors activated (21698.88 BogoMIPS)
      Reported-by: NOlof Johansson <olof@lixom.net>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Link: http://lkml.kernel.org/r/20170209151231.411460506@linutronix.deSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      f2e04214
  3. 09 2月, 2017 1 次提交
    • L
      Revert "x86/ioapic: Restore IO-APIC irq_chip retrigger callback" · d966564f
      Linus Torvalds 提交于
      This reverts commit 020eb3da.
      
      Gabriel C reports that it causes his machine to not boot, and we haven't
      tracked down the reason for it yet.  Since the bug it fixes has been
      around for a longish time, we're better off reverting the fix for now.
      
      Gabriel says:
       "It hangs early and freezes with a lot RCU warnings.
      
        I bisected it down to :
      
        > Ruslan Ruslichenko (1):
        >       x86/ioapic: Restore IO-APIC irq_chip retrigger callback
      
        Reverting this one fixes the problem for me..
      
        The box is a PRIMERGY TX200 S5 , 2 socket , 2 x E5520 CPU(s) installed"
      
      and Ruslan and Thomas are currently stumped.
      Reported-and-bisected-by: NGabriel C <nix.or.die@gmail.com>
      Cc: Ruslan Ruslichenko <rruslich@cisco.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: stable@kernel.org   # for the backport of the original commit
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d966564f
  4. 07 2月, 2017 2 次提交
  5. 06 2月, 2017 1 次提交
  6. 05 2月, 2017 2 次提交
    • Y
      x86/CPU/AMD: Fix Zen SMT topology · 08b25963
      Yazen Ghannam 提交于
      After:
      
        a33d3317 ("x86/CPU/AMD: Fix Bulldozer topology")
      
      our  SMT scheduling topology for Fam17h systems is broken, because
      the ThreadId is included in the ApicId when SMT is enabled.
      
      So, without further decoding cpu_core_id is unique for each thread
      rather than the same for threads on the same core. This didn't affect
      systems with SMT disabled. Make cpu_core_id be what it is defined to be.
      Signed-off-by: NYazen Ghannam <Yazen.Ghannam@amd.com>
      Signed-off-by: NBorislav Petkov <bp@suse.de>
      Cc: <stable@vger.kernel.org> # 4.9
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Link: http://lkml.kernel.org/r/20170205105022.8705-2-bp@alien8.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
      08b25963
    • B
      x86/CPU/AMD: Bring back Compute Unit ID · 79a8b9aa
      Borislav Petkov 提交于
      Commit:
      
        a33d3317 ("x86/CPU/AMD: Fix Bulldozer topology")
      
      restored the initial approach we had with the Fam15h topology of
      enumerating CU (Compute Unit) threads as cores. And this is still
      correct - they're beefier than HT threads but still have some
      shared functionality.
      
      Our current approach has a problem with the Mad Max Steam game, for
      example. Yves Dionne reported a certain "choppiness" while playing on
      v4.9.5.
      
      That problem stems most likely from the fact that the CU threads share
      resources within one CU and when we schedule to a thread of a different
      compute unit, this incurs latency due to migrating the working set to a
      different CU through the caches.
      
      When the thread siblings mask mirrors that aspect of the CUs and
      threads, the scheduler pays attention to it and tries to schedule within
      one CU first. Which takes care of the latency, of course.
      Reported-by: NYves Dionne <yves.dionne@gmail.com>
      Signed-off-by: NBorislav Petkov <bp@suse.de>
      Cc: <stable@vger.kernel.org> # 4.9
      Cc: Brice Goglin <Brice.Goglin@inria.fr>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Yazen Ghannam <yazen.ghannam@amd.com>
      Link: http://lkml.kernel.org/r/20170205105022.8705-1-bp@alien8.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
      79a8b9aa
  7. 01 2月, 2017 5 次提交
  8. 30 1月, 2017 1 次提交
    • B
      x86/microcode: Do not access the initrd after it has been freed · 24c25032
      Borislav Petkov 提交于
      When we look for microcode blobs, we first try builtin and if that
      doesn't succeed, we fallback to the initrd supplied to the kernel.
      
      However, at some point doing boot, that initrd gets jettisoned and we
      shouldn't access it anymore. But we do, as the below KASAN report shows.
      That's because find_microcode_in_initrd() doesn't check whether the
      initrd is still valid or not.
      
      So do that.
      
        ==================================================================
        BUG: KASAN: use-after-free in find_cpio_data
        Read of size 1 by task swapper/1/0
        page:ffffea0000db9d40 count:0 mapcount:0 mapping:          (null) index:0x1
        flags: 0x100000000000000()
        raw: 0100000000000000 0000000000000000 0000000000000001 00000000ffffffff
        raw: dead000000000100 dead000000000200 0000000000000000 0000000000000000
        page dumped because: kasan: bad access detected
        CPU: 1 PID: 0 Comm: swapper/1 Tainted: G        W       4.10.0-rc5-debug-00075-g2dbde22 #3
        Hardware name: Dell Inc. XPS 13 9360/0839Y6, BIOS 1.2.3 12/01/2016
        Call Trace:
         dump_stack
         ? _atomic_dec_and_lock
         ? __dump_page
         kasan_report_error
         ? pointer
         ? find_cpio_data
         __asan_report_load1_noabort
         ? find_cpio_data
         find_cpio_data
         ? vsprintf
         ? dump_stack
         ? get_ucode_user
         ? print_usage_bug
         find_microcode_in_initrd
         __load_ucode_intel
         ? collect_cpu_info_early
         ? debug_check_no_locks_freed
         load_ucode_intel_ap
         ? collect_cpu_info
         ? trace_hardirqs_on
         ? flat_send_IPI_mask_allbutself
         load_ucode_ap
         ? get_builtin_firmware
         ? flush_tlb_func
         ? do_raw_spin_trylock
         ? cpumask_weight
         cpu_init
         ? trace_hardirqs_off
         ? play_dead_common
         ? native_play_dead
         ? hlt_play_dead
         ? syscall_init
         ? arch_cpu_idle_dead
         ? do_idle
         start_secondary
         start_cpu
        Memory state around the buggy address:
         ffff880036e74f00: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
         ffff880036e74f80: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
        >ffff880036e75000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
                           ^
         ffff880036e75080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
         ffff880036e75100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
        ==================================================================
      Reported-by: NAndrey Ryabinin <aryabinin@virtuozzo.com>
      Tested-by: NAndrey Ryabinin <aryabinin@virtuozzo.com>
      Signed-off-by: NBorislav Petkov <bp@suse.de>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Link: http://lkml.kernel.org/r/20170126165833.evjemhbqzaepirxo@pd.tnicSigned-off-by: NIngo Molnar <mingo@kernel.org>
      24c25032
  9. 24 1月, 2017 7 次提交
  10. 23 1月, 2017 2 次提交
    • K
      x86/fpu: Set the xcomp_bv when we fake up a XSAVES area · 4c833368
      Kevin Hao 提交于
      I got the following calltrace on a Apollo Lake SoC with 32-bit kernel:
      
        WARNING: CPU: 2 PID: 261 at arch/x86/include/asm/fpu/internal.h:363 fpu__restore+0x1f5/0x260
        [...]
        Hardware name: Intel Corp. Broxton P/NOTEBOOK, BIOS APLIRVPA.X64.0138.B35.1608091058 08/09/2016
        Call Trace:
         dump_stack()
         __warn()
         ? fpu__restore()
         warn_slowpath_null()
         fpu__restore()
         __fpu__restore_sig()
         fpu__restore_sig()
         restore_sigcontext.isra.9()
         sys_sigreturn()
         do_int80_syscall_32()
         entry_INT80_32()
      
      The reason is that a #GP occurs when executing XRSTORS. The root cause
      is that we forget to set the xcomp_bv when we fake up the XSAVES area
      in the copyin_to_xsaves() function.
      Signed-off-by: NKevin Hao <haokexin@gmail.com>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Dave Hansen <dave.hansen@linux.intel.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: Fenghua Yu <fenghua.yu@intel.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Yu-cheng Yu <yu-cheng.yu@intel.com>
      Link: http://lkml.kernel.org/r/1485075023-30161-1-git-send-email-haokexin@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      4c833368
    • B
      x86/microcode/intel: Drop stashed AP patch pointer optimization · c26665ab
      Borislav Petkov 提交于
      This was meant to save us the scanning of the microcode containter in
      the initrd since the first AP had already done that but it can also hurt
      us:
      
      Imagine a single hyperthreaded CPU (Intel(R) Atom(TM) CPU N270, for
      example) which updates the microcode on the BSP but since the microcode
      engine is shared between the two threads, the update on CPU1 doesn't
      happen because it has already happened on CPU0 and we don't find a newer
      microcode revision on CPU1.
      
      Which doesn't set the intel_ucode_patch pointer and at initrd
      jettisoning time we don't save the microcode patch for later
      application.
      
      Now, when we suspend to RAM, the loaded microcode gets cleared so we
      need to reload but there's no patch saved in the cache.
      
      Removing the optimization fixes this issue and all is fine and dandy.
      
      Fixes: 06b8534c ("x86/microcode: Rework microcode loading")
      Signed-off-by: NBorislav Petkov <bp@suse.de>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Link: http://lkml.kernel.org/r/20170120202955.4091-2-bp@alien8.deSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      c26665ab
  11. 20 1月, 2017 1 次提交
    • P
      sched/clock: Fix hotplug crash · acb04058
      Peter Zijlstra 提交于
      Mike reported that he could trigger the WARN_ON_ONCE() in
      set_sched_clock_stable() using hotplug.
      
      This exposed a fundamental problem with the interface, we should never
      mark the TSC stable if we ever find it to be unstable. Therefore
      set_sched_clock_stable() is a broken interface.
      
      The reason it existed is that not having it is a pain, it means all
      relevant architecture code needs to call clear_sched_clock_stable()
      where appropriate.
      
      Of the three architectures that select HAVE_UNSTABLE_SCHED_CLOCK ia64
      and parisc are trivial in that they never called
      set_sched_clock_stable(), so add an unconditional call to
      clear_sched_clock_stable() to them.
      
      For x86 the story is a lot more involved, and what this patch tries to
      do is ensure we preserve the status quo. So even is Cyrix or Transmeta
      have usable TSC they never called set_sched_clock_stable() so they now
      get an explicit mark unstable.
      Reported-by: NMike Galbraith <efault@gmx.de>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Fixes: 9881b024 ("sched/clock: Delay switching sched_clock to stable")
      Link: http://lkml.kernel.org/r/20170119133633.GB6536@twins.programming.kicks-ass.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
      acb04058
  12. 19 1月, 2017 1 次提交
  13. 18 1月, 2017 1 次提交
  14. 14 1月, 2017 2 次提交
  15. 12 1月, 2017 2 次提交
    • J
      x86/unwind: Disable KASAN checks for non-current tasks · 84936118
      Josh Poimboeuf 提交于
      There are a handful of callers to save_stack_trace_tsk() and
      show_stack() which try to unwind the stack of a task other than current.
      In such cases, it's remotely possible that the task is running on one
      CPU while the unwinder is reading its stack from another CPU, causing
      the unwinder to see stack corruption.
      
      These cases seem to be mostly harmless.  The unwinder has checks which
      prevent it from following bad pointers beyond the bounds of the stack.
      So it's not really a bug as long as the caller understands that
      unwinding another task will not always succeed.
      
      In such cases, it's possible that the unwinder may read a KASAN-poisoned
      region of the stack.  Account for that by using READ_ONCE_NOCHECK() when
      reading the stack of another task.
      
      Use READ_ONCE() when reading the stack of the current task, since KASAN
      warnings can still be useful for finding bugs in that case.
      Reported-by: NDmitry Vyukov <dvyukov@google.com>
      Signed-off-by: NJosh Poimboeuf <jpoimboe@redhat.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Dave Jones <davej@codemonkey.org.uk>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Miroslav Benes <mbenes@suse.cz>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Link: http://lkml.kernel.org/r/4c575eb288ba9f73d498dfe0acde2f58674598f1.1483978430.git.jpoimboe@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      84936118
    • J
      x86/unwind: Silence warnings for non-current tasks · 900742d8
      Josh Poimboeuf 提交于
      There are a handful of callers to save_stack_trace_tsk() and
      show_stack() which try to unwind the stack of a task other than current.
      In such cases, it's remotely possible that the task is running on one
      CPU while the unwinder is reading its stack from another CPU, causing
      the unwinder to see stack corruption.
      
      These cases seem to be mostly harmless.  The unwinder has checks which
      prevent it from following bad pointers beyond the bounds of the stack.
      So it's not really a bug as long as the caller understands that
      unwinding another task will not always succeed.
      
      Since stack "corruption" on another task's stack isn't necessarily a
      bug, silence the warnings when unwinding tasks other than current.
      Reported-by: NDave Jones <davej@codemonkey.org.uk>
      Signed-off-by: NJosh Poimboeuf <jpoimboe@redhat.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Miroslav Benes <mbenes@suse.cz>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Link: http://lkml.kernel.org/r/00d8c50eea3446c1524a2a755397a3966629354c.1483978430.git.jpoimboe@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      900742d8
  16. 10 1月, 2017 4 次提交
  17. 06 1月, 2017 1 次提交
  18. 05 1月, 2017 1 次提交
  19. 27 12月, 2016 1 次提交
  20. 25 12月, 2016 2 次提交