1. 21 10月, 2011 4 次提交
  2. 22 9月, 2011 2 次提交
  3. 10 8月, 2011 1 次提交
    • M
      crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 · 66be8951
      Mathias Krause 提交于
      This is an assembler implementation of the SHA1 algorithm using the
      Supplemental SSE3 (SSSE3) instructions or, when available, the
      Advanced Vector Extensions (AVX).
      
      Testing with the tcrypt module shows the raw hash performance is up to
      2.3 times faster than the C implementation, using 8k data blocks on a
      Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25%
      faster.
      
      Since this implementation uses SSE/YMM registers it cannot safely be
      used in every situation, e.g. while an IRQ interrupts a kernel thread.
      The implementation falls back to the generic SHA1 variant, if using
      the SSE/YMM registers is not possible.
      
      With this algorithm I was able to increase the throughput of a single
      IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using
      the SSSE3 variant -- a speedup of +34.8%.
      
      Saving and restoring SSE/YMM state might make the actual throughput
      fluctuate when there are FPU intensive userland applications running.
      For example, meassuring the performance using iperf2 directly on the
      machine under test gives wobbling numbers because iperf2 uses the FPU
      for each packet to check if the reporting interval has expired (in the
      above test I got min/max/avg: 402/484/464 MBit/s).
      
      Using this algorithm on a IPsec gateway gives much more reasonable and
      stable numbers, albeit not as high as in the directly connected case.
      Here is the result from an RFC 2544 test run with a EXFO Packet Blazer
      FTB-8510:
      
       frame size    sha1-generic     sha1-ssse3    delta
          64 byte     37.5 MBit/s    37.5 MBit/s     0.0%
         128 byte     56.3 MBit/s    62.5 MBit/s   +11.0%
         256 byte     87.5 MBit/s   100.0 MBit/s   +14.3%
         512 byte    131.3 MBit/s   150.0 MBit/s   +14.2%
        1024 byte    162.5 MBit/s   193.8 MBit/s   +19.3%
        1280 byte    175.0 MBit/s   212.5 MBit/s   +21.4%
        1420 byte    175.0 MBit/s   218.7 MBit/s   +25.0%
        1518 byte    150.0 MBit/s   181.2 MBit/s   +20.8%
      
      The throughput for the largest frame size is lower than for the
      previous size because the IP packets need to be fragmented in this
      case to make there way through the IPsec tunnel.
      Signed-off-by: NMathias Krause <minipli@googlemail.com>
      Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com>
      Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
      66be8951
  4. 30 6月, 2011 1 次提交
  5. 18 5月, 2011 1 次提交
  6. 16 5月, 2011 1 次提交
  7. 27 3月, 2011 1 次提交
  8. 18 3月, 2011 1 次提交
  9. 16 2月, 2011 1 次提交
  10. 23 1月, 2011 1 次提交
    • J
      crypto: aesni-intel - Don't leak memory in rfc4106_set_hash_subkey · 7efd95f6
      Jesper Juhl 提交于
      There's a small memory leak in 
      arch/x86/crypto/aesni-intel_glue.c::rfc4106_set_hash_subkey(). If the call 
      to kmalloc() fails and returns NULL then the memory allocated previously 
      by ablkcipher_request_alloc() is not freed when we leave the function.
      
      I could have just added a call to ablkcipher_request_free() before we 
      return -ENOMEM, but that started to look too much like the code we 
      already had at the end of the function, so I chose instead to rework the 
      code a bit so that there are now a few labels at the end that we goto when 
      various allocations fail, so we don't have to repeat the same blocks of 
      code (this also reduces the object code size slightly).
      Signed-off-by: NJesper Juhl <jj@chaosbits.net>
      Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
      7efd95f6
  11. 15 12月, 2010 1 次提交
  12. 13 12月, 2010 1 次提交
  13. 29 11月, 2010 1 次提交
  14. 27 11月, 2010 1 次提交
    • M
      crypto: aesni-intel - Ported implementation to x86-32 · 0d258efb
      Mathias Krause 提交于
      The AES-NI instructions are also available in legacy mode so the 32-bit
      architecture may profit from those, too.
      
      To illustrate the performance gain here's a short summary of a dm-crypt
      speed test on a Core i7 M620 running at 2.67GHz comparing both assembler
      implementations:
      
      x86:                   i568       aes-ni    delta
      ECB, 256 bit:     93.8 MB/s   123.3 MB/s   +31.4%
      CBC, 256 bit:     84.8 MB/s   262.3 MB/s  +209.3%
      LRW, 256 bit:    108.6 MB/s   222.1 MB/s  +104.5%
      XTS, 256 bit:    105.0 MB/s   205.5 MB/s   +95.7%
      
      Additionally, due to some minor optimizations, the 64-bit version also
      got a minor performance gain as seen below:
      
      x86-64:           old impl.    new impl.    delta
      ECB, 256 bit:    121.1 MB/s   123.0 MB/s    +1.5%
      CBC, 256 bit:    285.3 MB/s   290.8 MB/s    +1.9%
      LRW, 256 bit:    263.7 MB/s   265.3 MB/s    +0.6%
      XTS, 256 bit:    251.1 MB/s   255.3 MB/s    +1.7%
      Signed-off-by: NMathias Krause <minipli@googlemail.com>
      Reviewed-by: NHuang Ying <ying.huang@intel.com>
      Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
      0d258efb
  15. 13 11月, 2010 1 次提交
  16. 30 3月, 2010 1 次提交
    • T
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking... · 5a0e3ad6
      Tejun Heo 提交于
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
      
      percpu.h is included by sched.h and module.h and thus ends up being
      included when building most .c files.  percpu.h includes slab.h which
      in turn includes gfp.h making everything defined by the two files
      universally available and complicating inclusion dependencies.
      
      percpu.h -> slab.h dependency is about to be removed.  Prepare for
      this change by updating users of gfp and slab facilities include those
      headers directly instead of assuming availability.  As this conversion
      needs to touch large number of source files, the following script is
      used as the basis of conversion.
      
        http://userweb.kernel.org/~tj/misc/slabh-sweep.py
      
      The script does the followings.
      
      * Scan files for gfp and slab usages and update includes such that
        only the necessary includes are there.  ie. if only gfp is used,
        gfp.h, if slab is used, slab.h.
      
      * When the script inserts a new include, it looks at the include
        blocks and try to put the new include such that its order conforms
        to its surrounding.  It's put in the include block which contains
        core kernel includes, in the same order that the rest are ordered -
        alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
        doesn't seem to be any matching order.
      
      * If the script can't find a place to put a new include (mostly
        because the file doesn't have fitting include block), it prints out
        an error message indicating which .h file needs to be added to the
        file.
      
      The conversion was done in the following steps.
      
      1. The initial automatic conversion of all .c files updated slightly
         over 4000 files, deleting around 700 includes and adding ~480 gfp.h
         and ~3000 slab.h inclusions.  The script emitted errors for ~400
         files.
      
      2. Each error was manually checked.  Some didn't need the inclusion,
         some needed manual addition while adding it to implementation .h or
         embedding .c file was more appropriate for others.  This step added
         inclusions to around 150 files.
      
      3. The script was run again and the output was compared to the edits
         from #2 to make sure no file was left behind.
      
      4. Several build tests were done and a couple of problems were fixed.
         e.g. lib/decompress_*.c used malloc/free() wrappers around slab
         APIs requiring slab.h to be added manually.
      
      5. The script was run on all .h files but without automatically
         editing them as sprinkling gfp.h and slab.h inclusions around .h
         files could easily lead to inclusion dependency hell.  Most gfp.h
         inclusion directives were ignored as stuff from gfp.h was usually
         wildly available and often used in preprocessor macros.  Each
         slab.h inclusion directive was examined and added manually as
         necessary.
      
      6. percpu.h was updated not to include slab.h.
      
      7. Build test were done on the following configurations and failures
         were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
         distributed build env didn't work with gcov compiles) and a few
         more options had to be turned off depending on archs to make things
         build (like ipr on powerpc/64 which failed due to missing writeq).
      
         * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
         * powerpc and powerpc64 SMP allmodconfig
         * sparc and sparc64 SMP allmodconfig
         * ia64 SMP allmodconfig
         * s390 SMP allmodconfig
         * alpha SMP allmodconfig
         * um on x86_64 SMP allmodconfig
      
      8. percpu.h modifications were reverted so that it could be applied as
         a separate patch and serve as bisection point.
      
      Given the fact that I had only a couple of failures from tests on step
      6, I'm fairly confident about the coverage of this conversion patch.
      If there is a breakage, it's likely to be something in one of the arch
      headers which should be easily discoverable easily on most builds of
      the specific arch.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
      5a0e3ad6
  17. 13 3月, 2010 1 次提交
  18. 10 3月, 2010 1 次提交
  19. 09 2月, 2010 1 次提交
  20. 23 11月, 2009 3 次提交
  21. 03 11月, 2009 2 次提交
  22. 02 11月, 2009 1 次提交
  23. 20 10月, 2009 1 次提交
  24. 19 10月, 2009 1 次提交
  25. 02 9月, 2009 1 次提交
    • H
      x86: Move kernel_fpu_using to irq_fpu_usable in asm/i387.h · ae4b688d
      Huang Ying 提交于
      This function measures whether the FPU/SSE state can be touched in
      interrupt context. If the interrupted code is in user space or has no
      valid FPU/SSE context (CR0.TS == 1), FPU/SSE state can be used in IRQ
      or soft_irq context too.
      
      This is used by AES-NI accelerated AES implementation and PCLMULQDQ
      accelerated GHASH implementation.
      
      v3:
       - Renamed to irq_fpu_usable to reflect the purpose of the function.
      
      v2:
       - Renamed to irq_is_fpu_using to reflect the real situation.
      Signed-off-by: NHuang Ying <ying.huang@intel.com>
      CC: H. Peter Anvin <hpa@zytor.com>
      Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
      ae4b688d
  26. 24 6月, 2009 1 次提交
  27. 18 6月, 2009 3 次提交
  28. 02 6月, 2009 2 次提交
    • H
      crypto: aes-ni - Add support for more modes · 2cf4ac8b
      Huang Ying 提交于
      Because kernel_fpu_begin() and kernel_fpu_end() operations are too
      slow, the performance gain of general mode implementation + aes-aesni
      is almost all compensated.
      
      The AES-NI support for more modes are implemented as follow:
      
      - Add a new AES algorithm implementation named __aes-aesni without
        kernel_fpu_begin/end()
      
      - Use fpu(<mode>(AES)) to provide kenrel_fpu_begin/end() invoking
      
      - Add <mode>(AES) ablkcipher, which uses cryptd(fpu(<mode>(AES))) to
        defer cryption to cryptd context in soft_irq context.
      
      Now the ctr, lrw, pcbc and xts support are added.
      
      Performance testing based on dm-crypt shows that cryption time can be
      reduced to 50% of general mode implementation + aes-aesni implementation.
      Signed-off-by: NHuang Ying <ying.huang@intel.com>
      Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
      2cf4ac8b
    • H
      crypto: fpu - Add template for blkcipher touching FPU · 150c7e85
      Huang Ying 提交于
      Blkcipher touching FPU need to be enclosed by kernel_fpu_begin() and
      kernel_fpu_end(). If they are invoked in cipher algorithm
      implementation, they will be invoked for each block, so that
      performance will be hurt, because they are "slow" operations. This
      patch implements "fpu" template, which makes these operations to be
      invoked for each request.
      Signed-off-by: NHuang Ying <ying.huang@intel.com>
      Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
      150c7e85
  29. 18 2月, 2009 2 次提交