- 19 5月, 2015 1 次提交
-
-
由 Ingo Molnar 提交于
So 6 years ago we made the FPU fpstate dynamically allocated: aa283f49 ("x86, fpu: lazy allocation of FPU area - v5") 61c4628b ("x86, fpu: split FPU state from task struct - v5") In hindsight this was a mistake: - it complicated context allocation failure handling, such as: /* kthread execs. TODO: cleanup this horror. */ if (WARN_ON(fpstate_alloc_init(fpu))) force_sig(SIGKILL, tsk); - it caused us to enable irqs in fpu__restore(): local_irq_enable(); /* * does a slab alloc which can sleep */ if (fpstate_alloc_init(fpu)) { /* * ran out of memory! */ do_group_exit(SIGKILL); return; } local_irq_disable(); - it (slightly) slowed down task creation/destruction by adding slab allocation/free pattens. - it made access to context contents (slightly) slower by adding one more pointer dereference. The motivation for the dynamic allocation was two-fold: - reduce memory consumption by non-FPU tasks - allocate and handle only the necessary amount of context for various XSAVE processors that have varying hardware frame sizes. These days, with glibc using SSE memcpy by default and GCC optimizing for SSE/AVX by default, the scope of FPU using apps on an x86 system is much larger than it was 6 years ago. For example on a freshly installed Fedora 21 desktop system, with a recent kernel, all non-kthread tasks have used the FPU shortly after bootup. Also, even modern embedded x86 CPUs try to support the latest vector instruction set - so they'll too often use the larger xstate frame sizes. So remove the dynamic allocation complication by embedding the FPU fpstate in task_struct again. This should make the FPU a lot more accessible to all sorts of atomic contexts. We could still optimize for the xstate frame size in the future, by moving the state structure to the last element of task_struct, and allocating only a part of that. This change is kept minimal by still keeping the ctx_alloc()/free() routines (that now do nothing substantial) - we'll remove them in the following patches. Reviewed-by: NBorislav Petkov <bp@alien8.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 11 5月, 2010 1 次提交
-
-
由 H. Peter Anvin 提交于
Unbreak FPU emulation, broken by checkin 86603283: x86: Introduce 'struct fpu' and related API Signed-off-by: NH. Peter Anvin <hpa@zytor.com> Cc: Avi Kivity <avi@redhat.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> LKML-Reference: <1273135546-29690-3-git-send-email-avi@redhat.com>
-
- 10 2月, 2009 1 次提交
-
-
由 Tejun Heo 提交于
do_device_not_available() is the handler for #NM and it declares that it takes a unsigned long and calls math_emu(), which takes a long argument and surprisingly expects the stack frame starting at the zero argument would match struct math_emu_info, which isn't true regardless of configuration in the current code. This patch makes do_device_not_available() take struct pt_regs like other exception handlers and initialize struct math_emu_info with pointer to it and pass pointer to the math_emu_info to math_emulate() like normal C functions do. This way, unless gcc makes a copy of struct pt_regs in do_device_not_available(), the register frame is correctly accessed regardless of kernel configuration or compiler used. This doesn't fix all math_emu problems but it at least gets it somewhat working. Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 09 2月, 2009 1 次提交
-
-
由 Tejun Heo 提交于
Impact: cleanup * Come on, struct info? s/struct info/struct math_emu_info/ * Use struct pt_regs and kernel_vm86_regs instead of defining its own register frame structure. Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 20 4月, 2008 1 次提交
-
-
由 Suresh Siddha 提交于
Split the FPU save area from the task struct. This allows easy migration of FPU context, and it's generally cleaner. It also allows the following two optimizations: 1) only allocate when the application actually uses FPU, so in the first lazy FPU trap. This could save memory for non-fpu using apps. Next patch does this lazy allocation. 2) allocate the right size for the actual cpu rather than 512 bytes always. Patches enabling xsave/xrstor support (coming shortly) will take advantage of this. Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: NArjan van de Ven <arjan@linux.intel.com> Signed-off-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 11 10月, 2007 1 次提交
-
-
由 Thomas Gleixner 提交于
Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 07 12月, 2006 1 次提交
-
-
由 Randy Dunlap 提交于
Fix __must_check warnings in i386/math-emu. Signed-off-by: NRandy Dunlap <rdunlap@xenotime.net> Signed-off-by: NAndi Kleen <ak@suse.de>
-
- 17 4月, 2005 1 次提交
-
-
由 Linus Torvalds 提交于
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
-