- 19 11月, 2013 10 次提交
-
-
由 majianpeng 提交于
There is an iobarrier in raid1 because of contention between normal IO and resync IO. It suspends all normal IO when resync/recovery happens. However if normal IO is out side the resync window, there is no contention. So this patch changes the barrier mechanism to only block IO that could contend with the resync that is currently happening. We partition the whole space into five parts. |---------|-----------|------------|----------------|-------| start next_resync start_next_window end_window start + RESYNC_WINDOW = next_resync next_resync + NEXT_NORMALIO_DISTANCE = start_next_window start_next_window + NEXT_NORMALIO_DISTANCE = end_window Firstly we introduce some concepts: 1 - RESYNC_WINDOW: For resync, there are 32 resync requests at most at the same time. A sync request is RESYNC_BLOCK_SIZE(64*1024). So the RESYNC_WINDOW is 32 * RESYNC_BLOCK_SIZE, that is 2MB. 2 - NEXT_NORMALIO_DISTANCE: the distance between next_resync and start_next_window. It also indicates the distance between start_next_window and end_window. It is currently 3 * RESYNC_WINDOW_SIZE but could be tuned if this turned out not to be optimal. 3 - next_resync: the next sector at which we will do sync IO. 4 - start: a position which is at most RESYNC_WINDOW before next_resync. 5 - start_next_window: a position which is NEXT_NORMALIO_DISTANCE beyond next_resync. Normal-io after this position doesn't need to wait for resync-io to complete. 6 - end_window: a position which is 2 * NEXT_NORMALIO_DISTANCE beyond next_resync. This also doesn't need to wait, but is counted differently. 7 - current_window_requests: the count of normalIO between start_next_window and end_window. 8 - next_window_requests: the count of normalIO after end_window. NormalIO will be partitioned into four types: NormIO1: the end sector of bio is smaller or equal the start NormIO2: the start sector of bio larger or equal to end_window NormIO3: the start sector of bio larger or equal to start_next_window. NormIO4: the location between start_next_window and end_window |--------|-----------|--------------------|----------------|-------------| | start | next_resync | start_next_window | end_window | NormIO1 NormIO4 NormIO4 NormIO3 NormIO2 For NormIO1, we don't need any io barrier. For NormIO4, we used a similar approach to the original iobarrier mechanism. The normalIO and resyncIO must be kept separate. For NormIO2/3, we add two fields to struct r1conf: "current_window_requests" and "next_window_requests". They indicate the count of active requests in the two window. For these, we don't wait for resync io to complete. For resync action, if there are NormIO4s, we must wait for it. If not, we can proceed. But if resync action reaches start_next_window and current_window_requests > 0 (that is there are NormIO3s), we must wait until the current_window_requests becomes zero. When current_window_requests becomes zero, start_next_window also moves forward. Then current_window_requests will replaced by next_window_requests. There is a problem which when and how to change from NormIO2 to NormIO3. Only then can sync action progress. We add a field in struct r1conf "start_next_window". A: if start_next_window == MaxSector, it means there are no NormIO2/3. So start_next_window = next_resync + NEXT_NORMALIO_DISTANCE B: if current_window_requests == 0 && next_window_requests != 0, it means start_next_window move to end_window There is another problem which how to differentiate between old NormIO2(now it is NormIO3) and NormIO2. For example, there are many bios which are NormIO2 and a bio which is NormIO3. NormIO3 firstly completed, so the bios of NormIO2 became NormIO3. We add a field in struct r1bio "start_next_window". This is used to record the position conf->start_next_window when the call to wait_barrier() is made in make_request(). In allow_barrier(), we check the conf->start_next_window. If r1bio->stat_next_window == conf->start_next_window, it means there is no transition between NormIO2 and NormIO3. If r1bio->start_next_window != conf->start_next_window, it mean there was a transition between NormIO2 and NormIO3. There can only have been one transition. So it only means the bio is old NormIO2. For one bio, there may be many r1bio's. So we make sure all the r1bio->start_next_window are the same value. If we met blocked_dev in make_request(), it must call allow_barrier and wait_barrier. So the former and the later value of conf->start_next_window will be change. If there are many r1bio's with differnet start_next_window, for the relevant bio, it depend on the last value of r1bio. It will cause error. To avoid this, we must wait for previous r1bios to complete. Signed-off-by: NJianpeng Ma <majianpeng@gmail.com> Signed-off-by: NNeilBrown <neilb@suse.de> -
由 majianpeng 提交于
In a subsequent patch, we'll use some const parameters. Using macros will make the code clearly. Signed-off-by: NJianpeng Ma <majianpeng@gmail.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 majianpeng 提交于
raid1: Replace raise_barrier/lower_barrier with freeze_array/unfreeze_array when reconfiguring the array. We used to use raise_barrier to suspend normal IO while we reconfigure the array. However raise_barrier will soon only suspend some normal IO, not all. So we need something else. Change it to use freeze_array. But freeze_array not only suspends normal io, it also suspends resync io. For the place where call raise_barrier for reconfigure, it isn't a problem. Signed-off-by: NJianpeng Ma <majianpeng@gmail.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 majianpeng 提交于
Because the following patch will rewrite the content between normal IO and resync IO. So we used a parameter to indicate whether raid is in freeze array. Signed-off-by: NJianpeng Ma <majianpeng@gmail.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 Joe Perches 提交于
This typedef is unnecessary and should just be removed. Signed-off-by: NJoe Perches <joe@perches.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
When raid5 recovery hits a fresh badblock, this badblock will flagged as unack badblock until md_update_sb() is called. But md_stop will take reconfig lock which means raid5d can't call md_update_sb() in md_check_recovery(), the badblock will always be unack, so raid5d thread enters an infinite loop and md_stop_write() can never stop sync_thread. This causes deadlock. To solve this, when STOP_ARRAY ioctl is issued and sync_thread is running, we need set md->recovery FROZEN and INTR flags and wait for sync_thread to stop before we (re)take reconfig lock. This requires that raid5 reshape_request notices MD_RECOVERY_INTR (which it probably should have noticed anyway) and stops waiting for a metadata update in that case. Reported-by: NJianpeng Ma <majianpeng@gmail.com> Reported-by: NBian Yu <bianyu@kedacom.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
We currently use kthread_should_stop() in various places in the sync/reshape code to abort early. However some places set MD_RECOVERY_INTR but don't immediately call md_reap_sync_thread() (and we will shortly get another one). When this happens we are relying on md_check_recovery() to reap the thread and that only happen when it finishes normally. So MD_RECOVERY_INTR must lead to a normal finish without the kthread_should_stop() test. So replace all relevant tests, and be more careful when the thread is interrupted not to acknowledge that latest step in a reshape as it may not be fully committed yet. Also add a test on MD_RECOVERY_INTR in the 'is_mddev_idle' loop so we don't wait have to wait for the speed to drop before we can abort. Signed-off-by: NNeilBrown <neilb@suse.de> -
由 NeilBrown 提交于
Sometimes we need to lock and mddev and cannot cope with failure due to interrupt. In these cases we should use mutex_lock, not mutex_lock_interruptible. Signed-off-by: NNeilBrown <neilb@suse.de> -
由 Bian Yu 提交于
Because of block layer merge, one bio fails will cause other bios which belongs to the same request fails, so raid5_end_read_request will record all these bios as badblocks. If retry request with R5_ReadNoMerge flag to avoid bios merge, badblocks can only record sector which is bad exactly. test: hdparm --yes-i-know-what-i-am-doing --make-bad-sector 300000 /dev/sdb mdadm -C /dev/md0 -l5 -n3 /dev/sd[bcd] --assume-clean mdadm /dev/md0 -f /dev/sdd mdadm /dev/md0 -r /dev/sdd mdadm --zero-superblock /dev/sdd mdadm /dev/md0 -a /dev/sdd 1. Without this patch: cat /sys/block/md0/md/rd*/bad_blocks 299776 256 299776 256 2. With this patch: cat /sys/block/md0/md/rd*/bad_blocks 300000 8 300000 8 Signed-off-by: NBian Yu <bianyu@kedacom.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 Shaohua Li 提交于
track empty inactive list count, so md_raid5_congested() can use it to make decision. Signed-off-by: NShaohua Li <shli@fusionio.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
- 14 11月, 2013 4 次提交
-
-
由 Shaohua Li 提交于
get_active_stripe() is the last place we have lock contention. It has two paths. One is stripe isn't found and new stripe is allocated, the other is stripe is found. The first path basically calls __find_stripe and init_stripe. It accesses conf->generation, conf->previous_raid_disks, conf->raid_disks, conf->prev_chunk_sectors, conf->chunk_sectors, conf->max_degraded, conf->prev_algo, conf->algorithm, the stripe_hashtbl and inactive_list. Except stripe_hashtbl and inactive_list, other fields are changed very rarely. With this patch, we split inactive_list and add new hash locks. Each free stripe belongs to a specific inactive list. Which inactive list is determined by stripe's lock_hash. Note, even a stripe hasn't a sector assigned, it has a lock_hash assigned. Stripe's inactive list is protected by a hash lock, which is determined by it's lock_hash too. The lock_hash is derivied from current stripe_hashtbl hash, which guarantees any stripe_hashtbl list will be assigned to a specific lock_hash, so we can use new hash lock to protect stripe_hashtbl list too. The goal of the new hash locks introduced is we can only use the new locks in the first path of get_active_stripe(). Since we have several hash locks, lock contention is relieved significantly. The first path of get_active_stripe() accesses other fields, since they are changed rarely, changing them now need take conf->device_lock and all hash locks. For a slow path, this isn't a problem. If we need lock device_lock and hash lock, we always lock hash lock first. The tricky part is release_stripe and friends. We need take device_lock first. Neil's suggestion is we put inactive stripes to a temporary list and readd it to inactive_list after device_lock is released. In this way, we add stripes to temporary list with device_lock hold and remove stripes from the list with hash lock hold. So we don't allow concurrent access to the temporary list, which means we need allocate temporary list for all participants of release_stripe. One downside is free stripes are maintained in their inactive list, they can't across between the lists. By default, we have total 256 stripes and 8 lists, so each list will have 32 stripes. It's possible one list has free stripe but other list hasn't. The chance should be rare because stripes allocation are even distributed. And we can always allocate more stripes for cache, several mega bytes memory isn't a big deal. This completely removes the lock contention of the first path of get_active_stripe(). It slows down the second code path a little bit though because we now need takes two locks, but since the hash lock isn't contended, the overhead should be quite small (several atomic instructions). The second path of get_active_stripe() (basically sequential write or big request size randwrite) still has lock contentions. Signed-off-by: NShaohua Li <shli@fusionio.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
If raid5_start_reshape errors out, we need to reset all the fields that were updated (not just some), and need to use the seq_counter to ensure make_request() doesn't use an inconsitent state. Signed-off-by: NNeilBrown <neilb@suse.de> -
由 NeilBrown 提交于
The various ->run routines of md personalities assume that the 'queue' has been initialised by the blk_set_stacking_limits() call in md_alloc(). However when the level is changed (by level_store()) the ->run routine for the new level is called for an array which has already had the stacking limits modified. This can result in incorrect final settings. So call blk_set_stacking_limits() before ->run in level_store(). A specific consequence of this bug is that it causes discard_granularity to be set incorrectly when reshaping a RAID4 to a RAID0. This is suitable for any -stable kernel since 3.3 in which blk_set_stacking_limits() was introduced. Cc: stable@vger.kernel.org (3.3+) Reported-and-tested-by: N"Baldysiak, Pawel" <pawel.baldysiak@intel.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 majianpeng 提交于
When release_stripe() is called in grow_one_stripe(), the mddev->thread is null. So it will omit one wakeup this thread to release stripe. For this condition, use slow_path to release stripe. Bug was introduced in 3.12 Cc: stable@vger.kernel.org (3.12+) Fixes: 773ca82fSigned-off-by: NJianpeng Ma <majianpeng@gmail.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
- 24 10月, 2013 4 次提交
-
-
由 Shaohua Li 提交于
SCSI discard will damage discard stripe bio setting, eg, some fields are changed. If the stripe is reused very soon, we have wrong bios setting. We remove discard stripe from hash list, so next time the strip will be fully initialized. Suitable for backport to 3.7+. Cc: <stable@vger.kernel.org> (3.7+) Signed-off-by: NShaohua Li <shli@fusionio.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 Shaohua Li 提交于
SCSI layer will add new payload for discard request. If two bios are merged to one, the second bio has bi_vcnt 1 which is set in raid5. This will confuse SCSI and cause oops. Suitable for backport to 3.7+ Cc: stable@vger.kernel.org (v3.7+) Reported-by: NJes Sorensen <Jes.Sorensen@redhat.com> Signed-off-by: NShaohua Li <shli@fusionio.com> Signed-off-by: NNeilBrown <neilb@suse.de> Acked-by: NMartin K. Petersen <martin.petersen@oracle.com>
-
由 Bian Yu 提交于
When operate harddisk and hit errors, md_set_badblocks is called after scsi_restart_operations which already disabled the irq. but md_set_badblocks will call write_sequnlock_irq and enable irq. so softirq can preempt the current thread and that may cause a deadlock. I think this situation should use write_sequnlock_irqsave/irqrestore instead. I met the situation and the call trace is below: [ 638.919974] BUG: spinlock recursion on CPU#0, scsi_eh_13/1010 [ 638.921923] lock: 0xffff8800d4d51fc8, .magic: dead4ead, .owner: scsi_eh_13/1010, .owner_cpu: 0 [ 638.923890] CPU: 0 PID: 1010 Comm: scsi_eh_13 Not tainted 3.12.0-rc5+ #37 [ 638.925844] Hardware name: To be filled by O.E.M. To be filled by O.E.M./MAHOBAY, BIOS 4.6.5 03/05/2013 [ 638.927816] ffff880037ad4640 ffff880118c03d50 ffffffff8172ff85 0000000000000007 [ 638.929829] ffff8800d4d51fc8 ffff880118c03d70 ffffffff81730030 ffff8800d4d51fc8 [ 638.931848] ffffffff81a72eb0 ffff880118c03d90 ffffffff81730056 ffff8800d4d51fc8 [ 638.933884] Call Trace: [ 638.935867] <IRQ> [<ffffffff8172ff85>] dump_stack+0x55/0x76 [ 638.937878] [<ffffffff81730030>] spin_dump+0x8a/0x8f [ 638.939861] [<ffffffff81730056>] spin_bug+0x21/0x26 [ 638.941836] [<ffffffff81336de4>] do_raw_spin_lock+0xa4/0xc0 [ 638.943801] [<ffffffff8173f036>] _raw_spin_lock+0x66/0x80 [ 638.945747] [<ffffffff814a73ed>] ? scsi_device_unbusy+0x9d/0xd0 [ 638.947672] [<ffffffff8173fb1b>] ? _raw_spin_unlock+0x2b/0x50 [ 638.949595] [<ffffffff814a73ed>] scsi_device_unbusy+0x9d/0xd0 [ 638.951504] [<ffffffff8149ec47>] scsi_finish_command+0x37/0xe0 [ 638.953388] [<ffffffff814a75e8>] scsi_softirq_done+0xa8/0x140 [ 638.955248] [<ffffffff8130e32b>] blk_done_softirq+0x7b/0x90 [ 638.957116] [<ffffffff8104fddd>] __do_softirq+0xfd/0x330 [ 638.958987] [<ffffffff810b964f>] ? __lock_release+0x6f/0x100 [ 638.960861] [<ffffffff8174a5cc>] call_softirq+0x1c/0x30 [ 638.962724] [<ffffffff81004c7d>] do_softirq+0x8d/0xc0 [ 638.964565] [<ffffffff8105024e>] irq_exit+0x10e/0x150 [ 638.966390] [<ffffffff8174ad4a>] smp_apic_timer_interrupt+0x4a/0x60 [ 638.968223] [<ffffffff817499af>] apic_timer_interrupt+0x6f/0x80 [ 638.970079] <EOI> [<ffffffff810b964f>] ? __lock_release+0x6f/0x100 [ 638.971899] [<ffffffff8173fa6a>] ? _raw_spin_unlock_irq+0x3a/0x50 [ 638.973691] [<ffffffff8173fa60>] ? _raw_spin_unlock_irq+0x30/0x50 [ 638.975475] [<ffffffff81562393>] md_set_badblocks+0x1f3/0x4a0 [ 638.977243] [<ffffffff81566e07>] rdev_set_badblocks+0x27/0x80 [ 638.978988] [<ffffffffa00d97bb>] raid5_end_read_request+0x36b/0x4e0 [raid456] [ 638.980723] [<ffffffff811b5a1d>] bio_endio+0x1d/0x40 [ 638.982463] [<ffffffff81304ff3>] req_bio_endio.isra.65+0x83/0xa0 [ 638.984214] [<ffffffff81306b9f>] blk_update_request+0x7f/0x350 [ 638.985967] [<ffffffff81306ea1>] blk_update_bidi_request+0x31/0x90 [ 638.987710] [<ffffffff813085e0>] __blk_end_bidi_request+0x20/0x50 [ 638.989439] [<ffffffff8130862f>] __blk_end_request_all+0x1f/0x30 [ 638.991149] [<ffffffff81308746>] blk_peek_request+0x106/0x250 [ 638.992861] [<ffffffff814a62a9>] ? scsi_kill_request.isra.32+0xe9/0x130 [ 638.994561] [<ffffffff814a633a>] scsi_request_fn+0x4a/0x3d0 [ 638.996251] [<ffffffff813040a7>] __blk_run_queue+0x37/0x50 [ 638.997900] [<ffffffff813045af>] blk_run_queue+0x2f/0x50 [ 638.999553] [<ffffffff814a5750>] scsi_run_queue+0xe0/0x1c0 [ 639.001185] [<ffffffff814a7721>] scsi_run_host_queues+0x21/0x40 [ 639.002798] [<ffffffff814a2e87>] scsi_restart_operations+0x177/0x200 [ 639.004391] [<ffffffff814a4fe9>] scsi_error_handler+0xc9/0xe0 [ 639.005996] [<ffffffff814a4f20>] ? scsi_unjam_host+0xd0/0xd0 [ 639.007600] [<ffffffff81072f6b>] kthread+0xdb/0xe0 [ 639.009205] [<ffffffff81072e90>] ? flush_kthread_worker+0x170/0x170 [ 639.010821] [<ffffffff81748cac>] ret_from_fork+0x7c/0xb0 [ 639.012437] [<ffffffff81072e90>] ? flush_kthread_worker+0x170/0x170 This bug was introduce in commit 2e8ac303 (the first time rdev_set_badblock was call from interrupt context), so this patch is appropriate for 3.5 and subsequent kernels. Cc: <stable@vger.kernel.org> (3.5+) Signed-off-by: NBian Yu <bianyu@kedacom.com> Reviewed-by: NJianpeng Ma <majianpeng@gmail.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 Lukasz Dorau 提交于
Since: commit 7ceb17e8 md: Allow devices to be re-added to a read-only array. spares are activated on a read-only array. In case of raid1 and raid10 personalities it causes that not-in-sync devices are marked in-sync without checking if recovery has been finished. If a read-only array is degraded and one of its devices is not in-sync (because the array has been only partially recovered) recovery will be skipped. This patch adds checking if recovery has been finished before marking a device in-sync for raid1 and raid10 personalities. In case of raid5 personality such condition is already present (at raid5.c:6029). Bug was introduced in 3.10 and causes data corruption. Cc: stable@vger.kernel.org Signed-off-by: NPawel Baldysiak <pawel.baldysiak@intel.com> Signed-off-by: NLukasz Dorau <lukasz.dorau@intel.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
- 23 10月, 2013 1 次提交
-
-
由 Kent Overstreet 提交于
Signed-off-by: NKent Overstreet <kmo@daterainc.com> Cc: linux-stable <stable@vger.kernel.org> # >= v3.10 Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 10月, 2013 1 次提交
-
-
由 Mikulas Patocka 提交于
This patch fixes a particular type of data corruption that has been encountered when loading a snapshot's metadata from disk. When we allocate a new chunk in persistent_prepare, we increment ps->next_free and we make sure that it doesn't point to a metadata area by further incrementing it if necessary. When we load metadata from disk on device activation, ps->next_free is positioned after the last used data chunk. However, if this last used data chunk is followed by a metadata area, ps->next_free is positioned erroneously to the metadata area. A newly-allocated chunk is placed at the same location as the metadata area, resulting in data or metadata corruption. This patch changes the code so that ps->next_free skips the metadata area when metadata are loaded in function read_exceptions. The patch also moves a piece of code from persistent_prepare_exception to a separate function skip_metadata to avoid code duplication. CVE-2013-4299 Signed-off-by: NMikulas Patocka <mpatocka@redhat.com> Cc: stable@vger.kernel.org Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: NAlasdair G Kergon <agk@redhat.com>
-
- 11 10月, 2013 1 次提交
-
-
由 Kent Overstreet 提交于
Commit c0f04d88 ("bcache: Fix flushes in writeback mode") was fixing a reported data corruption bug, but it seems some last minute refactoring or rebasing introduced a null pointer deref. Signed-off-by: NKent Overstreet <kmo@daterainc.com> Cc: linux-stable <stable@vger.kernel.org> # >= v3.10 Reported-by: NGabriel de Perthuis <g2p.code@gmail.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 27 9月, 2013 1 次提交
-
-
由 Tejun Heo 提交于
The pre-existing sysfs interfaces which take explicit namespace argument are weird in that they place the optional @ns in front of @name which is contrary to the established convention. For example, we end up forcing vast majority of sysfs_get_dirent() users to do sysfs_get_dirent(parent, NULL, name), which is silly and error-prone especially as @ns and @name may be interchanged without causing compilation warning. This renames sysfs_get_dirent() to sysfs_get_dirent_ns() and swap the positions of @name and @ns, and sysfs_get_dirent() is now a wrapper around sysfs_get_dirent_ns(). This makes confusions a lot less likely. There are other interfaces which take @ns before @name. They'll be updated by following patches. This patch doesn't introduce any functional changes. v2: EXPORT_SYMBOL_GPL() wasn't updated leading to undefined symbol error on module builds. Reported by build test robot. Fixed. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Kay Sievers <kay@vrfy.org> Cc: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 25 9月, 2013 10 次提交
-
-
由 Kent Overstreet 提交于
In writeback mode, when we get a cache flush we need to make sure we issue a flush to the backing device. The code for sending down an extra flush was wrong - by cloning the bio we were probably getting flags that didn't make sense for a bare flush, and also the old code was firing for FUA bios, for which we don't need to send a flush to the backing device. This was causing data corruption somehow - the mechanism was never determined, but this patch fixes it for the users that were seeing it. Signed-off-by: NKent Overstreet <kmo@daterainc.com> Cc: linux-stable <stable@vger.kernel.org> # >= v3.10 Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kent Overstreet 提交于
btree_sort_fixup() was overly clever, because it was trying to avoid pulling a key off the btree iterator in more than one place. This led to a really obscure bug where we'd break early from the loop in btree_sort_fixup() if the current key overlapped with keys in more than one older set, and the next key it overlapped with was zero size. Signed-off-by: NKent Overstreet <kmo@daterainc.com> Cc: linux-stable <stable@vger.kernel.org> # >= v3.10 Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kent Overstreet 提交于
GFP_NOIO means we could be getting called recursively - mca_alloc() -> mca_data_alloc() - definitely can't use mutex_lock(bucket_lock) then. Whoops. Signed-off-by: NKent Overstreet <kmo@daterainc.com> Cc: linux-stable <stable@vger.kernel.org> # >= v3.10 Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kent Overstreet 提交于
schedule_timeout() != schedule_timeout_uninterruptible() Signed-off-by: NKent Overstreet <kmo@daterainc.com> Cc: linux-stable <stable@vger.kernel.org> # >= v3.10 Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kent Overstreet 提交于
bch_journal_meta() was missing the flush to make the journal write actually go down (instead of waiting up to journal_delay_ms)... Whoops Signed-off-by: NKent Overstreet <kmo@daterainc.com> Cc: linux-stable <stable@vger.kernel.org> # >= v3.10 Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kent Overstreet 提交于
Background writeback works by scanning the btree for dirty data and adding those keys into a fixed size buffer, then for each dirty key in the keybuf writing it to the backing device. When read_dirty() finishes and it's time to scan for more dirty data, we need to wait for the outstanding writeback IO to finish - they still take up slots in the keybuf (so that foreground writes can check for them to avoid races) - without that wait, we'll continually rescan when we'll be able to add at most a key or two to the keybuf, and that takes locks that starves foreground IO. Doh. Signed-off-by: NKent Overstreet <kmo@daterainc.com> Cc: linux-stable <stable@vger.kernel.org> # >= v3.10 Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Geert Uytterhoeven 提交于
Fix drivers/md/bcache/btree.c: In function ‘bch_btree_node_read’: drivers/md/bcache/btree.c:259: warning: format ‘%lu’ expects type ‘long unsigned int’, but argument 3 has type ‘size_t’ Signed-off-by: NGeert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: NKent Overstreet <kmo@daterainc.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kent Overstreet 提交于
The journal replay code didn't handle this case, causing it to go into an infinite loop... Signed-off-by: NKent Overstreet <kmo@daterainc.com> Cc: linux-stable <stable@vger.kernel.org> # >= v3.10 Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Gabriel de Perthuis 提交于
sysfs attributes with unusual characters have crappy failure modes in Squeeze (udev 164); later versions of udev are unaffected. This should make these characters more unusual. Signed-off-by: NGabriel de Perthuis <g2p.code@gmail.com> Signed-off-by: NKent Overstreet <kmo@daterainc.com> Cc: linux-stable <stable@vger.kernel.org> # >= v3.10 Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kent Overstreet 提交于
That switch statement was obviously wrong, leading to some sort of weird spinning on rare occasion with discards enabled... Signed-off-by: NKent Overstreet <kmo@daterainc.com> Cc: linux-stable <stable@vger.kernel.org> # >= v3.10 Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 9月, 2013 4 次提交
-
-
由 Mike Snitzer 提交于
Allow user to change the number of IOs that are reserved by bio-based DM's mempools by writing to this file: /sys/module/dm_mod/parameters/reserved_bio_based_ios The default value is RESERVED_BIO_BASED_IOS (16). The maximum allowed value is RESERVED_MAX_IOS (1024). Export dm_get_reserved_bio_based_ios() for use by DM targets and core code. Switch to sizing dm-io's mempool and bioset using DM core's configurable 'reserved_bio_based_ios'. Signed-off-by: NMike Snitzer <snitzer@redhat.com> Signed-off-by: NFrank Mayhar <fmayhar@google.com>
-
由 Mike Snitzer 提交于
Allow user to change the number of IOs that are reserved by request-based DM's mempools by writing to this file: /sys/module/dm_mod/parameters/reserved_rq_based_ios The default value is RESERVED_REQUEST_BASED_IOS (256). The maximum allowed value is RESERVED_MAX_IOS (1024). Export dm_get_reserved_rq_based_ios() for use by DM targets and core code. Switch to sizing dm-mpath's mempool using DM core's configurable 'reserved_rq_based_ios'. Signed-off-by: NMike Snitzer <snitzer@redhat.com> Signed-off-by: NFrank Mayhar <fmayhar@google.com> Acked-by: NMikulas Patocka <mpatocka@redhat.com>
-
由 Mike Snitzer 提交于
Bio-based device mapper processing doesn't need larger mempools (like request-based DM does), so lower the number of reserved entries for bio-based operation. 16 was already used for bio-based DM's bioset but mistakenly wasn't used for it's _io_cache. Formalize difference between bio-based and request-based defaults by introducing RESERVED_BIO_BASED_IOS and RESERVED_REQUEST_BASED_IOS. (based on older code from Mikulas Patocka) Signed-off-by: NMike Snitzer <snitzer@redhat.com> Signed-off-by: NFrank Mayhar <fmayhar@google.com> Acked-by: NMikulas Patocka <mpatocka@redhat.com>
-
由 Mike Snitzer 提交于
Fix issue where the block layer would stack the discard limits of the pool's data device even if the "ignore_discard" pool feature was specified. The pool and thin device(s) still had discards disabled because the QUEUE_FLAG_DISCARD request_queue flag wasn't set. But to avoid user confusion when "ignore_discard" is used: both the pool device and the thin device(s) have zeroes for all discard limits. Also, always set discard_zeroes_data_unsupported in targets because they should never advertise the 'discard_zeroes_data' capability (even if the pool's data device supports it). Signed-off-by: NMike Snitzer <snitzer@redhat.com> Acked-by: NJoe Thornber <ejt@redhat.com>
-
- 20 9月, 2013 3 次提交
-
-
由 Mike Snitzer 提交于
Workaround the SCSI layer's problematic WRITE SAME heuristics by disabling WRITE SAME in the DM multipath device's queue_limits if an underlying device disabled it. The WRITE SAME heuristics, with both the original commit 5db44863 ("[SCSI] sd: Implement support for WRITE SAME") and the updated commit 66c28f97 ("[SCSI] sd: Update WRITE SAME heuristics"), default to enabling WRITE SAME(10) even without successfully determining it is supported. After the first failed WRITE SAME the SCSI layer will disable WRITE SAME for the device (by setting sdkp->device->no_write_same which results in 'max_write_same_sectors' in device's queue_limits to be set to 0). When a device is stacked ontop of such a SCSI device any changes to that SCSI device's queue_limits do not automatically propagate up the stack. As such, a DM multipath device will not have its WRITE SAME support disabled. This causes the block layer to continue to issue WRITE SAME requests to the mpath device which causes paths to fail and (if mpath IO isn't configured to queue when no paths are available) it will result in actual IO errors to the upper layers. This fix doesn't help configurations that have additional devices stacked ontop of the mpath device (e.g. LVM created linear DM devices ontop). A proper fix that restacks all the queue_limits from the bottom of the device stack up will need to be explored if SCSI will continue to use this model of optimistically allowing op codes and then disabling them after they fail for the first time. Before this patch: EXT4-fs (dm-6): mounted filesystem with ordered data mode. Opts: (null) device-mapper: multipath: XXX snitm debugging: got -EREMOTEIO (-121) device-mapper: multipath: XXX snitm debugging: failing WRITE SAME IO with error=-121 end_request: critical target error, dev dm-6, sector 528 dm-6: WRITE SAME failed. Manually zeroing. device-mapper: multipath: Failing path 8:112. end_request: I/O error, dev dm-6, sector 4616 dm-6: WRITE SAME failed. Manually zeroing. end_request: I/O error, dev dm-6, sector 4616 end_request: I/O error, dev dm-6, sector 5640 end_request: I/O error, dev dm-6, sector 6664 end_request: I/O error, dev dm-6, sector 7688 end_request: I/O error, dev dm-6, sector 524288 Buffer I/O error on device dm-6, logical block 65536 lost page write due to I/O error on dm-6 JBD2: Error -5 detected when updating journal superblock for dm-6-8. end_request: I/O error, dev dm-6, sector 524296 Aborting journal on device dm-6-8. end_request: I/O error, dev dm-6, sector 524288 Buffer I/O error on device dm-6, logical block 65536 lost page write due to I/O error on dm-6 JBD2: Error -5 detected when updating journal superblock for dm-6-8. # cat /sys/block/sdh/queue/write_same_max_bytes 0 # cat /sys/block/dm-6/queue/write_same_max_bytes 33553920 After this patch: EXT4-fs (dm-6): mounted filesystem with ordered data mode. Opts: (null) device-mapper: multipath: XXX snitm debugging: got -EREMOTEIO (-121) device-mapper: multipath: XXX snitm debugging: WRITE SAME I/O failed with error=-121 end_request: critical target error, dev dm-6, sector 528 dm-6: WRITE SAME failed. Manually zeroing. # cat /sys/block/sdh/queue/write_same_max_bytes 0 # cat /sys/block/dm-6/queue/write_same_max_bytes 0 It should be noted that WRITE SAME support wasn't enabled in DM multipath until v3.10. Signed-off-by: NMike Snitzer <snitzer@redhat.com> Cc: Martin K. Petersen <martin.petersen@oracle.com> Cc: Hannes Reinecke <hare@suse.de> Cc: stable@vger.kernel.org # 3.10+
-
由 Mikulas Patocka 提交于
LVM2, since version 2.02.96, creates origin with zero size, then loads the snapshot driver and then loads the origin. Consequently, the snapshot driver sees the origin size zero and sets the hash size to the lower bound 64. Such small hash table causes performance degradation. This patch changes it so that the hash size is determined by the size of snapshot volume, not minimum of origin and snapshot size. It doesn't make sense to set the snapshot size significantly larger than the origin size, so we do not need to take origin size into account when calculating the hash size. Signed-off-by: NMikulas Patocka <mpatocka@redhat.com> Signed-off-by: NMike Snitzer <snitzer@redhat.com> Cc: stable@vger.kernel.org
-
由 Mikulas Patocka 提交于
The kernel reports a lockdep warning if a snapshot is invalidated because it runs out of space. The lockdep warning was triggered by commit 0976dfc1 ("workqueue: Catch more locking problems with flush_work()") in v3.5. The warning is false positive. The real cause for the warning is that the lockdep engine treats different instances of md->lock as a single lock. This patch is a workaround - we use flush_workqueue instead of flush_work. This code path is not performance sensitive (it is called only on initialization or invalidation), thus it doesn't matter that we flush the whole workqueue. The real fix for the problem would be to teach the lockdep engine to treat different instances of md->lock as separate locks. Signed-off-by: NMikulas Patocka <mpatocka@redhat.com> Acked-by: NAlasdair G Kergon <agk@redhat.com> Signed-off-by: NMike Snitzer <snitzer@redhat.com> Cc: stable@vger.kernel.org # 3.5+
-
- 19 9月, 2013 1 次提交
-
-
由 Mikulas Patocka 提交于
There was a deliberate race condition in dm_stat_for_entry() to avoid the overhead of disabling and enabling interrupts. The race could result in some events not being counted on 64-bit architectures. However, on 32-bit architectures, operations on long long variables are not atomic, so the race condition could cause the counter to jump by 2^32. Such jumps could be disruptive, so we need to do proper locking on 32-bit architectures. Signed-off-by: NMikulas Patocka <mpatocka@redhat.com> Cc: Alasdair G. Kergon <agk@redhat.com> Signed-off-by: NMike Snitzer <snitzer@redhat.com>
-