- 07 6月, 2008 1 次提交
-
-
由 Daniel Walker 提交于
This semaphore doesn't appear to be used, so remove it. Signed-off-by: NDaniel Walker <dwalker@mvista.com> Cc: David Howells <dhowells@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 29 4月, 2008 4 次提交
-
-
由 David Howells 提交于
Make the keyring quotas controllable through /proc/sys files: (*) /proc/sys/kernel/keys/root_maxkeys /proc/sys/kernel/keys/root_maxbytes Maximum number of keys that root may have and the maximum total number of bytes of data that root may have stored in those keys. (*) /proc/sys/kernel/keys/maxkeys /proc/sys/kernel/keys/maxbytes Maximum number of keys that each non-root user may have and the maximum total number of bytes of data that each of those users may have stored in their keys. Also increase the quotas as a number of people have been complaining that it's not big enough. I'm not sure that it's big enough now either, but on the other hand, it can now be set in /etc/sysctl.conf. Signed-off-by: NDavid Howells <dhowells@redhat.com> Cc: <kwc@citi.umich.edu> Cc: <arunsr@cse.iitk.ac.in> Cc: <dwalsh@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Howells 提交于
Don't generate the per-UID user and user session keyrings unless they're explicitly accessed. This solves a problem during a login process whereby set*uid() is called before the SELinux PAM module, resulting in the per-UID keyrings having the wrong security labels. This also cures the problem of multiple per-UID keyrings sometimes appearing due to PAM modules (including pam_keyinit) setuiding and causing user_structs to come into and go out of existence whilst the session keyring pins the user keyring. This is achieved by first searching for extant per-UID keyrings before inventing new ones. The serial bound argument is also dropped from find_keyring_by_name() as it's not currently made use of (setting it to 0 disables the feature). Signed-off-by: NDavid Howells <dhowells@redhat.com> Cc: <kwc@citi.umich.edu> Cc: <arunsr@cse.iitk.ac.in> Cc: <dwalsh@redhat.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Howells 提交于
Add a keyctl() function to get the security label of a key. The following is added to Documentation/keys.txt: (*) Get the LSM security context attached to a key. long keyctl(KEYCTL_GET_SECURITY, key_serial_t key, char *buffer, size_t buflen) This function returns a string that represents the LSM security context attached to a key in the buffer provided. Unless there's an error, it always returns the amount of data it could produce, even if that's too big for the buffer, but it won't copy more than requested to userspace. If the buffer pointer is NULL then no copy will take place. A NUL character is included at the end of the string if the buffer is sufficiently big. This is included in the returned count. If no LSM is in force then an empty string will be returned. A process must have view permission on the key for this function to be successful. [akpm@linux-foundation.org: declare keyctl_get_security()] Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-by: NStephen Smalley <sds@tycho.nsa.gov> Cc: Paul Moore <paul.moore@hp.com> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: Kevin Coffman <kwc@citi.umich.edu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Howells 提交于
Allow the callout data to be passed as a blob rather than a string for internal kernel services that call any request_key_*() interface other than request_key(). request_key() itself still takes a NUL-terminated string. The functions that change are: request_key_with_auxdata() request_key_async() request_key_async_with_auxdata() Signed-off-by: NDavid Howells <dhowells@redhat.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Kevin Coffman <kwc@citi.umich.edu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 18 4月, 2008 1 次提交
-
-
由 Harvey Harrison 提交于
__FUNCTION__ is gcc-specific, use __func__ Signed-off-by: NHarvey Harrison <harvey.harrison@gmail.com> Cc: James Morris <jmorris@namei.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NJames Morris <jmorris@namei.org>
-
- 17 10月, 2007 1 次提交
-
-
由 David Howells 提交于
Make request_key() and co fundamentally asynchronous to make it easier for NFS to make use of them. There are now accessor functions that do asynchronous constructions, a wait function to wait for construction to complete, and a completion function for the key type to indicate completion of construction. Note that the construction queue is now gone. Instead, keys under construction are linked in to the appropriate keyring in advance, and that anyone encountering one must wait for it to be complete before they can use it. This is done automatically for userspace. The following auxiliary changes are also made: (1) Key type implementation stuff is split from linux/key.h into linux/key-type.h. (2) AF_RXRPC provides a way to allocate null rxrpc-type keys so that AFS does not need to call key_instantiate_and_link() directly. (3) Adjust the debugging macros so that they're -Wformat checked even if they are disabled, and make it so they can be enabled simply by defining __KDEBUG to be consistent with other code of mine. (3) Documentation. [alan@lxorguk.ukuu.org.uk: keys: missing word in documentation] Signed-off-by: NDavid Howells <dhowells@redhat.com> Signed-off-by: NAlan Cox <alan@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 6月, 2006 1 次提交
-
-
由 David Howells 提交于
The proposed NFS key type uses its own method of passing key requests to userspace (upcalling) rather than invoking /sbin/request-key. This is because the responsible userspace daemon should already be running and will be contacted through rpc_pipefs. This patch permits the NFS filesystem to pass auxiliary data to the upcall operation (struct key_type::request_key) so that the upcaller can use a pre-existing communications channel more easily. Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-By: NKevin Coffman <kwc@citi.umich.edu> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 27 6月, 2006 1 次提交
-
-
由 David Howells 提交于
Add the ability for key creation to overrun the user's quota in some circumstances - notably when a session keyring is created and assigned to a process that didn't previously have one. This means it's still possible to log in, should PAM require the creation of a new session keyring, and fix an overburdened key quota. Signed-off-by: NDavid Howells <dhowells@redhat.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 09 1月, 2006 2 次提交
-
-
由 David Howells 提交于
Make it possible for a running process (such as gssapid) to be able to instantiate a key, as was requested by Trond Myklebust for NFS4. The patch makes the following changes: (1) A new, optional key type method has been added. This permits a key type to intercept requests at the point /sbin/request-key is about to be spawned and do something else with them - passing them over the rpc_pipefs files or netlink sockets for instance. The uninstantiated key, the authorisation key and the intended operation name are passed to the method. (2) The callout_info is no longer passed as an argument to /sbin/request-key to prevent unauthorised viewing of this data using ps or by looking in /proc/pid/cmdline. This means that the old /sbin/request-key program will not work with the patched kernel as it will expect to see an extra argument that is no longer there. A revised keyutils package will be made available tomorrow. (3) The callout_info is now attached to the authorisation key. Reading this key will retrieve the information. (4) A new field has been added to the task_struct. This holds the authorisation key currently active for a thread. Searches now look here for the caller's set of keys rather than looking for an auth key in the lowest level of the session keyring. This permits a thread to be servicing multiple requests at once and to switch between them. Note that this is per-thread, not per-process, and so is usable in multithreaded programs. The setting of this field is inherited across fork and exec. (5) A new keyctl function (KEYCTL_ASSUME_AUTHORITY) has been added that permits a thread to assume the authority to deal with an uninstantiated key. Assumption is only permitted if the authorisation key associated with the uninstantiated key is somewhere in the thread's keyrings. This function can also clear the assumption. (6) A new magic key specifier has been added to refer to the currently assumed authorisation key (KEY_SPEC_REQKEY_AUTH_KEY). (7) Instantiation will only proceed if the appropriate authorisation key is assumed first. The assumed authorisation key is discarded if instantiation is successful. (8) key_validate() is moved from the file of request_key functions to the file of permissions functions. (9) The documentation is updated. From: <Valdis.Kletnieks@vt.edu> Build fix. Signed-off-by: NDavid Howells <dhowells@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: Alexander Zangerl <az@bond.edu.au> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 David Howells 提交于
Add a new keyctl function that allows the expiry time to be set on a key or removed from a key, provided the caller has attribute modification access. Signed-off-by: NDavid Howells <dhowells@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: Alexander Zangerl <az@bond.edu.au> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 07 1月, 2006 1 次提交
-
-
由 Adrian Bunk 提交于
make needlessly global code static Signed-off-by: NAdrian Bunk <bunk@stusta.de> Cc: David Howells <dhowells@redhat.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 29 9月, 2005 1 次提交
-
-
由 David Howells 提交于
The attached patch adds extra permission grants to keys for the possessor of a key in addition to the owner, group and other permissions bits. This makes SUID binaries easier to support without going as far as labelling keys and key targets using the LSM facilities. This patch adds a second "pointer type" to key structures (struct key_ref *) that can have the bottom bit of the address set to indicate the possession of a key. This is propagated through searches from the keyring to the discovered key. It has been made a separate type so that the compiler can spot attempts to dereference a potentially incorrect pointer. The "possession" attribute can't be attached to a key structure directly as it's not an intrinsic property of a key. Pointers to keys have been replaced with struct key_ref *'s wherever possession information needs to be passed through. This does assume that the bottom bit of the pointer will always be zero on return from kmem_cache_alloc(). The key reference type has been made into a typedef so that at least it can be located in the sources, even though it's basically a pointer to an undefined type. I've also renamed the accessor functions to be more useful, and all reference variables should now end in "_ref". Signed-Off-By: NDavid Howells <dhowells@redhat.com> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 24 6月, 2005 1 次提交
-
-
由 David Howells 提交于
The attached patch makes the following changes: (1) There's a new special key type called ".request_key_auth". This is an authorisation key for when one process requests a key and another process is started to construct it. This type of key cannot be created by the user; nor can it be requested by kernel services. Authorisation keys hold two references: (a) Each refers to a key being constructed. When the key being constructed is instantiated the authorisation key is revoked, rendering it of no further use. (b) The "authorising process". This is either: (i) the process that called request_key(), or: (ii) if the process that called request_key() itself had an authorisation key in its session keyring, then the authorising process referred to by that authorisation key will also be referred to by the new authorisation key. This means that the process that initiated a chain of key requests will authorise the lot of them, and will, by default, wind up with the keys obtained from them in its keyrings. (2) request_key() creates an authorisation key which is then passed to /sbin/request-key in as part of a new session keyring. (3) When request_key() is searching for a key to hand back to the caller, if it comes across an authorisation key in the session keyring of the calling process, it will also search the keyrings of the process specified therein and it will use the specified process's credentials (fsuid, fsgid, groups) to do that rather than the calling process's credentials. This allows a process started by /sbin/request-key to find keys belonging to the authorising process. (4) A key can be read, even if the process executing KEYCTL_READ doesn't have direct read or search permission if that key is contained within the keyrings of a process specified by an authorisation key found within the calling process's session keyring, and is searchable using the credentials of the authorising process. This allows a process started by /sbin/request-key to read keys belonging to the authorising process. (5) The magic KEY_SPEC_*_KEYRING key IDs when passed to KEYCTL_INSTANTIATE or KEYCTL_NEGATE will specify a keyring of the authorising process, rather than the process doing the instantiation. (6) One of the process keyrings can be nominated as the default to which request_key() should attach new keys if not otherwise specified. This is done with KEYCTL_SET_REQKEY_KEYRING and one of the KEY_REQKEY_DEFL_* constants. The current setting can also be read using this call. (7) request_key() is partially interruptible. If it is waiting for another process to finish constructing a key, it can be interrupted. This permits a request-key cycle to be broken without recourse to rebooting. Signed-Off-By: NDavid Howells <dhowells@redhat.com> Signed-Off-By: NBenoit Boissinot <benoit.boissinot@ens-lyon.org> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 17 4月, 2005 1 次提交
-
-
由 Linus Torvalds 提交于
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
-