- 06 3月, 2012 2 次提交
-
-
由 Hugh Dickins 提交于
When moving tasks from old memcg (with move_charge_at_immigrate on new memcg), followed by removal of old memcg, hit General Protection Fault in mem_cgroup_lru_del_list() (called from release_pages called from free_pages_and_swap_cache from tlb_flush_mmu from tlb_finish_mmu from exit_mmap from mmput from exit_mm from do_exit). Somewhat reproducible, takes a few hours: the old struct mem_cgroup has been freed and poisoned by SLAB_DEBUG, but mem_cgroup_lru_del_list() is still trying to update its stats, and take page off lru before freeing. A task, or a charge, or a page on lru: each secures a memcg against removal. In this case, the last task has been moved out of the old memcg, and it is exiting: anonymous pages are uncharged one by one from the memcg, as they are zapped from its pagetables, so the charge gets down to 0; but the pages themselves are queued in an mmu_gather for freeing. Most of those pages will be on lru (and force_empty is careful to lru_add_drain_all, to add pages from pagevec to lru first), but not necessarily all: perhaps some have been isolated for page reclaim, perhaps some isolated for other reasons. So, force_empty may find no task, no charge and no page on lru, and let the removal proceed. There would still be no problem if these pages were immediately freed; but typically (and the put_page_testzero protocol demands it) they have to be added back to lru before they are found freeable, then removed from lru and freed. We don't see the issue when adding, because the mem_cgroup_iter() loops keep their own reference to the memcg being scanned; but when it comes to mem_cgroup_lru_del_list(). I believe this was not an issue in v3.2: there, PageCgroupAcctLRU and PageCgroupUsed flags were used (like a trick with mirrors) to deflect view of pc->mem_cgroup to the stable root_mem_cgroup when neither set. 38c5d72f ("memcg: simplify LRU handling by new rule") mercifully removed those convolutions, but left this General Protection Fault. But it's surprisingly easy to restore the old behaviour: just check PageCgroupUsed in mem_cgroup_lru_add_list() (which decides on which lruvec to add), and reset pc to root_mem_cgroup if page is uncharged. A risky change? just going back to how it worked before; testing, and an audit of uses of pc->mem_cgroup, show no problem. And there's a nice bonus: with mem_cgroup_lru_add_list() itself making sure that an uncharged page goes to root lru, mem_cgroup_reset_owner() no longer has any purpose, and we can safely revert 4e5f01c2 ("memcg: clear pc->mem_cgroup if necessary"). Calling update_page_reclaim_stat() after add_page_to_lru_list() in swap.c is not strictly necessary: the lru_lock there, with RCU before memcg structures are freed, makes mem_cgroup_get_reclaim_stat_from_page safe without that; but it seems cleaner to rely on one dependency less. Signed-off-by: NHugh Dickins <hughd@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
We have forgotten the rules of lock nesting: the irq-safe ones must be taken inside the non-irq-safe ones, otherwise we are open to deadlock: CPU0 CPU1 ---- ---- lock(&(&pc->lock)->rlock); local_irq_disable(); lock(&(&zone->lru_lock)->rlock); lock(&(&pc->lock)->rlock); <Interrupt> lock(&(&zone->lru_lock)->rlock); To check a different locking issue, I happened to add a spin_lock to memcg's bit_spin_lock in lock_page_cgroup(), and lockdep very quickly complained about __mem_cgroup_commit_charge_lrucare() (on CPU1 above). So delete __mem_cgroup_commit_charge_lrucare(), passing a bool lrucare to __mem_cgroup_commit_charge() instead, taking zone->lru_lock under lock_page_cgroup() in the lrucare case. The original was using spin_lock_irqsave, but we'd be in more trouble if it were ever called at interrupt time: unconditional _irq is enough. And ClearPageLRU before del from lru, SetPageLRU before add to lru: no strong reason, but that is the ordering used consistently elsewhere. Fixes 36b62ad5 ("memcg: simplify corner case handling of LRU"). Signed-off-by: NHugh Dickins <hughd@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 3月, 2012 1 次提交
-
-
由 Tejun Heo 提交于
memblock allocator aligns @size to @align to reduce the amount of fragmentation. Commit: 7bd0b0f0 ("memblock: Reimplement memblock allocation using reverse free area iterator") Broke it by incorrectly relocating @size aligning to memblock_find_in_range_node(). As the aligned size is not propagated back to memblock_alloc_base_nid(), the actually reserved size isn't aligned. While this increases memory use for memblock reserved array, this shouldn't cause any critical failure; however, it seems that the size aligning was hiding a use-beyond-allocation bug in sparc64 and losing the aligning causes boot failure. The underlying problem is currently being debugged but this is a proper fix in itself, it's already pretty late in -rc cycle for boot failures and reverting the change for debugging isn't difficult. Restore the size aligning moving it to memblock_alloc_base_nid(). Reported-by: NMeelis Roos <mroos@linux.ee> Signed-off-by: NTejun Heo <tj@kernel.org> Cc: David S. Miller <davem@davemloft.net> Cc: Grant Likely <grant.likely@secretlab.ca> Cc: Rob Herring <rob.herring@calxeda.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/20120228205621.GC3252@dhcp-172-17-108-109.mtv.corp.google.comSigned-off-by: NIngo Molnar <mingo@elte.hu> LKML-Reference: <alpine.SOC.1.00.1202130942030.1488@math.ut.ee>
-
- 25 2月, 2012 3 次提交
-
-
由 David Howells 提交于
Don't clear vm_mm in a deleted VMA as it's unnecessary and might conceivably break the filesystem or driver VMA close routine. Reported-by: NAl Viro <viro@zeniv.linux.org.uk> Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-by: NAl Viro <viro@zeniv.linux.org.uk> cc: stable@vger.kernel.org Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Howells 提交于
Lock i_mmap_mutex for access to the VMA prio list to prevent concurrent access. Currently, certain parts of the mmap handling are protected by the region mutex, but not all. Reported-by: NAl Viro <viro@zeniv.linux.org.uk> Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-by: NAl Viro <viro@zeniv.linux.org.uk> cc: stable@vger.kernel.org Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Anton Vorontsov 提交于
There is an issue when memcg unregisters events that were attached to the same eventfd: - On the first call mem_cgroup_usage_unregister_event() removes all events attached to a given eventfd, and if there were no events left, thresholds->primary would become NULL; - Since there were several events registered, cgroups core will call mem_cgroup_usage_unregister_event() again, but now kernel will oops, as the function doesn't expect that threshold->primary may be NULL. That's a good question whether mem_cgroup_usage_unregister_event() should actually remove all events in one go, but nowadays it can't do any better as cftype->unregister_event callback doesn't pass any private event-associated cookie. So, let's fix the issue by simply checking for threshold->primary. FWIW, w/o the patch the following oops may be observed: BUG: unable to handle kernel NULL pointer dereference at 0000000000000004 IP: [<ffffffff810be32c>] mem_cgroup_usage_unregister_event+0x9c/0x1f0 Pid: 574, comm: kworker/0:2 Not tainted 3.3.0-rc4+ #9 Bochs Bochs RIP: 0010:[<ffffffff810be32c>] [<ffffffff810be32c>] mem_cgroup_usage_unregister_event+0x9c/0x1f0 RSP: 0018:ffff88001d0b9d60 EFLAGS: 00010246 Process kworker/0:2 (pid: 574, threadinfo ffff88001d0b8000, task ffff88001de91cc0) Call Trace: [<ffffffff8107092b>] cgroup_event_remove+0x2b/0x60 [<ffffffff8103db94>] process_one_work+0x174/0x450 [<ffffffff8103e413>] worker_thread+0x123/0x2d0 Cc: stable <stable@vger.kernel.org> Signed-off-by: NAnton Vorontsov <anton.vorontsov@linaro.org> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 2月, 2012 1 次提交
-
-
由 Dimitri Sivanich 提交于
When the number of dentry cache hash table entries gets too high (2147483648 entries), as happens by default on a 16TB system, use of a signed integer in the dcache_init() initialization loop prevents the dentry_hashtable from getting initialized, causing a panic in __d_lookup(). Fix this in dcache_init() and similar areas. Signed-off-by: NDimitri Sivanich <sivanich@sgi.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 09 2月, 2012 2 次提交
-
-
由 Hugh Dickins 提交于
Fix CONFIG_TRANSPARENT_HUGEPAGE=y CONFIG_SMP=n CONFIG_DEBUG_VM=y CONFIG_DEBUG_SPINLOCK=n kernel: spin_is_locked() is then always false, and so triggers some BUGs in Transparent HugePage codepaths. asm-generic/bug.h mentions this problem, and provides a WARN_ON_SMP(x); but being too lazy to add VM_BUG_ON_SMP, BUG_ON_SMP, WARN_ON_SMP_ONCE, VM_WARN_ON_SMP_ONCE, just test NR_CPUS != 1 in the existing VM_BUG_ONs. Signed-off-by: NHugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
When isolating pages for migration, migration starts at the start of a zone while the free scanner starts at the end of the zone. Migration avoids entering a new zone by never going beyond the free scanned. Unfortunately, in very rare cases nodes can overlap. When this happens, migration isolates pages without the LRU lock held, corrupting lists which will trigger errors in reclaim or during page free such as in the following oops BUG: unable to handle kernel NULL pointer dereference at 0000000000000008 IP: [<ffffffff810f795c>] free_pcppages_bulk+0xcc/0x450 PGD 1dda554067 PUD 1e1cb58067 PMD 0 Oops: 0000 [#1] SMP CPU 37 Pid: 17088, comm: memcg_process_s Tainted: G X RIP: free_pcppages_bulk+0xcc/0x450 Process memcg_process_s (pid: 17088, threadinfo ffff881c2926e000, task ffff881c2926c0c0) Call Trace: free_hot_cold_page+0x17e/0x1f0 __pagevec_free+0x90/0xb0 release_pages+0x22a/0x260 pagevec_lru_move_fn+0xf3/0x110 putback_lru_page+0x66/0xe0 unmap_and_move+0x156/0x180 migrate_pages+0x9e/0x1b0 compact_zone+0x1f3/0x2f0 compact_zone_order+0xa2/0xe0 try_to_compact_pages+0xdf/0x110 __alloc_pages_direct_compact+0xee/0x1c0 __alloc_pages_slowpath+0x370/0x830 __alloc_pages_nodemask+0x1b1/0x1c0 alloc_pages_vma+0x9b/0x160 do_huge_pmd_anonymous_page+0x160/0x270 do_page_fault+0x207/0x4c0 page_fault+0x25/0x30 The "X" in the taint flag means that external modules were loaded but but is unrelated to the bug triggering. The real problem was because the PFN layout looks like this Zone PFN ranges: DMA 0x00000010 -> 0x00001000 DMA32 0x00001000 -> 0x00100000 Normal 0x00100000 -> 0x01e80000 Movable zone start PFN for each node early_node_map[14] active PFN ranges 0: 0x00000010 -> 0x0000009b 0: 0x00000100 -> 0x0007a1ec 0: 0x0007a354 -> 0x0007a379 0: 0x0007f7ff -> 0x0007f800 0: 0x00100000 -> 0x00680000 1: 0x00680000 -> 0x00e80000 0: 0x00e80000 -> 0x01080000 1: 0x01080000 -> 0x01280000 0: 0x01280000 -> 0x01480000 1: 0x01480000 -> 0x01680000 0: 0x01680000 -> 0x01880000 1: 0x01880000 -> 0x01a80000 0: 0x01a80000 -> 0x01c80000 1: 0x01c80000 -> 0x01e80000 The fix is straight-forward. isolate_migratepages() has to make a similar check to isolate_freepage to ensure that it never isolates pages from a zone it does not hold the LRU lock for. This was discovered in a 3.0-based kernel but it affects 3.1.x, 3.2.x and current mainline. Signed-off-by: NMel Gorman <mgorman@suse.de> Acked-by: NMichal Nazarewicz <mina86@mina86.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 04 2月, 2012 5 次提交
-
-
由 Mel Gorman 提交于
mm: compaction: check pfn_valid when entering a new MAX_ORDER_NR_PAGES block during isolation for migration When isolating for migration, migration starts at the start of a zone which is not necessarily pageblock aligned. Further, it stops isolating when COMPACT_CLUSTER_MAX pages are isolated so migrate_pfn is generally not aligned. This allows isolate_migratepages() to call pfn_to_page() on an invalid PFN which can result in a crash. This was originally reported against a 3.0-based kernel with the following trace in a crash dump. PID: 9902 TASK: d47aecd0 CPU: 0 COMMAND: "memcg_process_s" #0 [d72d3ad0] crash_kexec at c028cfdb #1 [d72d3b24] oops_end at c05c5322 #2 [d72d3b38] __bad_area_nosemaphore at c0227e60 #3 [d72d3bec] bad_area at c0227fb6 #4 [d72d3c00] do_page_fault at c05c72ec #5 [d72d3c80] error_code (via page_fault) at c05c47a4 EAX: 00000000 EBX: 000c0000 ECX: 00000001 EDX: 00000807 EBP: 000c0000 DS: 007b ESI: 00000001 ES: 007b EDI: f3000a80 GS: 6f50 CS: 0060 EIP: c030b15a ERR: ffffffff EFLAGS: 00010002 #6 [d72d3cb4] isolate_migratepages at c030b15a #7 [d72d3d14] zone_watermark_ok at c02d26cb #8 [d72d3d2c] compact_zone at c030b8de #9 [d72d3d68] compact_zone_order at c030bba1 #10 [d72d3db4] try_to_compact_pages at c030bc84 #11 [d72d3ddc] __alloc_pages_direct_compact at c02d61e7 #12 [d72d3e08] __alloc_pages_slowpath at c02d66c7 #13 [d72d3e78] __alloc_pages_nodemask at c02d6a97 #14 [d72d3eb8] alloc_pages_vma at c030a845 #15 [d72d3ed4] do_huge_pmd_anonymous_page at c03178eb #16 [d72d3f00] handle_mm_fault at c02f36c6 #17 [d72d3f30] do_page_fault at c05c70ed #18 [d72d3fb0] error_code (via page_fault) at c05c47a4 EAX: b71ff000 EBX: 00000001 ECX: 00001600 EDX: 00000431 DS: 007b ESI: 08048950 ES: 007b EDI: bfaa3788 SS: 007b ESP: bfaa36e0 EBP: bfaa3828 GS: 6f50 CS: 0073 EIP: 080487c8 ERR: ffffffff EFLAGS: 00010202 It was also reported by Herbert van den Bergh against 3.1-based kernel with the following snippet from the console log. BUG: unable to handle kernel paging request at 01c00008 IP: [<c0522399>] isolate_migratepages+0x119/0x390 *pdpt = 000000002f7ce001 *pde = 0000000000000000 It is expected that it also affects 3.2.x and current mainline. The problem is that pfn_valid is only called on the first PFN being checked and that PFN is not necessarily aligned. Lets say we have a case like this H = MAX_ORDER_NR_PAGES boundary | = pageblock boundary m = cc->migrate_pfn f = cc->free_pfn o = memory hole H------|------H------|----m-Hoooooo|ooooooH-f----|------H The migrate_pfn is just below a memory hole and the free scanner is beyond the hole. When isolate_migratepages started, it scans from migrate_pfn to migrate_pfn+pageblock_nr_pages which is now in a memory hole. It checks pfn_valid() on the first PFN but then scans into the hole where there are not necessarily valid struct pages. This patch ensures that isolate_migratepages calls pfn_valid when necessary. Reported-by: NHerbert van den Bergh <herbert.van.den.bergh@oracle.com> Tested-by: NHerbert van den Bergh <herbert.van.den.bergh@oracle.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Acked-by: NMichal Nazarewicz <mina86@mina86.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Shaohua Li 提交于
Herbert Poetzl reported a performance regression since 2.6.39. The test is a simple dd read, but with big block size. The reason is: T1: ra (A, A+128k), (A+128k, A+256k) T2: lock_page for page A, submit the 256k T3: hit page A+128K, ra (A+256k, A+384). the range isn't submitted because of plug and there isn't any lock_page till we hit page A+256k because all pages from A to A+256k is in memory T4: hit page A+256k, ra (A+384, A+ 512). Because of plug, the range isn't submitted again. T5: lock_page A+256k, so (A+256k, A+512k) will be submitted. The task is waitting for (A+256k, A+512k) finish. There is no request to disk in T3 and T4, so readahead pipeline breaks. We really don't need block plug for generic_file_aio_read() for buffered I/O. The readahead already has plug and has fine grained control when I/O should be submitted. Deleting plug for buffered I/O fixes the regression. One side effect is plug makes the request size 256k, the size is 128k without it. This is because default ra size is 128k and not a reason we need plug here. Vivek said: : We submit some readahead IO to device request queue but because of nested : plug, queue never gets unplugged. When read logic reaches a page which is : not in page cache, it waits for page to be read from the disk : (lock_page_killable()) and that time we flush the plug list. : : So effectively read ahead logic is kind of broken in parts because of : nested plugging. Removing top level plug (generic_file_aio_read()) for : buffered reads, will allow unplugging queue earlier for readahead. Signed-off-by: NShaohua Li <shaohua.li@intel.com> Signed-off-by: NWu Fengguang <fengguang.wu@intel.com> Reported-by: NHerbert Poetzl <herbert@13thfloor.at> Tested-by: NEric Dumazet <eric.dumazet@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Carsten Otte 提交于
Fix a race condition that shows in conjunction with xip_file_fault() when two threads of the same user process fault on the same memory page. In this case, the race winner will install the page table entry and the unlucky loser will cause an oops: xip_file_fault calls vm_insert_pfn (via vm_insert_mixed) which drops out at this check: retval = -EBUSY; if (!pte_none(*pte)) goto out_unlock; The resulting -EBUSY return value will trigger a BUG_ON() in xip_file_fault. This fix simply considers the fault as fixed in this case, because the race winner has successfully installed the pte. [akpm@linux-foundation.org: use conventional (and consistent) comment layout] Reported-by: NDavid Sadler <dsadler@us.ibm.com> Signed-off-by: NCarsten Otte <cotte@de.ibm.com> Reported-by: NLouis Alex Eisner <leisner@cs.ucsd.edu> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrew Morton 提交于
mm/memcontrol.c: In function 'memcg_check_events': mm/memcontrol.c:779: warning: unused variable 'do_numainfo' Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Hiroyuki KAMEZAWA <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: N"Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Konstantin Khlebnikov 提交于
Postpone resetting page->mapping until the final remove_migration_ptes(). Otherwise the expression PageAnon(migration_entry_to_page(entry)) does not work. Signed-off-by: NKonstantin Khlebnikov <khlebnikov@openvz.org> Cc: Hugh Dickins <hughd@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 2月, 2012 1 次提交
-
-
由 Christopher Yeoh 提交于
This fixes the race in process_vm_core found by Oleg (see http://article.gmane.org/gmane.linux.kernel/1235667/ for details). This has been updated since I last sent it as the creation of the new mm_access() function did almost exactly the same thing as parts of the previous version of this patch did. In order to use mm_access() even when /proc isn't enabled, we move it to kernel/fork.c where other related process mm access functions already are. Signed-off-by: NChris Yeoh <yeohc@au1.ibm.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 2月, 2012 1 次提交
-
-
由 Rabin Vincent 提交于
While 7a401a97 ("backing-dev: ensure wakeup_timer is deleted") addressed the problem of the bdi being freed with a queued wakeup timer, there are other races that could happen if the wakeup timer expires after/during bdi_unregister(), before bdi_destroy() is called. wakeup_timer_fn() could attempt to wakeup a task which has already has been freed, or could access a NULL bdi->dev via the wake_forker_thread tracepoint. Cc: <stable@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Reported-by: NChanho Min <chanho.min@lge.com> Reviewed-by: NNamjae Jeon <linkinjeon@gmail.com> Signed-off-by: NRabin Vincent <rabin@rab.in> Signed-off-by: NWu Fengguang <fengguang.wu@intel.com>
-
- 24 1月, 2012 7 次提交
-
-
由 Konstantin Khlebnikov 提交于
Memory migration fills a pte with a migration entry and it doesn't update the rss counters. Then it replaces the migration entry with the new page (or the old one if migration failed). But between these two passes this pte can be unmaped, or a task can fork a child and it will get a copy of this migration entry. Nobody accounts for this in the rss counters. This patch properly adjust rss counters for migration entries in zap_pte_range() and copy_one_pte(). Thus we avoid extra atomic operations on the migration fast-path. Signed-off-by: NKonstantin Khlebnikov <khlebnikov@openvz.org> Cc: Hugh Dickins <hughd@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
Commit cc39c6a9 ("mm: account skipped entries to avoid looping in find_get_pages") correctly fixed an infinite loop; but left a problem that find_get_pages() on shmem would return 0 (appearing to callers to mean end of tree) when it meets a run of nr_pages swap entries. The only uses of find_get_pages() on shmem are via pagevec_lookup(), called from invalidate_mapping_pages(), and from shmctl SHM_UNLOCK's scan_mapping_unevictable_pages(). The first is already commented, and not worth worrying about; but the second can leave pages on the Unevictable list after an unusual sequence of swapping and locking. Fix that by using shmem_find_get_pages_and_swap() (then ignoring the swap) instead of pagevec_lookup(). But I don't want to contaminate vmscan.c with shmem internals, nor shmem.c with LRU locking. So move scan_mapping_unevictable_pages() into shmem.c, renaming it shmem_unlock_mapping(); and rename check_move_unevictable_page() to check_move_unevictable_pages(), looping down an array of pages, oftentimes under the same lock. Leave out the "rotate unevictable list" block: that's a leftover from when this was used for /proc/sys/vm/scan_unevictable_pages, whose flawed handling involved looking at pages at tail of LRU. Was there significance to the sequence first ClearPageUnevictable, then test page_evictable, then SetPageUnevictable here? I think not, we're under LRU lock, and have no barriers between those. Signed-off-by: NHugh Dickins <hughd@google.com> Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shaohua.li@intel.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Cc: <stable@vger.kernel.org> [back to 3.1 but will need respins] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
scan_mapping_unevictable_pages() is used to make SysV SHM_LOCKed pages evictable again once the shared memory is unlocked. It does this with pagevec_lookup()s across the whole object (which might occupy most of memory), and takes 300ms to unlock 7GB here. A cond_resched() every PAGEVEC_SIZE pages would be good. However, KOSAKI-san points out that this is called under shmem.c's info->lock, and it's also under shm.c's shm_lock(), both spinlocks. There is no strong reason for that: we need to take these pages off the unevictable list soonish, but those locks are not required for it. So move the call to scan_mapping_unevictable_pages() from shmem.c's unlock handling up to shm.c's unlock handling. Remove the recently added barrier, not needed now we have spin_unlock() before the scan. Use get_file(), with subsequent fput(), to make sure we have a reference to mapping throughout scan_mapping_unevictable_pages(): that's something that was previously guaranteed by the shm_lock(). Remove shmctl's lru_add_drain_all(): we don't fault in pages at SHM_LOCK time, and we lazily discover them to be Unevictable later, so it serves no purpose for SHM_LOCK; and serves no purpose for SHM_UNLOCK, since pages still on pagevec are not marked Unevictable. The original code avoided redundant rescans by checking VM_LOCKED flag at its level: now avoid them by checking shp's SHM_LOCKED. The original code called scan_mapping_unevictable_pages() on a locked area at shm_destroy() time: perhaps we once had accounting cross-checks which required that, but not now, so skip the overhead and just let inode eviction deal with them. Put check_move_unevictable_page() and scan_mapping_unevictable_pages() under CONFIG_SHMEM (with stub for the TINY case when ramfs is used), more as comment than to save space; comment them used for SHM_UNLOCK. Signed-off-by: NHugh Dickins <hughd@google.com> Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shaohua.li@intel.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hillf Danton 提交于
Page mapcount should be updated only if we are sure that the page ends up in the page table otherwise we would leak if we couldn't COW due to reservations or if idx is out of bounds. Signed-off-by: NHillf Danton <dhillf@gmail.com> Reviewed-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
end_migration() passes the old page instead of the new page to commit the charge. This page descriptor is not used for committing itself, though, since we also pass the (correct) page_cgroup descriptor. But it's used to find the soft limit tree through the page's zone, so the soft limit tree of the old page's zone is updated instead of that of the new page's, which might get slightly out of date until the next charge reaches the ratelimit point. This glitch has been present since 5564e88b ("memcg: condense page_cgroup-to-page lookup points"). This fixes a bug that I introduced in 2.6.38. It's benign enough (to my knowledge) that we probably don't want this for stable. Reported-by: NHugh Dickins <hughd@google.com> Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NKirill A. Shutemov <kirill@shutemov.name> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
page_zone() requires an online node otherwise we are accessing NULL NODE_DATA. This is not an issue at the moment because node_zones are located at the structure beginning but this might change in the future so better be careful about that. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NMel Gorman <mgorman@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
Fix the following NULL ptr dereference caused by cat /sys/devices/system/memory/memory0/removable Pid: 13979, comm: sed Not tainted 3.0.13-0.5-default #1 IBM BladeCenter LS21 -[7971PAM]-/Server Blade RIP: __count_immobile_pages+0x4/0x100 Process sed (pid: 13979, threadinfo ffff880221c36000, task ffff88022e788480) Call Trace: is_pageblock_removable_nolock+0x34/0x40 is_mem_section_removable+0x74/0xf0 show_mem_removable+0x41/0x70 sysfs_read_file+0xfe/0x1c0 vfs_read+0xc7/0x130 sys_read+0x53/0xa0 system_call_fastpath+0x16/0x1b We are crashing because we are trying to dereference NULL zone which came from pfn=0 (struct page ffffea0000000000). According to the boot log this page is marked reserved: e820 update range: 0000000000000000 - 0000000000010000 (usable) ==> (reserved) and early_node_map confirms that: early_node_map[3] active PFN ranges 1: 0x00000010 -> 0x0000009c 1: 0x00000100 -> 0x000bffa3 1: 0x00100000 -> 0x00240000 The problem is that memory_present works in PAGE_SECTION_MASK aligned blocks so the reserved range sneaks into the the section as well. This also means that free_area_init_node will not take care of those reserved pages and they stay uninitialized. When we try to read the removable status we walk through all available sections and hope that the zone is valid for all pages in the section. But this is not true in this case as the zone and nid are not initialized. We have only one node in this particular case and it is marked as node=1 (rather than 0) and that made the problem visible because page_to_nid will return 0 and there are no zones on the node. Let's check that the zone is valid and that the given pfn falls into its boundaries and mark the section not removable. This might cause some false positives, probably, but we do not have any sane way to find out whether the page is reserved by the platform or it is just not used for whatever other reasons. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NMel Gorman <mgorman@suse.de> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 1月, 2012 1 次提交
-
-
由 Glauber Costa 提交于
There is still a build bug with the sock memcg code, that triggers with !CONFIG_NET, that survived my series of randconfig builds. Signed-off-by: NGlauber Costa <glommer@parallels.com> Reported-by: NRandy Dunlap <rdunlap@xenotime.net> CC: Hiroyouki Kamezawa <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 21 1月, 2012 2 次提交
-
-
由 Catalin Marinas 提交于
Commit b6693005 (kmemleak: When the early log buffer is exceeded, report the actual number) deferred the disabling of the early logging to kmemleak_init(). However, when CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF=y, the early logging was no longer disabled causing __init kmemleak functions to be called even after the kernel freed the init memory. This patch disables the early logging during kmemleak_init() if kmemleak is left disabled. Reported-by: NDirk Gouders <gouders@et.bocholt.fh-gelsenkirchen.de> Tested-by: NDirk Gouders <gouders@et.bocholt.fh-gelsenkirchen.de> Tested-by: NJosh Boyer <jwboyer@gmail.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Tiejun Chen 提交于
Kmemleak should only track valid scan areas with a non-zero size. Otherwise, such area may reside just at the end of an object and kmemleak would report "Adding scan area to unknown object". Signed-off-by: NTiejun Chen <tiejun.chen@windriver.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 17 1月, 2012 1 次提交
-
-
由 Glauber Costa 提交于
Although only used currently for tcp sockets, this function is now used in common sock code (for sock_clone()) Commit 475f1b52 moved the declaration of sock_update_clone() to inside sock.c, but this only fixes the problem when CONFIG_CGROUP_MEM_RES_CTLR_KMEM is also not defined. This patch here is verified to fix both problems, although reverting the previous one is not necessary. Signed-off-by: NGlauber Costa <glommer@parallels.com> CC: David S. Miller <davem@davemloft.net> CC: Stephen Rothwell <sfr@canb.auug.org.au> Reported-by: NRandy Dunlap <rdunlap@xenotime.net> Acked-by: NRandy Dunlap <rdunlap@xenotime.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 1月, 2012 1 次提交
-
-
由 Tejun Heo 提交于
7bd0b0f0 ("memblock: Reimplement memblock allocation using reverse free area iterator") implemented a simple top-down allocator using a reverse memblock iterator. To avoid underflow in the allocator loop, it simply raised the lower boundary to the requested size under the assumption that requested size would be far smaller than available memblocks. This causes early page table allocation failure under certain configurations in Xen. Fix it by checking for underflow directly instead of bumping up lower bound. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-by: NKonrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: rjw@sisk.pl Cc: xen-devel@lists.xensource.com Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20120113181412.GA11112@google.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
-
- 13 1月, 2012 12 次提交
-
-
由 Kautuk Consul 提交于
If either of the vas or vms arrays are not properly kzalloced, then the code jumps to the err_free label. The err_free label runs a loop to check and free each of the array members of the vas and vms arrays which is not required for this situation as none of the array members have been allocated till this point. Eliminate the extra loop we have to go through by introducing a new label err_free2 and then jumping to it. [akpm@linux-foundation.org: remove now-unneeded tests] Signed-off-by: NKautuk Consul <consul.kautuk@gmail.com> Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
There is sometimes confusion between the global putback_lru_pages() in migrate.c and the static putback_lru_pages() in vmscan.c: rename the latter putback_inactive_pages(): it helps shrink_inactive_list() rather as move_active_pages_to_lru() helps shrink_active_list(). Remove unused scan_control arg from putback_inactive_pages() and from update_isolated_counts(). Move clear_active_flags() inside update_isolated_counts(). Move NR_ISOLATED accounting up into shrink_inactive_list() itself, so the balance is clearer. Do the spin_lock_irq() before calling putback_inactive_pages() and spin_unlock_irq() after return from it, so that it better matches update_isolated_counts() and move_active_pages_to_lru(). Signed-off-by: NHugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
The isolate_pages() level in vmscan.c offers little but indirection: merge it into isolate_lru_pages() as the compiler does, and use the names nr_to_scan and nr_scanned in each case. Signed-off-by: NHugh Dickins <hughd@google.com> Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
del_page_from_lru() repeats del_page_from_lru_list(), also working out which LRU the page was on, clearing the relevant bits. Decouple those functions: remove del_page_from_lru() and add page_off_lru(). Signed-off-by: NHugh Dickins <hughd@google.com> Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
Mostly we use "enum lru_list lru": change those few "l"s to "lru"s. Signed-off-by: NHugh Dickins <hughd@google.com> Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
checkpatch rightly protests WARNING: EXPORT_SYMBOL(foo); should immediately follow its function/variable so fix the five offenders in mm/swap.c. Signed-off-by: NHugh Dickins <hughd@google.com> Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
What's so special about ____pagevec_lru_add() that it needs four leading underscores? Nothing, it just helped to distinguish from __pagevec_lru_add() in 2.6.28 development. Cut two leading underscores. Signed-off-by: NHugh Dickins <hughd@google.com> Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
Replace pagevecs in putback_lru_pages() and move_active_pages_to_lru() by lists of pages_to_free: then apply Konstantin Khlebnikov's free_hot_cold_page_list() to them instead of pagevec_release(). Which simplifies the flow (no need to drop and retake lock whenever pagevec fills up) and reduces stale addresses in stack backtraces (which often showed through the pagevecs); but more importantly, removes another 120 bytes from the deepest stacks in page reclaim. Although I've not recently seen an actual stack overflow here with a vanilla kernel, move_active_pages_to_lru() has often featured in deep backtraces. However, free_hot_cold_page_list() does not handle compound pages (nor need it: a Transparent HugePage would have been split by the time it reaches the call in shrink_page_list()), but it is possible for putback_lru_pages() or move_active_pages_to_lru() to be left holding the last reference on a THP, so must exclude the unlikely compound case before putting on pages_to_free. Remove pagevec_strip(), its work now done in move_active_pages_to_lru(). The pagevec in scan_mapping_unevictable_pages() remains in mm/vmscan.c, but that is never on the reclaim path, and cannot be replaced by a list. Signed-off-by: NHugh Dickins <hughd@google.com> Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: NKonstantin Khlebnikov <khlebnikov@openvz.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
If DEBUG_VM, mem_cgroup_print_bad_page() is called whenever bad_page() shows a "Bad page state" message, removes page from circulation, adds a taint and continues. This is at a very low level, often when a spinlock is held (sometimes when page table lock is held, for example). We want to recover from this badness, not make it worse: we must not kmalloc memory here, we must not do a cgroup path lookup via dubious pointers. No doubt that code was useful to debug a particular case at one time, and may be again, but take it out of the mainline kernel. Signed-off-by: NHugh Dickins <hughd@google.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
This patch started off as a cleanup: __split_huge_page_refcounts() has to cope with two scenarios, when the hugepage being split is already on LRU, and when it is not; but why does it have to split that accounting across three different sites? Consolidate it in lru_add_page_tail(), handling evictable and unevictable alike, and use standard add_page_to_lru_list() when accounting is needed (when the head is not yet on LRU). But a recent regression in -next, I guess the removal of PageCgroupAcctLRU test from mem_cgroup_split_huge_fixup(), makes this now a necessary fix: under load, the MEM_CGROUP_ZSTAT count was wrapping to a huge number, messing up reclaim calculations and causing a freeze at rmdir of cgroup. Add a VM_BUG_ON to mem_cgroup_lru_del_list() when we're about to wrap that count - this has not been the only such incident. Document that lru_add_page_tail() is for Transparent HugePages by #ifdef around it. Signed-off-by: NHugh Dickins <hughd@google.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
If compaction can proceed for a given zone, shrink_zones() does not reclaim any more pages from it. After commit [e0c23279: vmscan: abort reclaim/compaction if compaction can proceed], do_try_to_free_pages() tries to finish as soon as possible once one zone can compact. This was intended to prevent slabs being shrunk unnecessarily but there are side-effects. One is that a small zone that is ready for compaction will abort reclaim even if the chances of successfully allocating a THP from that zone is small. It also means that reclaim can return too early even though sc->nr_to_reclaim pages were not reclaimed. This partially reverts the commit until it is proven that slabs are really being shrunk unnecessarily but preserves the check to return 1 to avoid OOM if reclaim was aborted prematurely. [aarcange@redhat.com: This patch replaces a revert from Andrea] Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Dave Jones <davej@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Andy Isaacson <adi@hexapodia.org> Cc: Nai Xia <nai.xia@gmail.com> Cc: Johannes Weiner <jweiner@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
In commit e0887c19 ("vmscan: limit direct reclaim for higher order allocations"), Rik noted that reclaim was too aggressive when THP was enabled. In his initial patch he used the number of free pages to decide if reclaim should abort for compaction. My feedback was that reclaim and compaction should be using the same logic when deciding if reclaim should be aborted. Unfortunately, this had the effect of reducing THP success rates when the workload included something like streaming reads that continually allocated pages. The window during which compaction could run and return a THP was too small. This patch combines Rik's two patches together. compaction_suitable() is still used to decide if reclaim should be aborted to allow compaction is used. However, it will also ensure that there is a reasonable buffer of free pages available. This improves upon the THP allocation success rates but bounds the number of pages that are freed for compaction. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel<riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Dave Jones <davej@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Andy Isaacson <adi@hexapodia.org> Cc: Nai Xia <nai.xia@gmail.com> Cc: Johannes Weiner <jweiner@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-