- 03 6月, 2015 18 次提交
-
-
由 Omar Sandoval 提交于
Since commit 0723a047 ("btrfs: allow mounting btrfs subvolumes with different ro/rw options"), when mounting a subvolume read/write when another subvolume has previously been mounted read-only, we first do a remount. However, this should be done with the superblock locked, as per sync_filesystem(): /* * We need to be protected against the filesystem going from * r/o to r/w or vice versa. */ WARN_ON(!rwsem_is_locked(&sb->s_umount)); This WARN_ON can easily be hit with: mkfs.btrfs -f /dev/vdb mount /dev/vdb /mnt btrfs subvol create /mnt/vol1 btrfs subvol create /mnt/vol2 umount /mnt mount -oro,subvol=/vol1 /dev/vdb /mnt mount -orw,subvol=/vol2 /dev/vdb /mnt2 Fixes: 0723a047 ("btrfs: allow mounting btrfs subvolumes with different ro/rw options") Reviewed-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NOmar Sandoval <osandov@osandov.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
When we clear an extent state's EXTENT_LOCKED bit with clear_extent_bits() through free_io_failure(), we weren't waking up any tasks waiting for the extent's state EXTENT_LOCKED bit, leading to an hang. So make sure clear_extent_bits() ends up waking up any waiters if the bit EXTENT_LOCKED is supplied by its callers. Zygo Blaxell was experiencing such hangs at inode eviction time after file unlinks. Thanks to him for a set of scripts to reproduce the issue. Reported-by: NZygo Blaxell <ce3g8jdj@umail.furryterror.org> Signed-off-by: NFilipe Manana <fdmanana@suse.com> Reviewed-by: NLiu Bo <bo.li.liu@oracle.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
With commit 1b984508 ("Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole") introduced in the kernel 4.1 merge window, we end up using part of a device hole for which there are already pending chunks or pinned chunks. Before that commit we didn't use the hole and would just move on to the next hole in the device. However when we adjust the start offset for the chunk allocation and we have pinned chunks, we set it blindly to the end offset of the pinned chunk we are currently processing, which is dangerous because we can have a pending chunk that has a start offset that matches the end offset of our pinned chunk - leading us to a case where we end up getting two pending chunks that start at the same physical device offset, which makes us later abort the current transaction with -EEXIST when finishing the chunk allocation at btrfs_create_pending_block_groups(): [194737.659017] ------------[ cut here ]------------ [194737.660192] WARNING: CPU: 15 PID: 31111 at fs/btrfs/super.c:260 __btrfs_abort_transaction+0x52/0x106 [btrfs]() [194737.662209] BTRFS: Transaction aborted (error -17) [194737.663175] Modules linked in: btrfs dm_snapshot dm_bufio dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse [194737.674015] CPU: 15 PID: 31111 Comm: xfs_io Tainted: G W 4.0.0-rc5-btrfs-next-9+ #2 [194737.675986] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 [194737.682999] 0000000000000009 ffff8800564c7a98 ffffffff8142fa46 ffffffff8108b6a2 [194737.684540] ffff8800564c7ae8 ffff8800564c7ad8 ffffffff81045ea5 ffff8800564c7b78 [194737.686017] ffffffffa0383aa7 00000000ffffffef ffff88000c7ba000 ffff8801a1f66f40 [194737.687509] Call Trace: [194737.688068] [<ffffffff8142fa46>] dump_stack+0x4f/0x7b [194737.689027] [<ffffffff8108b6a2>] ? console_unlock+0x361/0x3ad [194737.690095] [<ffffffff81045ea5>] warn_slowpath_common+0xa1/0xbb [194737.691198] [<ffffffffa0383aa7>] ? __btrfs_abort_transaction+0x52/0x106 [btrfs] [194737.693789] [<ffffffff81045f05>] warn_slowpath_fmt+0x46/0x48 [194737.695065] [<ffffffffa0383aa7>] __btrfs_abort_transaction+0x52/0x106 [btrfs] [194737.696806] [<ffffffffa039a3bd>] btrfs_create_pending_block_groups+0x101/0x130 [btrfs] [194737.698683] [<ffffffffa03aa433>] __btrfs_end_transaction+0x84/0x366 [btrfs] [194737.700329] [<ffffffffa03aa725>] btrfs_end_transaction+0x10/0x12 [btrfs] [194737.701924] [<ffffffffa0394b51>] btrfs_check_data_free_space+0x11f/0x27c [btrfs] [194737.703675] [<ffffffffa03b8ba4>] __btrfs_buffered_write+0x16a/0x4c8 [btrfs] [194737.705417] [<ffffffffa03bb502>] ? btrfs_file_write_iter+0x19a/0x431 [btrfs] [194737.707058] [<ffffffffa03bb511>] ? btrfs_file_write_iter+0x1a9/0x431 [btrfs] [194737.708560] [<ffffffffa03bb68d>] btrfs_file_write_iter+0x325/0x431 [btrfs] [194737.710673] [<ffffffff81067d85>] ? get_parent_ip+0xe/0x3e [194737.712076] [<ffffffff811534c3>] new_sync_write+0x7c/0xa0 [194737.713293] [<ffffffff81153b58>] vfs_write+0xb2/0x117 [194737.714443] [<ffffffff81154424>] SyS_pwrite64+0x64/0x82 [194737.715646] [<ffffffff81435b32>] system_call_fastpath+0x12/0x17 [194737.717175] ---[ end trace f2d5dc04e56d7e48 ]--- [194737.718170] BTRFS: error (device sdc) in btrfs_create_pending_block_groups:9524: errno=-17 Object already exists The -EEXIST failure comes from btrfs_finish_chunk_alloc(), called by btrfs_create_pending_block_groups(), when it attempts to insert a duplicated device extent item via btrfs_alloc_dev_extent(). This issue was reproducible with fstests generic/038 running in a loop for several hours (it's very hard to hit) and using MOUNT_OPTIONS="-o discard". Applying Jeff's recent patch titled "btrfs: add missing discards when unpinning extents with -o discard" makes the issue much easier to reproduce (usually within 4 to 5 hours), since it pins chunks for longer periods of time when an unused block group is deleted by the cleaner kthread. Fix this by making sure that we never adjust the start offset to a lower value than it currently has. Fixes: 1b984508 ("Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole" Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Sasha Levin 提交于
__btrfs_close_devices() would call_rcu to free the device, which is racy with list_for_each_entry() accessing the memory to retrieve the next device on the list. Signed-off-by: NSasha Levin <sasha.levin@oracle.com> Reviewed-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 David Sterba 提交于
The INO_LOOKUP ioctl can lookup path for a given inode number and is thus restricted. As a sideefect it can find the root id of the containing subvolume and we're using this int the 'btrfs inspect rootid' command. The restriction is unnecessary in case we set the ioctl args args::treeid = 0 args::objectid = 256 (BTRFS_FIRST_FREE_OBJECTID) Then the path will be empty and the treeid is filled with the root id of the inode on which the ioctl is called. This behaviour is unchanged, after the root restriction is removed. Signed-off-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
When we create a block group we add it to the rbtree of block groups before setting its ->space_info field (while it's NULL). This is problematic since other tasks can access the block group from the rbtree and attempt to use its ->space_info before it is set by btrfs_make_block_group(). This can happen for example when a concurrent fitrim ioctl operation is ongoing, which produces a trace like the following when CONFIG_DEBUG_PAGEALLOC is set. [11509.604369] BUG: unable to handle kernel NULL pointer dereference at 0000000000000018 [11509.606373] IP: [<ffffffff8107d675>] __lock_acquire+0xb4/0xf02 [11509.608179] PGD 2296a8067 PUD 22f4a2067 PMD 0 [11509.608179] Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [11509.608179] Modules linked in: btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse acpi_cpufreq processor i2c_piix4 psmou [11509.608179] CPU: 10 PID: 8538 Comm: fstrim Tainted: G W 4.0.0-rc5-btrfs-next-9+ #2 [11509.608179] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 [11509.608179] task: ffff88009f5c46d0 ti: ffff8801b3edc000 task.ti: ffff8801b3edc000 [11509.608179] RIP: 0010:[<ffffffff8107d675>] [<ffffffff8107d675>] __lock_acquire+0xb4/0xf02 [11509.608179] RSP: 0018:ffff8801b3edf9e8 EFLAGS: 00010002 [11509.608179] RAX: 0000000000000046 RBX: 0000000000000000 RCX: 0000000000000000 [11509.608179] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000018 [11509.608179] RBP: ffff8801b3edfaa8 R08: 0000000000000001 R09: 0000000000000000 [11509.608179] R10: 0000000000000000 R11: ffff88009f5c4f98 R12: 0000000000000000 [11509.608179] R13: 0000000000000000 R14: 0000000000000018 R15: ffff88009f5c46d0 [11509.608179] FS: 00007f280a10e840(0000) GS:ffff88023ed40000(0000) knlGS:0000000000000000 [11509.608179] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [11509.608179] CR2: 0000000000000018 CR3: 00000002119bc000 CR4: 00000000000006e0 [11509.608179] Stack: [11509.608179] 0000000000000000 0000000000000000 0000000000000004 0000000000000000 [11509.608179] ffff880100000000 ffffffff00000000 0000000000000001 ffffffff00000000 [11509.608179] 0000000000000001 0000000000000000 ffff880100000000 00000000000006c4 [11509.608179] Call Trace: [11509.608179] [<ffffffff8107dc57>] ? __lock_acquire+0x696/0xf02 [11509.608179] [<ffffffff8107e806>] lock_acquire+0xa5/0x116 [11509.608179] [<ffffffffa04cc876>] ? do_trimming+0x51/0x145 [btrfs] [11509.608179] [<ffffffff81434f37>] _raw_spin_lock+0x34/0x44 [11509.608179] [<ffffffffa04cc876>] ? do_trimming+0x51/0x145 [btrfs] [11509.608179] [<ffffffffa04cc876>] do_trimming+0x51/0x145 [btrfs] [11509.608179] [<ffffffffa04cde7d>] btrfs_trim_block_group+0x201/0x491 [btrfs] [11509.608179] [<ffffffffa04849e2>] btrfs_trim_fs+0xe0/0x129 [btrfs] [11509.608179] [<ffffffffa04bb80a>] btrfs_ioctl_fitrim+0x138/0x167 [btrfs] [11509.608179] [<ffffffffa04c002f>] btrfs_ioctl+0x50d/0x21e8 [btrfs] [11509.608179] [<ffffffff81123bda>] ? might_fault+0x58/0xb5 [11509.608179] [<ffffffff81123bda>] ? might_fault+0x58/0xb5 [11509.608179] [<ffffffff81123bda>] ? might_fault+0x58/0xb5 [11509.608179] [<ffffffff81158050>] ? cp_new_stat+0x147/0x15e [11509.608179] [<ffffffff81163041>] do_vfs_ioctl+0x3c6/0x479 [11509.608179] [<ffffffff81158116>] ? SYSC_newfstat+0x25/0x2e [11509.608179] [<ffffffff81435b54>] ? ret_from_sys_call+0x1d/0x58 [11509.608179] [<ffffffff8116b915>] ? __fget_light+0x2d/0x4f [11509.608179] [<ffffffff8116314e>] SyS_ioctl+0x5a/0x7f [11509.608179] [<ffffffff81435b32>] system_call_fastpath+0x12/0x17 [11509.608179] Code: f4 01 00 0f 85 c0 00 00 00 48 c7 c1 f3 1f 7d 81 48 c7 c2 aa cb 7c 81 be fc 0b 00 00 eb 70 83 3d 61 eb 9c 00 00 0f 84 a5 00 00 00 <49> 81 3e 40 a3 2b 82 b8 00 00 00 [11509.608179] RIP [<ffffffff8107d675>] __lock_acquire+0xb4/0xf02 [11509.608179] RSP <ffff8801b3edf9e8> [11509.608179] CR2: 0000000000000018 [11509.608179] ---[ end trace 570a5c6769f0e49a ]--- Which corresponds to the following access in fs/btrfs/free-space-cache.c: static int do_trimming(struct btrfs_block_group_cache *block_group, u64 *total_trimmed, u64 start, u64 bytes, u64 reserved_start, u64 reserved_bytes, struct btrfs_trim_range *trim_entry) { struct btrfs_space_info *space_info = block_group->space_info; (...) spin_lock(&space_info->lock); ^^^^^ - block_group->space_info is NULL... Fix this by ensuring the block group's ->space_info is set before adding the block group to the rbtree. Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com> -
由 Anand Jain 提交于
Report missing device when add is successful, otherwise it would exit as ENOMEM. And add uuid to the report. Signed-off-by: NAnand Jain <anand.jain@oracle.com> Reviewed-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Qu Wenruo 提交于
Old csum type check is wrong and can't catch csum_type 1(not supported). Fix it to avoid hostile 0 division. Reported-by: NLukas Lueg <lukas.lueg@gmail.com> Signed-off-by: NQu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
Marc reported a problem where the receiving end of an incremental send was performing clone operations that failed with -EINVAL. This happened because, unlike for uncompressed extents, we were not checking if the source clone offset and length, after summing the data offset, falls within the source file's boundaries. So make sure we do such checks when attempting to issue clone operations for compressed extents. Problem reproducible with the following steps: $ mkfs.btrfs -f /dev/sdb $ mount -o compress /dev/sdb /mnt $ mkfs.btrfs -f /dev/sdc $ mount -o compress /dev/sdc /mnt2 # Create the file with a single extent of 128K. This creates a metadata file # extent item with a data start offset of 0 and a logical length of 128K. $ xfs_io -f -c "pwrite -S 0xaa 64K 128K" -c "fsync" /mnt/foo # Now rewrite the range 64K to 112K of our file. This will make the inode's # metadata continue to point to the 128K extent we created before, but now # with an extent item that points to the extent with a data start offset of # 112K and a logical length of 16K. # That metadata file extent item is associated with the logical file offset # at 176K and covers the logical file range 176K to 192K. $ xfs_io -c "pwrite -S 0xbb 64K 112K" -c "fsync" /mnt/foo # Now rewrite the range 180K to 12K. This will make the inode's metadata # continue to point the the 128K extent we created earlier, with a single # extent item that points to it with a start offset of 112K and a logical # length of 4K. # That metadata file extent item is associated with the logical file offset # at 176K and covers the logical file range 176K to 180K. $ xfs_io -c "pwrite -S 0xcc 180K 12K" -c "fsync" /mnt/foo $ btrfs subvolume snapshot -r /mnt /mnt/snap1 $ touch /mnt/bar # Calls the btrfs clone ioctl. $ ~/xfstests/src/cloner -s $((176 * 1024)) -d $((176 * 1024)) \ -l $((4 * 1024)) /mnt/foo /mnt/bar $ btrfs subvolume snapshot -r /mnt /mnt/snap2 $ btrfs send /mnt/snap1 | btrfs receive /mnt2 At subvol /mnt/snap1 At subvol snap1 $ btrfs send -p /mnt/snap1 /mnt/snap2 | btrfs receive /mnt2 At subvol /mnt/snap2 At snapshot snap2 ERROR: failed to clone extents to bar Invalid argument A test case for fstests follows soon. Reported-by: NMarc MERLIN <marc@merlins.org> Tested-by: NMarc MERLIN <marc@merlins.org> Signed-off-by: NFilipe Manana <fdmanana@suse.com> Tested-by: NDavid Sterba <dsterba@suse.cz> Tested-by: NJan Alexander Steffens (heftig) <jan.steffens@gmail.com> Signed-off-by: NChris Mason <clm@fb.com> -
由 Christian Engelmayer 提交于
Commit 9c8b35b1 ("btrfs: quota: Automatically update related qgroups or mark INCONSISTENT flags when assigning/deleting a qgroup relations.") introduced the allocation of a temporary ulist in function btrfs_add_qgroup_relation() and added the corresponding cleanup to the out path. However, the allocation was introduced before the src/dst level check that directly returns. Fix the possible leakage of the ulist by moving the allocation after the input validation. Detected by Coverity CID 1295988. Signed-off-by: NChristian Engelmayer <cengelma@gmx.at> Reviewed-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
If the call to btrfs_truncate_inode_items() failed and we don't have a block group, we were unlocking the cache_write_mutex without having locked it (we do it only if we have a block group). Fixes: 1bbc621e ("Btrfs: allow block group cache writeout outside critical section in commit") Signed-off-by: NFilipe Manana <fdmanana@suse.com> Reviewed-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Anand Jain 提交于
Signed-off-by: NAnand Jain <anand.jain@oracle.com> Reviewed-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 David Sterba 提交于
fs/btrfs/volumes.c: In function ‘btrfs_create_uuid_tree’: fs/btrfs/volumes.c:3909:3: warning: format ‘%d’ expects argument of type ‘int’, but argument 4 has type ‘long int’ [-Wformat=] btrfs_abort_transaction(trans, tree_root, ^ CC [M] fs/btrfs/ioctl.o fs/btrfs/ioctl.c: In function ‘create_subvol’: fs/btrfs/ioctl.c:549:3: warning: format ‘%d’ expects argument of type ‘int’, but argument 4 has type ‘long int’ [-Wformat=] btrfs_abort_transaction(trans, root, PTR_ERR(new_root)); PTR_ERR returns long, but we're really using 'int' for the error codes everywhere so just set and use the local variable. Signed-off-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 David Sterba 提交于
The annotated functios will be placed into .text.unlikely section. The annotation also hints compiler to move the code out of the hot paths, and may implicitly mark if-statement leading to that block as unlikely. This is a heuristic, the impact on the generated code is not significant. Signed-off-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 David Sterba 提交于
WARN is called from a single location and all bugreports say that's in super.c __btrfs_abort_transaction. This is slightly confusing as we'd rather want to know the exact callsite. Whereas this information is printed in the syslog below the stacktrace, this requires further look and we usually see only the headline from WARNING. Moving the WARN into the macro has to inline some code and increases code by a few kilobytes: text data bss dec hex filename 835481 20305 14120 869906 d4612 btrfs.ko.before 842883 20305 14120 877308 d62fc btrfs.ko.after The delta is +7k (130+ calls), measured on 3.19 x86_64, distro config. The increase is not small and could lead to worse icache use. The code is on error/exit paths that can be recognized by compiler as cold and moved out of the way so the impact is speculated to be low, if measurable at all. Signed-off-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 David Sterba 提交于
Long time ago (2008) the defrag was automatic for new b-tree writes but has been disabled after performance problems. There was a leftover in tree-defrag.c that effectively stops any defragmentation on b-trees. This is a bit unexpected and IMHO undesired. The SSD mode is an optimization and defrag is supposed to work if the users asks for it. Related commits: 6702ed49 Btrfs: Add run time btree defrag, and an ioctl to force btree defrag e18e4809 Btrfs: Add mount -o ssd, which includes optimizations for seek free storage b3236e68 Btrfs: Leave on the tree defragger in mount -o ssd, it still helps there 9afbb0b7 Btrfs: Disable tree defrag in SSD mode The last three commits switch the defrag+ssd off/on/off and the last one 3f157a2f Btrfs: Online btree defragmentation fixes misses the bits from tree-defrag.c to revert to the behaviour introduced in e18e4809. Signed-off-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
When we shrink the usable size of a device (its total_bytes), we go over all the device extent items in the device tree and attempt to relocate the chunk of any device extent that goes beyond the new usable size for the device. We do that after setting the new usable size (total_bytes) in the device object, so that all new allocations (and reallocations) don't use areas of the device that go beyond the new (shorter) size. However we were not considering that before setting the new size in the device, pending chunks might have been created that use device extents that go beyond the new size, and those device extents are not yet in the device tree after we search the device tree - they are still attached to the list of new block group for some ongoing transaction handle, and they are only added to the device tree when the transaction handle is ended (via btrfs_create_pending_block_groups()). So check for pending chunks with device extents that go beyond the new size and if any exists, commit the current transaction and repeat the search in the device tree. Not doing this it would mean we would return success to user space while still having extents that go beyond the new size, and later user space could override those locations on the device while the fs still references them, causing all sorts of corruption and unexpected events. Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Omar Sandoval 提交于
Since commit bafc9b75 ("vfs: More precise tests in d_invalidate"), mounted subvolumes can be deleted because d_invalidate() won't fail. However, we run into problems when we attempt to delete the default subvolume while it is mounted as the root filesystem: # btrfs subvol list / ID 257 gen 306 top level 5 path rootvol ID 267 gen 334 top level 5 path snap1 # btrfs subvol get-default / ID 267 gen 334 top level 5 path snap1 # btrfs inspect-internal rootid / 267 # mount -o subvol=/ /dev/vda1 /mnt # btrfs subvol del /mnt/snap1 Delete subvolume (no-commit): '/mnt/snap1' ERROR: cannot delete '/mnt/snap1' - Operation not permitted # findmnt / findmnt: can't read /proc/mounts: No such file or directory # ls /proc # Markus reported that this same scenario simply led to a kernel oops. This happens because in btrfs_ioctl_snap_destroy(), we call d_invalidate() before we check may_destroy_subvol(), which means that we detach the submounts and drop the dentry before erroring out. Instead, we should only invalidate the dentry once the deletion has succeeded. Additionally, the shrink_dcache_sb() isn't necessary; d_invalidate() will prune the dcache for the deleted subvolume. Cc: <stable@vger.kernel.org> Fixes: bafc9b75 ("vfs: More precise tests in d_invalidate") Reported-by: NMarkus Schauler <mschauler@gmail.com> Signed-off-by: NOmar Sandoval <osandov@osandov.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 21 5月, 2015 1 次提交
-
-
由 Chris Mason 提交于
Commit 2f081088 changed btrfs_set_block_group_ro to avoid trying to allocate new chunks with the new raid profile during conversion. This fixed failures when there was no space on the drive to allocate a new chunk, but the metadata reserves were sufficient to continue the conversion. But this ended up causing a regression when the drive had plenty of space to allocate new chunks, mostly because reduce_alloc_profile isn't using the new raid profile. Fixing btrfs_reduce_alloc_profile is a bigger patch. For now, do a partial revert of 2f081088, and don't error out if we hit ENOSPC. Signed-off-by: NChris Mason <clm@fb.com> Tested-by: NDave Sterba <dsterba@suse.cz> Reported-by: NHolger Hoffstaette <holger.hoffstaette@googlemail.com>
-
- 20 5月, 2015 2 次提交
-
-
由 Filipe Manana 提交于
If while setting a block group read-only we end up allocating a system chunk, through check_system_chunk(), we were not doing it while holding the chunk mutex which is a problem if a concurrent chunk allocation is happening, through do_chunk_alloc(), as it means both block groups can end up using the same logical addresses and physical regions in the device(s). So make sure we hold the chunk mutex. Cc: stable@vger.kernel.org # 4.0+ Fixes: 2f081088 ("btrfs: delete chunk allocation attemp when setting block group ro") Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Mark Fasheh 提交于
btrfs_check_shared() is leaking a return value of '1' from find_parent_nodes(). As a result, callers (in this case, extent_fiemap()) are told extents are shared when they are not. This in turn broke fiemap on btrfs for kernels v3.18 and up. The fix is simple - we just have to clear 'ret' after we are done processing the results of find_parent_nodes(). It wasn't clear to me at first what was happening with return values in btrfs_check_shared() and find_parent_nodes() - thanks to Josef for the help on irc. I added documentation to both functions to make things more clear for the next hacker who might come across them. If we could queue this up for -stable too that would be great. Signed-off-by: NMark Fasheh <mfasheh@suse.de> Reviewed-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 11 5月, 2015 4 次提交
-
-
由 Filipe Manana 提交于
There's a race between releasing extent buffers that are flagged as stale and recycling them that makes us it the following BUG_ON at btrfs_release_extent_buffer_page: BUG_ON(extent_buffer_under_io(eb)) The BUG_ON is triggered because the extent buffer has the flag EXTENT_BUFFER_DIRTY set as a consequence of having been reused and made dirty by another concurrent task. Here follows a sequence of steps that leads to the BUG_ON. CPU 0 CPU 1 CPU 2 path->nodes[0] == eb X X->refs == 2 (1 for the tree, 1 for the path) btrfs_header_generation(X) == current trans id flag EXTENT_BUFFER_DIRTY set on X btrfs_release_path(path) unlocks X reads eb X X->refs incremented to 3 locks eb X btrfs_del_items(X) X becomes empty clean_tree_block(X) clear EXTENT_BUFFER_DIRTY from X btrfs_del_leaf(X) unlocks X extent_buffer_get(X) X->refs incremented to 4 btrfs_free_tree_block(X) X's range is not pinned X's range added to free space cache free_extent_buffer_stale(X) lock X->refs_lock set EXTENT_BUFFER_STALE on X release_extent_buffer(X) X->refs decremented to 3 unlocks X->refs_lock btrfs_release_path() unlocks X free_extent_buffer(X) X->refs becomes 2 __btrfs_cow_block(Y) btrfs_alloc_tree_block() btrfs_reserve_extent() find_free_extent() gets offset == X->start btrfs_init_new_buffer(X->start) btrfs_find_create_tree_block(X->start) alloc_extent_buffer(X->start) find_extent_buffer(X->start) finds eb X in radix tree free_extent_buffer(X) lock X->refs_lock test X->refs == 2 test bit EXTENT_BUFFER_STALE is set test !extent_buffer_under_io(eb) increments X->refs to 3 mark_extent_buffer_accessed(X) check_buffer_tree_ref(X) --> does nothing, X->refs >= 2 and EXTENT_BUFFER_TREE_REF is set in X clear EXTENT_BUFFER_STALE from X locks X btrfs_mark_buffer_dirty() set_extent_buffer_dirty(X) check_buffer_tree_ref(X) --> does nothing, X->refs >= 2 and EXTENT_BUFFER_TREE_REF is set sets EXTENT_BUFFER_DIRTY on X test and clear EXTENT_BUFFER_TREE_REF decrements X->refs to 2 release_extent_buffer(X) decrements X->refs to 1 unlock X->refs_lock unlock X free_extent_buffer(X) lock X->refs_lock release_extent_buffer(X) decrements X->refs to 0 btrfs_release_extent_buffer_page(X) BUG_ON(extent_buffer_under_io(X)) --> EXTENT_BUFFER_DIRTY set on X Fix this by making find_extent buffer wait for any ongoing task currently executing free_extent_buffer()/free_extent_buffer_stale() if the extent buffer has the stale flag set. A more clean alternative would be to always increment the extent buffer's reference count while holding its refs_lock spinlock but find_extent_buffer is a performance critical area and that would cause lock contention whenever multiple tasks search for the same extent buffer concurrently. A build server running a SLES 12 kernel (3.12 kernel + over 450 upstream btrfs patches backported from newer kernels) was hitting this often: [1212302.461948] kernel BUG at ../fs/btrfs/extent_io.c:4507! (...) [1212302.470219] CPU: 1 PID: 19259 Comm: bs_sched Not tainted 3.12.36-38-default #1 [1212302.540792] Hardware name: Supermicro PDSM4/PDSM4, BIOS 6.00 04/17/2006 [1212302.540792] task: ffff8800e07e0100 ti: ffff8800d6412000 task.ti: ffff8800d6412000 [1212302.540792] RIP: 0010:[<ffffffffa0507081>] [<ffffffffa0507081>] btrfs_release_extent_buffer_page.constprop.51+0x101/0x110 [btrfs] (...) [1212302.630008] Call Trace: [1212302.630008] [<ffffffffa05070cd>] release_extent_buffer+0x3d/0xa0 [btrfs] [1212302.630008] [<ffffffffa04c2d9d>] btrfs_release_path+0x1d/0xa0 [btrfs] [1212302.630008] [<ffffffffa04c5c7e>] read_block_for_search.isra.33+0x13e/0x3a0 [btrfs] [1212302.630008] [<ffffffffa04c8094>] btrfs_search_slot+0x3f4/0xa80 [btrfs] [1212302.630008] [<ffffffffa04cf5d8>] lookup_inline_extent_backref+0xf8/0x630 [btrfs] [1212302.630008] [<ffffffffa04d13dd>] __btrfs_free_extent+0x11d/0xc40 [btrfs] [1212302.630008] [<ffffffffa04d64a4>] __btrfs_run_delayed_refs+0x394/0x11d0 [btrfs] [1212302.630008] [<ffffffffa04db379>] btrfs_run_delayed_refs.part.66+0x69/0x280 [btrfs] [1212302.630008] [<ffffffffa04ed2ad>] __btrfs_end_transaction+0x2ad/0x3d0 [btrfs] [1212302.630008] [<ffffffffa04f7505>] btrfs_evict_inode+0x4a5/0x500 [btrfs] [1212302.630008] [<ffffffff811b9e28>] evict+0xa8/0x190 [1212302.630008] [<ffffffff811b0330>] do_unlinkat+0x1a0/0x2b0 I was also able to reproduce this on a 3.19 kernel, corresponding to Chris' integration branch from about a month ago, running the following stress test on a qemu/kvm guest (with 4 virtual cpus and 16Gb of ram): while true; do mkfs.btrfs -l 4096 -f -b `expr 20 \* 1024 \* 1024 \* 1024` /dev/sdd mount /dev/sdd /mnt snapshot_cmd="btrfs subvolume snapshot -r /mnt" snapshot_cmd="$snapshot_cmd /mnt/snap_\`date +'%H_%M_%S_%N'\`" fsstress -d /mnt -n 25000 -p 8 -x "$snapshot_cmd" -X 100 umount /mnt done Which usually triggers the BUG_ON within less than 24 hours: [49558.618097] ------------[ cut here ]------------ [49558.619732] kernel BUG at fs/btrfs/extent_io.c:4551! (...) [49558.620031] CPU: 3 PID: 23908 Comm: fsstress Tainted: G W 3.19.0-btrfs-next-7+ #3 [49558.620031] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 [49558.620031] task: ffff8800319fc0d0 ti: ffff880220da8000 task.ti: ffff880220da8000 [49558.620031] RIP: 0010:[<ffffffffa0476b1a>] [<ffffffffa0476b1a>] btrfs_release_extent_buffer_page+0x20/0xe9 [btrfs] (...) [49558.620031] Call Trace: [49558.620031] [<ffffffffa0476c73>] release_extent_buffer+0x90/0xd3 [btrfs] [49558.620031] [<ffffffff8142b10c>] ? _raw_spin_lock+0x3b/0x43 [49558.620031] [<ffffffffa0477052>] ? free_extent_buffer+0x37/0x94 [btrfs] [49558.620031] [<ffffffffa04770ab>] free_extent_buffer+0x90/0x94 [btrfs] [49558.620031] [<ffffffffa04396d5>] btrfs_release_path+0x4a/0x69 [btrfs] [49558.620031] [<ffffffffa0444907>] __btrfs_free_extent+0x778/0x80c [btrfs] [49558.620031] [<ffffffffa044a485>] __btrfs_run_delayed_refs+0xad2/0xc62 [btrfs] [49558.728054] [<ffffffff811420d5>] ? kmemleak_alloc_recursive.constprop.52+0x16/0x18 [49558.728054] [<ffffffffa044c1e8>] btrfs_run_delayed_refs+0x6d/0x1ba [btrfs] [49558.728054] [<ffffffffa045917f>] ? join_transaction.isra.9+0xb9/0x36b [btrfs] [49558.728054] [<ffffffffa045a75c>] btrfs_commit_transaction+0x4c/0x981 [btrfs] [49558.728054] [<ffffffffa0434f86>] btrfs_sync_fs+0xd5/0x10d [btrfs] [49558.728054] [<ffffffff81155923>] ? iterate_supers+0x60/0xc4 [49558.728054] [<ffffffff8117966a>] ? do_sync_work+0x91/0x91 [49558.728054] [<ffffffff8117968a>] sync_fs_one_sb+0x20/0x22 [49558.728054] [<ffffffff81155939>] iterate_supers+0x76/0xc4 [49558.728054] [<ffffffff811798e8>] sys_sync+0x55/0x83 [49558.728054] [<ffffffff8142bbd2>] system_call_fastpath+0x12/0x17 Signed-off-by: NFilipe Manana <fdmanana@suse.com> Reviewed-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com> -
由 Filipe Manana 提交于
So creating a block group has 2 distinct phases: Phase 1 - creates the btrfs_block_group_cache item and adds it to the rbtree fs_info->block_group_cache_tree and to the corresponding list space_info->block_groups[]; Phase 2 - adds the block group item to the extent tree and corresponding items to the chunk tree. The first phase adds the block_group_cache_item to a list of pending block groups in the transaction handle, and phase 2 happens when btrfs_end_transaction() is called against the transaction handle. It happens that once phase 1 completes, other concurrent tasks that use their own transaction handle, but points to the same running transaction (struct btrfs_trans_handle->transaction), can use this block group for space allocations and therefore mark it dirty. Dirty block groups are tracked in a list belonging to the currently running transaction (struct btrfs_transaction) and not in the transaction handle (btrfs_trans_handle). This is a problem because once a task calls btrfs_commit_transaction(), it calls btrfs_start_dirty_block_groups() which will see all dirty block groups and attempt to start their writeout, including those that are still attached to the transaction handle of some concurrent task that hasn't called btrfs_end_transaction() yet - which means those block groups haven't gone through phase 2 yet and therefore when write_one_cache_group() is called, it won't find the block group items in the extent tree and abort the current transaction with -ENOENT, turning the fs into readonly mode and require a remount. Fix this by ignoring -ENOENT when looking for block group items in the extent tree when we attempt to start the writeout of the block group caches outside the critical section of the transaction commit. We will try again later during the critical section and if there we still don't find the block group item in the extent tree, we then abort the current transaction. This issue happened twice, once while running fstests btrfs/067 and once for btrfs/078, which produced the following trace: [ 3278.703014] WARNING: CPU: 7 PID: 18499 at fs/btrfs/super.c:260 __btrfs_abort_transaction+0x52/0x114 [btrfs]() [ 3278.707329] BTRFS: Transaction aborted (error -2) (...) [ 3278.731555] Call Trace: [ 3278.732396] [<ffffffff8142fa46>] dump_stack+0x4f/0x7b [ 3278.733860] [<ffffffff8108b6a2>] ? console_unlock+0x361/0x3ad [ 3278.735312] [<ffffffff81045ea5>] warn_slowpath_common+0xa1/0xbb [ 3278.736874] [<ffffffffa03ada6d>] ? __btrfs_abort_transaction+0x52/0x114 [btrfs] [ 3278.738302] [<ffffffff81045f05>] warn_slowpath_fmt+0x46/0x48 [ 3278.739520] [<ffffffffa03ada6d>] __btrfs_abort_transaction+0x52/0x114 [btrfs] [ 3278.741222] [<ffffffffa03b9e56>] write_one_cache_group+0xae/0xbf [btrfs] [ 3278.742797] [<ffffffffa03c487b>] btrfs_start_dirty_block_groups+0x170/0x2b2 [btrfs] [ 3278.744492] [<ffffffffa03d309c>] btrfs_commit_transaction+0x130/0x9c9 [btrfs] [ 3278.746084] [<ffffffff8107d33d>] ? trace_hardirqs_on+0xd/0xf [ 3278.747249] [<ffffffffa03e5660>] btrfs_sync_file+0x313/0x387 [btrfs] [ 3278.748744] [<ffffffff8117acad>] vfs_fsync_range+0x95/0xa4 [ 3278.749958] [<ffffffff81435b54>] ? ret_from_sys_call+0x1d/0x58 [ 3278.751218] [<ffffffff8117acd8>] vfs_fsync+0x1c/0x1e [ 3278.754197] [<ffffffff8117ae54>] do_fsync+0x34/0x4e [ 3278.755192] [<ffffffff8117b07c>] SyS_fsync+0x10/0x14 [ 3278.756236] [<ffffffff81435b32>] system_call_fastpath+0x12/0x17 [ 3278.757366] ---[ end trace 9a4d4df4969709aa ]--- Fixes: 1bbc621e ("Btrfs: allow block group cache writeout outside critical section in commit") Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
When waiting for the writeback of block group cache we returned immediately if there was an error during writeback without waiting for the ordered extent to complete. This left a short time window where if some other task attempts to start the writeout for the same block group cache it can attempt to add a new ordered extent, starting at the same offset (0) before the previous one is removed from the ordered tree, causing an ordered tree panic (calls BUG()). This normally doesn't happen in other write paths, such as buffered writes or direct IO writes for regular files, since before marking page ranges dirty we lock the ranges and wait for any ordered extents within the range to complete first. Fix this by making btrfs_wait_ordered_range() not return immediately if it gets an error from the writeback, waiting for all ordered extents to complete first. This issue happened often when running the fstest btrfs/088 and it's easy to trigger it by running in a loop until the panic happens: for ((i = 1; i <= 10000; i++)) do ./check btrfs/088 ; done [17156.862573] BTRFS critical (device sdc): panic in ordered_data_tree_panic:70: Inconsistency in ordered tree at offset 0 (errno=-17 Object already exists) [17156.864052] ------------[ cut here ]------------ [17156.864052] kernel BUG at fs/btrfs/ordered-data.c:70! (...) [17156.864052] Call Trace: [17156.864052] [<ffffffffa03876e3>] btrfs_add_ordered_extent+0x12/0x14 [btrfs] [17156.864052] [<ffffffffa03787e2>] run_delalloc_nocow+0x5bf/0x747 [btrfs] [17156.864052] [<ffffffffa03789ff>] run_delalloc_range+0x95/0x353 [btrfs] [17156.864052] [<ffffffffa038b7fe>] writepage_delalloc.isra.16+0xb9/0x13f [btrfs] [17156.864052] [<ffffffffa038d75b>] __extent_writepage+0x129/0x1f7 [btrfs] [17156.864052] [<ffffffffa038da5a>] extent_write_cache_pages.isra.15.constprop.28+0x231/0x2f4 [btrfs] [17156.864052] [<ffffffff810ad2af>] ? __module_text_address+0x12/0x59 [17156.864052] [<ffffffff8107d33d>] ? trace_hardirqs_on+0xd/0xf [17156.864052] [<ffffffffa038df76>] extent_writepages+0x4b/0x5c [btrfs] [17156.864052] [<ffffffff81144431>] ? kmem_cache_free+0x9b/0xce [17156.864052] [<ffffffffa0376a46>] ? btrfs_submit_direct+0x3fc/0x3fc [btrfs] [17156.864052] [<ffffffffa0389cd6>] ? free_extent_state+0x8c/0xc1 [btrfs] [17156.864052] [<ffffffffa0374871>] btrfs_writepages+0x28/0x2a [btrfs] [17156.864052] [<ffffffff8110c4c8>] do_writepages+0x23/0x2c [17156.864052] [<ffffffff81102f36>] __filemap_fdatawrite_range+0x5a/0x61 [17156.864052] [<ffffffff81102f6e>] filemap_fdatawrite_range+0x13/0x15 [17156.864052] [<ffffffffa0383ef7>] btrfs_fdatawrite_range+0x21/0x48 [btrfs] [17156.864052] [<ffffffffa03ab89e>] __btrfs_write_out_cache.isra.14+0x2d9/0x3a7 [btrfs] [17156.864052] [<ffffffffa03ac1ab>] ? btrfs_write_out_cache+0x41/0xdc [btrfs] [17156.864052] [<ffffffffa03ac1fd>] btrfs_write_out_cache+0x93/0xdc [btrfs] [17156.864052] [<ffffffffa0363847>] ? btrfs_start_dirty_block_groups+0x13a/0x2b2 [btrfs] [17156.864052] [<ffffffffa03638e6>] btrfs_start_dirty_block_groups+0x1d9/0x2b2 [btrfs] [17156.864052] [<ffffffff8107d33d>] ? trace_hardirqs_on+0xd/0xf [17156.864052] [<ffffffffa037209e>] btrfs_commit_transaction+0x130/0x9c9 [btrfs] [17156.864052] [<ffffffffa034c748>] btrfs_sync_fs+0xe1/0x12d [btrfs] Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
If the writeback of an inode cache failed we were unnecessarilly attempting to release again the delalloc metadata that we previously reserved. However attempting to do this a second time triggers an assertion at drop_outstanding_extent() because we have no more outstanding extents for our inode cache's inode. If we were able to start writeback of the cache the reserved metadata space is released at btrfs_finished_ordered_io(), even if an error happens during writeback. So make sure we don't repeat the metadata space release if writeback started for our inode cache. This issue was trivial to reproduce by running the fstest btrfs/088 with "-o inode_cache", which triggered the assertion leading to a BUG() call and requiring a reboot in order to run the remaining fstests. Trace produced by btrfs/088: [255289.385904] BTRFS: assertion failed: BTRFS_I(inode)->outstanding_extents >= num_extents, file: fs/btrfs/extent-tree.c, line: 5276 [255289.388094] ------------[ cut here ]------------ [255289.389184] kernel BUG at fs/btrfs/ctree.h:4057! [255289.390125] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC (...) [255289.392068] Call Trace: [255289.392068] [<ffffffffa035e774>] drop_outstanding_extent+0x3d/0x6d [btrfs] [255289.392068] [<ffffffffa0364988>] btrfs_delalloc_release_metadata+0x54/0xe3 [btrfs] [255289.392068] [<ffffffffa03b4174>] btrfs_write_out_ino_cache+0x95/0xad [btrfs] [255289.392068] [<ffffffffa036f5c4>] btrfs_save_ino_cache+0x275/0x2dc [btrfs] [255289.392068] [<ffffffffa03e2d83>] commit_fs_roots.isra.12+0xaa/0x137 [btrfs] [255289.392068] [<ffffffff8107d33d>] ? trace_hardirqs_on+0xd/0xf [255289.392068] [<ffffffffa037841f>] ? btrfs_commit_transaction+0x4b1/0x9c9 [btrfs] [255289.392068] [<ffffffff814351a4>] ? _raw_spin_unlock+0x32/0x46 [255289.392068] [<ffffffffa037842e>] btrfs_commit_transaction+0x4c0/0x9c9 [btrfs] (...) Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 07 5月, 2015 1 次提交
-
-
由 Filipe Manana 提交于
We were passing a flags value that differed from the intention in commit 2b108268 ("Btrfs: don't use highmem for free space cache pages"). This caused problems in a ARM machine, leaving btrfs unusable there. Reported-by: NMerlijn Wajer <merlijn@wizzup.org> Tested-by: NMerlijn Wajer <merlijn@wizzup.org> Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 30 4月, 2015 1 次提交
-
-
由 Forrest Liu 提交于
btrfs_release_extent_buffer_page() can't handle dummy extent that allocated by btrfs_clone_extent_buffer() properly. That is because reference count of pages that allocated by btrfs_clone_extent_buffer() was 2, 1 by alloc_page(), and another by attach_extent_buffer_page(). Running following command repeatly can check this memory leak problem btrfs inspect-internal inode-resolve 256 /mnt/btrfs Signed-off-by: NChien-Kuan Yeh <ckya@synology.com> Signed-off-by: NForrest Liu <forrestl@synology.com> Reviewed-by: NFilipe Manana <fdmanana@suse.com> Tested-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 26 4月, 2015 9 次提交
-
-
由 Yang Dongsheng 提交于
We need to fill inode when we found a node for it in delayed_nodes_tree. But we did not fill the ->last_trans currently, it will cause the test of xfstest/generic/311 fail. Scenario of the 311 is shown as below: Problem: (1). test_fd = open(fname, O_RDWR|O_DIRECT) (2). pwrite(test_fd, buf, 4096, 0) (3). close(test_fd) (4). drop_all_caches() <-------- "echo 3 > /proc/sys/vm/drop_caches" (5). test_fd = open(fname, O_RDWR|O_DIRECT) (6). fsync(test_fd); <-------- we did not get the correct log entry for the file Reason: When we re-open this file in (5), we would find a node in delayed_nodes_tree and fill the inode we are lookup with the information. But the ->last_trans is not filled, then the fsync() will check the ->last_trans and found it's 0 then say this inode is already in our tree which is commited, not recording the extents for it. Fix: This patch fill the ->last_trans properly and set the runtime_flags if needed in this situation. Then we can get the log entries we expected after (6) and generic/311 passed. Signed-off-by: NDongsheng Yang <yangds.fnst@cn.fujitsu.com> Reviewed-by: NMiao Xie <miaoxie@huawei.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Omar Sandoval 提交于
Whenever the check for a send in progress introduced in commit 521e0546 (btrfs: protect snapshots from deleting during send) is hit, we return without unlocking inode->i_mutex. This is easy to see with lockdep enabled: [ +0.000059] ================================================ [ +0.000028] [ BUG: lock held when returning to user space! ] [ +0.000029] 4.0.0-rc5-00096-g3c435c1e #93 Not tainted [ +0.000026] ------------------------------------------------ [ +0.000029] btrfs/211 is leaving the kernel with locks still held! [ +0.000029] 1 lock held by btrfs/211: [ +0.000023] #0: (&type->i_mutex_dir_key){+.+.+.}, at: [<ffffffff8135b8df>] btrfs_ioctl_snap_destroy+0x2df/0x7a0 Make sure we unlock it in the error path. Reviewed-by: NFilipe Manana <fdmanana@suse.com> Reviewed-by: NDavid Sterba <dsterba@suse.cz> Cc: stable@vger.kernel.org Signed-off-by: NOmar Sandoval <osandov@osandov.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Omar Sandoval 提交于
If io_ctl_prepare_pages fails, the pages in io_ctl.pages are not valid. When we try to access them later, things will blow up in various ways. Also fix the comment about the return value, which is an errno on error, not -1, and update the cases where it was not. Reviewed-by: NLiu Bo <bo.li.liu@oracle.com> Signed-off-by: NOmar Sandoval <osandov@osandov.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Omar Sandoval 提交于
Consider the following interleaving of overlapping calls to alloc_extent_buffer: Call 1: - Successfully allocates a few pages with find_or_create_page - find_or_create_page fails, goto free_eb - Unlocks the allocated pages Call 2: - Calls find_or_create_page and gets a page in call 1's extent_buffer - Finds that the page is already associated with an extent_buffer - Grabs a reference to the half-written extent_buffer and calls mark_extent_buffer_accessed on it mark_extent_buffer_accessed will then try to call mark_page_accessed on a null page and panic. The fix is to decrement the reference count on the half-written extent_buffer before unlocking the pages so call 2 won't use it. We should also set exists = NULL in the case that we don't use exists to avoid accidentally returning a freed extent_buffer in an error case. Signed-off-by: NOmar Sandoval <osandov@osandov.com> Reviewed-by: NDavid Sterba <dsterba@suse.cz> Reviewed-by: NLiu Bo <bo.li.liu@oracle.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Omar Sandoval 提交于
This is one of the first places to give out when memory is tight. Handle it properly rather than with a BUG_ON. Also fix the comment about the return value, which is an ERR_PTR, not NULL, on error. Signed-off-by: NOmar Sandoval <osandov@osandov.com> Reviewed-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Forrest Liu 提交于
If device tree has hole, find_free_dev_extent() cannot find available address properly. The problem can be reproduce by following script. mntpath=/btrfs loopdev=/dev/loop0 filepath=/home/forrest/image umount $mntpath losetup -d $loopdev truncate --size 100g $filepath losetup $loopdev $filepath mkfs.btrfs -f $loopdev mount $loopdev $mntpath # make device tree with one big hole for i in `seq 1 1 100`; do fallocate -l 1g $mntpath/$i done sync for i in `seq 1 1 95`; do rm $mntpath/$i done sync # wait cleaner thread remove unused block group sleep 300 fallocate -l 1g $mntpath/aaa # failed to allocate new chunk fallocate -l 1g $mntpath/bbb Above script will make device tree with one big hole, and can only allocate just one chunk in a transaction, so failed to allocate new chunk for $mntpath/bbb item 8 key (1 DEV_EXTENT 2185232384) itemoff 15859 itemsize 48 dev extent chunk_tree 3 chunk objectid 256 chunk offset 106292051968 length 1073741824 item 9 key (1 DEV_EXTENT 104190705664) itemoff 15811 itemsize 48 dev extent chunk_tree 3 chunk objectid 256 chunk offset 103108575232 length 1073741824 Signed-off-by: NForrest Liu <forrestl@synology.com> Reviewed-by: NLiu Bo <bo.li.liu@oracle.com> Signed-off-by: NChris Mason <clm@fb.com> -
由 Chris Mason 提交于
Now that we're doing free space cache writeback outside the critical section in the commit, there is a bigger window for delalloc_bytes to be added after a cache has been written. find_free_extent may do this without putting the block group back into the dirty list, and also without a transaction running. Checking for delalloc_bytes in cache_save_setup means we might leave the cache marked as written without invalidating it. Consistency checks during mount will toss the cache, but it's better to get rid of the check in cache_save_setup and let it get invalidated by the checks already done during cache write out. Signed-off-by: NChris Mason <clm@fb.com> -
由 Filipe Manana 提交于
While starting the writes of the dirty block group caches, if we don't find a block group item in the extent tree we were leaving without releasing our path, running delayed references and then looping again to process any new dirty block groups. However this second iteration of the loop could cause a deadlock because it tries to lock some other extent tree node/leaf which another task already locked and it's blocked because it's waiting for a lock on some node/leaf that is in our path that was not released before. We could also deadlock when running the delayed references - as we could end up trying to lock the same nodes/leafs that we have in our local path (with a different lock type). Got into such case when running xfstests: [20892.242791] ------------[ cut here ]------------ [20892.243776] WARNING: CPU: 0 PID: 13299 at fs/btrfs/super.c:260 __btrfs_abort_transaction+0x52/0x114 [btrfs]() [20892.245874] BTRFS: Transaction aborted (error -2) (...) [20892.269378] Call Trace: [20892.269915] [<ffffffff8142fa46>] dump_stack+0x4f/0x7b [20892.271097] [<ffffffff8108b6a2>] ? console_unlock+0x361/0x3ad [20892.272173] [<ffffffff81045ea5>] warn_slowpath_common+0xa1/0xbb [20892.273386] [<ffffffffa0509a6d>] ? __btrfs_abort_transaction+0x52/0x114 [btrfs] [20892.274857] [<ffffffff81045f05>] warn_slowpath_fmt+0x46/0x48 [20892.275851] [<ffffffffa0509a6d>] __btrfs_abort_transaction+0x52/0x114 [btrfs] [20892.277341] [<ffffffffa0515e10>] write_one_cache_group+0x68/0xaf [btrfs] [20892.278628] [<ffffffffa052088a>] btrfs_start_dirty_block_groups+0x18d/0x29b [btrfs] [20892.280191] [<ffffffffa052f077>] btrfs_commit_transaction+0x130/0x9c9 [btrfs] (...) [20892.291316] ---[ end trace 597f77e664245373 ]--- [20892.293955] BTRFS: error (device sdg) in write_one_cache_group:3184: errno=-2 No such entry [20892.297390] BTRFS info (device sdg): forced readonly [20892.298222] ------------[ cut here ]------------ [20892.299190] WARNING: CPU: 0 PID: 13299 at fs/btrfs/ctree.c:2683 btrfs_search_slot+0x7e/0x7d2 [btrfs]() (...) [20892.326253] Call Trace: [20892.326904] [<ffffffff8142fa46>] dump_stack+0x4f/0x7b [20892.329503] [<ffffffff8108b6a2>] ? console_unlock+0x361/0x3ad [20892.330815] [<ffffffff81045ea5>] warn_slowpath_common+0xa1/0xbb [20892.332556] [<ffffffffa0510b73>] ? btrfs_search_slot+0x7e/0x7d2 [btrfs] [20892.333955] [<ffffffff81045f62>] warn_slowpath_null+0x1a/0x1c [20892.335562] [<ffffffffa0510b73>] btrfs_search_slot+0x7e/0x7d2 [btrfs] [20892.336849] [<ffffffff8107b024>] ? arch_local_irq_save+0x9/0xc [20892.338222] [<ffffffffa051ad52>] ? cache_save_setup+0x43/0x2a5 [btrfs] [20892.339823] [<ffffffffa051ad66>] ? cache_save_setup+0x57/0x2a5 [btrfs] [20892.341275] [<ffffffff814351a4>] ? _raw_spin_unlock+0x32/0x46 [20892.342810] [<ffffffffa0515de7>] write_one_cache_group+0x3f/0xaf [btrfs] [20892.344184] [<ffffffffa052088a>] btrfs_start_dirty_block_groups+0x18d/0x29b [btrfs] [20892.347162] [<ffffffffa052f077>] btrfs_commit_transaction+0x130/0x9c9 [btrfs] (...) [20892.361015] ---[ end trace 597f77e664245374 ]--- [21120.688097] INFO: task kworker/u8:17:29854 blocked for more than 120 seconds. [21120.689881] Tainted: G W 4.0.0-rc5-btrfs-next-9+ #2 [21120.691384] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. (...) [21120.703696] Call Trace: [21120.704310] [<ffffffff8143107e>] schedule+0x74/0x83 [21120.705490] [<ffffffffa055f025>] btrfs_tree_lock+0xd7/0x236 [btrfs] [21120.706757] [<ffffffff81075cd6>] ? signal_pending_state+0x31/0x31 [21120.708156] [<ffffffffa054ac1e>] lock_extent_buffer_for_io+0x3e/0x194 [btrfs] [21120.709892] [<ffffffffa054bb86>] ? btree_write_cache_pages+0x273/0x385 [btrfs] [21120.711605] [<ffffffffa054bc42>] btree_write_cache_pages+0x32f/0x385 [btrfs] [21120.723440] [<ffffffffa0527552>] btree_writepages+0x23/0x5c [btrfs] [21120.724943] [<ffffffff8110c4c8>] do_writepages+0x23/0x2c [21120.726008] [<ffffffff81176dde>] __writeback_single_inode+0x73/0x2fa [21120.727230] [<ffffffff8117714a>] ? writeback_sb_inodes+0xe5/0x38b [21120.728526] [<ffffffff811771fb>] ? writeback_sb_inodes+0x196/0x38b [21120.729701] [<ffffffff8117726a>] writeback_sb_inodes+0x205/0x38b (...) [21120.747853] INFO: task btrfs:13282 blocked for more than 120 seconds. [21120.749459] Tainted: G W 4.0.0-rc5-btrfs-next-9+ #2 [21120.751137] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. (...) [21120.768457] Call Trace: [21120.769039] [<ffffffff8143107e>] schedule+0x74/0x83 [21120.770107] [<ffffffffa052f25c>] btrfs_commit_transaction+0x315/0x9c9 [btrfs] [21120.771558] [<ffffffff81075cd6>] ? signal_pending_state+0x31/0x31 [21120.773659] [<ffffffffa056fd8c>] prepare_to_relocate+0xcb/0xd2 [btrfs] [21120.776257] [<ffffffffa05741da>] relocate_block_group+0x44/0x4a9 [btrfs] [21120.777755] [<ffffffffa05747a0>] ? btrfs_relocate_block_group+0x161/0x288 [btrfs] [21120.779459] [<ffffffffa05747a8>] btrfs_relocate_block_group+0x169/0x288 [btrfs] [21120.781153] [<ffffffffa0550403>] btrfs_relocate_chunk.isra.29+0x3e/0xa7 [btrfs] [21120.783918] [<ffffffffa05518fd>] btrfs_balance+0xaa4/0xc52 [btrfs] [21120.785436] [<ffffffff8114306e>] ? cpu_cache_get.isra.39+0xe/0x1f [21120.786434] [<ffffffffa0559252>] btrfs_ioctl_balance+0x23f/0x2b0 [btrfs] (...) [21120.889251] INFO: task fsstress:13288 blocked for more than 120 seconds. [21120.890526] Tainted: G W 4.0.0-rc5-btrfs-next-9+ #2 [21120.891773] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. (...) [21120.899960] Call Trace: [21120.900743] [<ffffffff8143107e>] schedule+0x74/0x83 [21120.903004] [<ffffffffa055f025>] btrfs_tree_lock+0xd7/0x236 [btrfs] [21120.904383] [<ffffffff81075cd6>] ? signal_pending_state+0x31/0x31 [21120.905608] [<ffffffffa051125b>] btrfs_search_slot+0x766/0x7d2 [btrfs] [21120.906812] [<ffffffff8114290e>] ? virt_to_head_page+0x9/0x2c [21120.907874] [<ffffffff81144b7f>] ? cache_alloc_debugcheck_after.isra.42+0x16c/0x1cb [21120.909551] [<ffffffffa05124e0>] btrfs_insert_empty_items+0x5d/0xa8 [btrfs] [21120.910914] [<ffffffffa0512585>] btrfs_insert_item+0x5a/0xa5 [btrfs] [21120.912181] [<ffffffffa0520271>] ? btrfs_create_pending_block_groups+0x96/0x130 [btrfs] [21120.913784] [<ffffffffa052028a>] btrfs_create_pending_block_groups+0xaf/0x130 [btrfs] [21120.915374] [<ffffffffa052ffc2>] __btrfs_end_transaction+0x84/0x366 [btrfs] [21120.916735] [<ffffffffa05302b4>] btrfs_end_transaction+0x10/0x12 [btrfs] [21120.917996] [<ffffffffa051ab26>] btrfs_check_data_free_space+0x11f/0x27c [btrfs] [21120.919478] [<ffffffffa051ba25>] btrfs_delalloc_reserve_space+0x1e/0x51 [btrfs] [21120.921226] [<ffffffffa05382f2>] btrfs_truncate_page+0x85/0x2c4 [btrfs] [21120.923121] [<ffffffffa0538572>] btrfs_cont_expand+0x41/0x3ef [btrfs] [21120.924449] [<ffffffffa0541091>] ? btrfs_file_write_iter+0x19a/0x431 [btrfs] [21120.926602] [<ffffffff8107b024>] ? arch_local_irq_save+0x9/0xc [21120.927769] [<ffffffffa0541091>] ? btrfs_file_write_iter+0x19a/0x431 [btrfs] [21120.929324] [<ffffffffa05410a0>] ? btrfs_file_write_iter+0x1a9/0x431 [btrfs] [21120.930723] [<ffffffffa05410d9>] btrfs_file_write_iter+0x1e2/0x431 [btrfs] [21120.931897] [<ffffffff81067d85>] ? get_parent_ip+0xe/0x3e [21120.934446] [<ffffffff811534c3>] new_sync_write+0x7c/0xa0 [21120.935528] [<ffffffff81153b58>] vfs_write+0xb2/0x117 (...) Fixes: 1bbc621e ("Btrfs: allow block group cache writeout outside critical section in commit") Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Filipe Manana 提交于
While running xfstests I ran into the following: [20892.242791] ------------[ cut here ]------------ [20892.243776] WARNING: CPU: 0 PID: 13299 at fs/btrfs/super.c:260 __btrfs_abort_transaction+0x52/0x114 [btrfs]() [20892.245874] BTRFS: Transaction aborted (error -2) [20892.247329] Modules linked in: btrfs dm_snapshot dm_bufio dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse$ [20892.258488] CPU: 0 PID: 13299 Comm: fsstress Tainted: G W 4.0.0-rc5-btrfs-next-9+ #2 [20892.262011] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 [20892.264738] 0000000000000009 ffff880427f8bc18 ffffffff8142fa46 ffffffff8108b6a2 [20892.266244] ffff880427f8bc68 ffff880427f8bc58 ffffffff81045ea5 ffff880427f8bc48 [20892.267761] ffffffffa0509a6d 00000000fffffffe ffff8803545d6f40 ffffffffa05a15a0 [20892.269378] Call Trace: [20892.269915] [<ffffffff8142fa46>] dump_stack+0x4f/0x7b [20892.271097] [<ffffffff8108b6a2>] ? console_unlock+0x361/0x3ad [20892.272173] [<ffffffff81045ea5>] warn_slowpath_common+0xa1/0xbb [20892.273386] [<ffffffffa0509a6d>] ? __btrfs_abort_transaction+0x52/0x114 [btrfs] [20892.274857] [<ffffffff81045f05>] warn_slowpath_fmt+0x46/0x48 [20892.275851] [<ffffffffa0509a6d>] __btrfs_abort_transaction+0x52/0x114 [btrfs] [20892.277341] [<ffffffffa0515e10>] write_one_cache_group+0x68/0xaf [btrfs] [20892.278628] [<ffffffffa052088a>] btrfs_start_dirty_block_groups+0x18d/0x29b [btrfs] [20892.280191] [<ffffffffa052f077>] btrfs_commit_transaction+0x130/0x9c9 [btrfs] [20892.281781] [<ffffffff8107d33d>] ? trace_hardirqs_on+0xd/0xf [20892.282873] [<ffffffffa054163b>] btrfs_sync_file+0x313/0x387 [btrfs] [20892.284111] [<ffffffff8117acad>] vfs_fsync_range+0x95/0xa4 [20892.285203] [<ffffffff810e603f>] ? time_hardirqs_on+0x15/0x28 [20892.286290] [<ffffffff8123960b>] ? trace_hardirqs_on_thunk+0x3a/0x3f [20892.287469] [<ffffffff8117acd8>] vfs_fsync+0x1c/0x1e [20892.288412] [<ffffffff8117ae54>] do_fsync+0x34/0x4e [20892.289348] [<ffffffff8117b07c>] SyS_fsync+0x10/0x14 [20892.290255] [<ffffffff81435b32>] system_call_fastpath+0x12/0x17 [20892.291316] ---[ end trace 597f77e664245373 ]--- [20892.293955] BTRFS: error (device sdg) in write_one_cache_group:3184: errno=-2 No such entry [20892.297390] BTRFS info (device sdg): forced readonly This happens because in btrfs_start_dirty_block_groups() we splice the transaction's list of dirty block groups into a local list and then we keep extracting the first element of the list without holding the cache_write_mutex mutex. This means that before we acquire that mutex the first block group on the list might be removed by a conurrent task running btrfs_remove_block_group(). So make sure we extract the first element (and test the list emptyness) while holding that mutex. Fixes: 1bbc621e ("Btrfs: allow block group cache writeout outside critical section in commit") Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 25 4月, 2015 2 次提交
-
-
由 Jens Axboe 提交于
do_blockdev_direct_IO() increments and decrements the inode ->i_dio_count for each IO operation. It does this to protect against truncate of a file. Block devices don't need this sort of protection. For a capable multiqueue setup, this atomic int is the only shared state between applications accessing the device for O_DIRECT, and it presents a scaling wall for that. In my testing, as much as 30% of system time is spent incrementing and decrementing this value. A mixed read/write workload improved from ~2.5M IOPS to ~9.6M IOPS, with better latencies too. Before: clat percentiles (usec): | 1.00th=[ 33], 5.00th=[ 34], 10.00th=[ 34], 20.00th=[ 34], | 30.00th=[ 34], 40.00th=[ 34], 50.00th=[ 35], 60.00th=[ 35], | 70.00th=[ 35], 80.00th=[ 35], 90.00th=[ 37], 95.00th=[ 80], | 99.00th=[ 98], 99.50th=[ 151], 99.90th=[ 155], 99.95th=[ 155], | 99.99th=[ 165] After: clat percentiles (usec): | 1.00th=[ 95], 5.00th=[ 108], 10.00th=[ 129], 20.00th=[ 149], | 30.00th=[ 155], 40.00th=[ 161], 50.00th=[ 167], 60.00th=[ 171], | 70.00th=[ 177], 80.00th=[ 185], 90.00th=[ 201], 95.00th=[ 270], | 99.00th=[ 390], 99.50th=[ 398], 99.90th=[ 418], 99.95th=[ 422], | 99.99th=[ 438] In other setups, Robert Elliott reported seeing good performance improvements: https://lkml.org/lkml/2015/4/3/557 The more applications accessing the device, the worse it gets. Add a new direct-io flags, DIO_SKIP_DIO_COUNT, which tells do_blockdev_direct_IO() that it need not worry about incrementing or decrementing the inode i_dio_count for this caller. Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Elliott, Robert (Server Storage) <elliott@hp.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NJens Axboe <axboe@fb.com> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Chris Mason 提交于
__btrfs_write_out_cache is holding the ctl->tree_lock while it prepares a list of bitmaps to record in the free space cache. It was dropping the lock while it worked on other components, which made a window for free_bitmap() to free the bitmap struct without removing it from the list. This changes things to hold the lock the whole time, and also makes sure we hold the lock during enospc cleanup. Reported-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 24 4月, 2015 1 次提交
-
-
由 Chris Mason 提交于
The code to fix stalls during free spache cache IO wasn't using the correct root when waiting on the IO for inode caches. This is only a problem when the inode cache is enabled with mount -o inode_cache This fixes the inode cache writeout to preserve any error values and makes sure not to override the root when inode cache writeout is done. Reported-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NChris Mason <clm@fb.com>
-
- 16 4月, 2015 1 次提交
-
-
由 David Howells 提交于
that's the bulk of filesystem drivers dealing with inodes of their own Signed-off-by: NDavid Howells <dhowells@redhat.com> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-