1. 05 6月, 2014 18 次提交
    • C
      hwpoison: remove unused global variable in do_machine_check() · 65eb7182
      Chen Yucong 提交于
      Remove an unused global variable mce_entry and relative operations in
      do_machine_check().
      Signed-off-by: NChen Yucong <slaoub@gmail.com>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Wu Fengguang <fengguang.wu@intel.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      65eb7182
    • M
      mm: page_alloc: convert hot/cold parameter and immediate callers to bool · b745bc85
      Mel Gorman 提交于
      cold is a bool, make it one.  Make the likely case the "if" part of the
      block instead of the else as according to the optimisation manual this is
      preferred.
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Acked-by: NRik van Riel <riel@redhat.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Theodore Ts'o <tytso@mit.edu>
      Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b745bc85
    • E
      arch/x86/mm/numa.c: use for_each_memblock() · af4459d3
      Emil Medve 提交于
      Signed-off-by: NEmil Medve <Emilian.Medve@Freescale.com>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      af4459d3
    • C
      mm: x86 pgtable: require X86_64 for soft-dirty tracker · 2bf01f9f
      Cyrill Gorcunov 提交于
      Tracking dirty status on 2 level pages requires very ugly macros and
      taking into account how old the machines who can operate without PAE
      mode only are, lets drop soft dirty tracker from them for code
      simplicity (note I can't drop all the macros from 2 level pages by now
      since _PAGE_BIT_PROTNONE and _PAGE_BIT_FILE are still used even without
      tracker).
      
      Linus proposed to completely rip off softdirty support on x86-32 (even
      with PAE) and since for CRIU we're not planning to support native x86-32
      mode, lets do that.
      
      (Softdirty tracker is relatively new feature which is mostly used by
      CRIU so I don't expect if such API change would cause problems for
      userspace).
      Signed-off-by: NCyrill Gorcunov <gorcunov@openvz.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Peter Anvin <hpa@zytor.com>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Steven Noonan <steven@uplinklabs.net>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: David Vrabel <david.vrabel@citrix.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Pavel Emelyanov <xemul@parallels.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2bf01f9f
    • C
      mm: x86 pgtable: drop unneeded preprocessor ifdef · 2373eaec
      Cyrill Gorcunov 提交于
      _PAGE_BIT_FILE (bit 6) is always less than _PAGE_BIT_PROTNONE (bit 8), so
      drop redundant #ifdef.
      Signed-off-by: NCyrill Gorcunov <gorcunov@openvz.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Peter Anvin <hpa@zytor.com>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Steven Noonan <steven@uplinklabs.net>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: David Vrabel <david.vrabel@citrix.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Pavel Emelyanov <xemul@parallels.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2373eaec
    • D
      arc: call find_vma with the mmap_sem held · 5040573e
      Davidlohr Bueso 提交于
      Performing vma lookups without taking the mm->mmap_sem is asking for
      trouble.  While doing the search, the vma in question can be modified or
      even removed before returning to the caller.  Take the lock (shared) in
      order to avoid races while iterating through the vmacache and/or rbtree.
      
      [akpm@linux-foundation.org: CSE current->active_mm, per Vineet]
      Signed-off-by: NDavidlohr Bueso <davidlohr@hp.com>
      Acked-by: NVineet Gupta <vgupta@synopsys.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      5040573e
    • M
      mm: disable zone_reclaim_mode by default · 4f9b16a6
      Mel Gorman 提交于
      When it was introduced, zone_reclaim_mode made sense as NUMA distances
      punished and workloads were generally partitioned to fit into a NUMA
      node.  NUMA machines are now common but few of the workloads are
      NUMA-aware and it's routine to see major performance degradation due to
      zone_reclaim_mode being enabled but relatively few can identify the
      problem.
      
      Those that require zone_reclaim_mode are likely to be able to detect
      when it needs to be enabled and tune appropriately so lets have a
      sensible default for the bulk of users.
      
      This patch (of 2):
      
      zone_reclaim_mode causes processes to prefer reclaiming memory from
      local node instead of spilling over to other nodes.  This made sense
      initially when NUMA machines were almost exclusively HPC and the
      workload was partitioned into nodes.  The NUMA penalties were
      sufficiently high to justify reclaiming the memory.  On current machines
      and workloads it is often the case that zone_reclaim_mode destroys
      performance but not all users know how to detect this.  Favour the
      common case and disable it by default.  Users that are sophisticated
      enough to know they need zone_reclaim_mode will detect it.
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Reviewed-by: NZhang Yanfei <zhangyanfei@cn.fujitsu.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Reviewed-by: NChristoph Lameter <cl@linux.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4f9b16a6
    • A
      arch/x86/kernel/pci-dma.c: fix dma_generic_alloc_coherent() when CONFIG_DMA_CMA is enabled · 38f7ea5a
      Akinobu Mita 提交于
      dma_generic_alloc_coherent() firstly attempts to allocate by
      dma_alloc_from_contiguous() if CONFIG_DMA_CMA is enabled.  But the
      memory region allocated by it may not fit within the device's DMA mask.
      This change makes it fall back to usual alloc_pages_node() allocation
      for such cases.
      Signed-off-by: NAkinobu Mita <akinobu.mita@gmail.com>
      Cc: Marek Szyprowski <m.szyprowski@samsung.com>
      Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
      Cc: David Woodhouse <dwmw2@infradead.org>
      Cc: Don Dutile <ddutile@redhat.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      38f7ea5a
    • A
      cma: add placement specifier for "cma=" kernel parameter · 5ea3b1b2
      Akinobu Mita 提交于
      Currently, "cma=" kernel parameter is used to specify the size of CMA,
      but we can't specify where it is located.  We want to locate CMA below
      4GB for devices only supporting 32-bit addressing on 64-bit systems
      without iommu.
      
      This enables to specify the placement of CMA by extending "cma=" kernel
      parameter.
      
      Examples:
       1. locate 64MB CMA below 4GB by "cma=64M@0-4G"
       2. locate 64MB CMA exact at 512MB by "cma=64M@512M"
      
      Note that the DMA contiguous memory allocator on x86 assumes that
      page_address() works for the pages to allocate.  So this change requires
      to limit end address of contiguous memory area upto max_pfn_mapped to
      prevent from locating it on highmem area by the argument of
      dma_contiguous_reserve().
      Signed-off-by: NAkinobu Mita <akinobu.mita@gmail.com>
      Cc: Marek Szyprowski <m.szyprowski@samsung.com>
      Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
      Cc: David Woodhouse <dwmw2@infradead.org>
      Cc: Don Dutile <ddutile@redhat.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      5ea3b1b2
    • A
      x86: enable DMA CMA with swiotlb · 9c5a3621
      Akinobu Mita 提交于
      The DMA Contiguous Memory Allocator support on x86 is disabled when
      swiotlb config option is enabled.  So DMA CMA is always disabled on
      x86_64 because swiotlb is always enabled.  This attempts to support for
      DMA CMA with enabling swiotlb config option.
      
      The contiguous memory allocator on x86 is integrated in the function
      dma_generic_alloc_coherent() which is .alloc callback in nommu_dma_ops
      for dma_alloc_coherent().
      
      x86_swiotlb_alloc_coherent() which is .alloc callback in swiotlb_dma_ops
      tries to allocate with dma_generic_alloc_coherent() firstly and then
      swiotlb_alloc_coherent() is called as a fallback.
      
      The main part of supporting DMA CMA with swiotlb is that changing
      x86_swiotlb_free_coherent() which is .free callback in swiotlb_dma_ops
      for dma_free_coherent() so that it can distinguish memory allocated by
      dma_generic_alloc_coherent() from one allocated by
      swiotlb_alloc_coherent() and release it with dma_generic_free_coherent()
      which can handle contiguous memory.  This change requires making
      is_swiotlb_buffer() global function.
      
      This also needs to change .free callback in the dma_map_ops for amd_gart
      and sta2x11, because these dma_ops are also using
      dma_generic_alloc_coherent().
      Signed-off-by: NAkinobu Mita <akinobu.mita@gmail.com>
      Acked-by: NMarek Szyprowski <m.szyprowski@samsung.com>
      Acked-by: NKonrad Rzeszutek Wilk <konrad.wilk@oracle.com>
      Cc: David Woodhouse <dwmw2@infradead.org>
      Cc: Don Dutile <ddutile@redhat.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      9c5a3621
    • A
      x86: make dma_alloc_coherent() return zeroed memory if CMA is enabled · d92ef66c
      Akinobu Mita 提交于
      This patchset enhances the DMA Contiguous Memory Allocator on x86.
      
      Currently the DMA CMA is only supported with pci-nommu dma_map_ops and
      furthermore it can't be enabled on x86_64.  But I would like to allocate
      big contiguous memory with dma_alloc_coherent() and tell it to the device
      that requires it, regardless of which dma mapping implementation is
      actually used in the system.
      
      So this makes it work with swiotlb and intel-iommu dma_map_ops, too.  And
      this also extends "cma=" kernel parameter to specify placement constraint
      by the physical address range of memory allocations.  For example, CMA
      allocates memory below 4GB by "cma=64M@0-4G", it is required for the
      devices only supporting 32-bit addressing on 64-bit systems without iommu.
      
      This patch (of 5):
      
      Calling dma_alloc_coherent() with __GFP_ZERO must return zeroed memory.
      
      But when the contiguous memory allocator (CMA) is enabled on x86 and the
      memory region is allocated by dma_alloc_from_contiguous(), it doesn't
      return zeroed memory.  Because dma_generic_alloc_coherent() forgot to fill
      the memory region with zero if it was allocated by
      dma_alloc_from_contiguous()
      
      Most implementations of dma_alloc_coherent() return zeroed memory
      regardless of whether __GFP_ZERO is specified.  So this fixes it by
      unconditionally zeroing the allocated memory region.
      
      Alternatively, we could fix dma_alloc_from_contiguous() to return zeroed
      out memory and remove memset() from all caller of it.  But we can't simply
      remove the memset on arm because __dma_clear_buffer() is used there for
      ensuring cache flushing and it is used in many places.  Of course we can
      do redundant memset in dma_alloc_from_contiguous(), but I think this patch
      is less impact for fixing this problem.
      Signed-off-by: NAkinobu Mita <akinobu.mita@gmail.com>
      Cc: Marek Szyprowski <m.szyprowski@samsung.com>
      Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
      Cc: David Woodhouse <dwmw2@infradead.org>
      Cc: Don Dutile <ddutile@redhat.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d92ef66c
    • Y
      x86, mm: probe memory block size for generic x86 64bit · 982792c7
      Yinghai Lu 提交于
      On system with 2TiB ram, current x86_64 have 128M as section size, and
      one memory_block only include one section.  So will have 16400 entries
      under /sys/devices/system/memory/.
      
      Current code try to use block id to find block pointer in /sys for any
      section, and reuse that block pointer.  that finding will take some time
      even after commit 7c243c71 ("mm: speedup in __early_pfn_to_nid")
      that will skip the search in that case during booting up.
      
      So solution could be increase block size just like SGI UV system did.
      (harded code to 2g).
      
      This patch is trying to probe the block size to make it match mmio remap
      size.  for example, Intel Nehalem later system will have memory range [0,
      TOML), [4g, TOMH].  If the memory hole is 2g and total is 128g, TOM will
      be 2g, and TOM2 will be 130g.
      
      We could use 2g as block size instead of default 128M.  That will reduce
      number of entries in /sys/devices/system/memory/
      
      On system 6TiB system will reduce boot time by 35 seconds.
      Signed-off-by: NYinghai Lu <yinghai@kernel.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      982792c7
    • M
      x86: define _PAGE_NUMA by reusing software bits on the PMD and PTE levels · c46a7c81
      Mel Gorman 提交于
      _PAGE_NUMA is currently an alias of _PROT_PROTNONE to trap NUMA hinting
      faults on x86.  Care is taken such that _PAGE_NUMA is used only in
      situations where the VMA flags distinguish between NUMA hinting faults
      and prot_none faults.  This decision was x86-specific and conceptually
      it is difficult requiring special casing to distinguish between PROTNONE
      and NUMA ptes based on context.
      
      Fundamentally, we only need the _PAGE_NUMA bit to tell the difference
      between an entry that is really unmapped and a page that is protected
      for NUMA hinting faults as if the PTE is not present then a fault will
      be trapped.
      
      Swap PTEs on x86-64 use the bits after _PAGE_GLOBAL for the offset.
      This patch shrinks the maximum possible swap size and uses the bit to
      uniquely distinguish between NUMA hinting ptes and swap ptes.
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Cc: David Vrabel <david.vrabel@citrix.com>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Peter Anvin <hpa@zytor.com>
      Cc: Fengguang Wu <fengguang.wu@intel.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Steven Noonan <steven@uplinklabs.net>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
      Cc: Cyrill Gorcunov <gorcunov@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c46a7c81
    • M
      x86: require x86-64 for automatic NUMA balancing · 4468dd76
      Mel Gorman 提交于
      32-bit support for NUMA is an oddity on its own but with automatic NUMA
      balancing on top there is a reasonable risk that the CPUPID information
      cannot be stored in the page flags.  This patch removes support for
      automatic NUMA support on 32-bit x86.
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Cc: David Vrabel <david.vrabel@citrix.com>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Peter Anvin <hpa@zytor.com>
      Cc: Fengguang Wu <fengguang.wu@intel.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Steven Noonan <steven@uplinklabs.net>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
      Cc: Cyrill Gorcunov <gorcunov@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4468dd76
    • A
      arch/unicore32/mm/ioremap.c: return NULL on invalid pfn · 2accff4e
      Andrew Morton 提交于
      __uc32_ioremap_pfn_caller() should return NULL when the pfn is found to be
      invalid.
      
      From a recommendation by Guan Xuetao.
      
      Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
      Cc: Fabian Frederick <fabf@skynet.be>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2accff4e
    • F
      arch/unicore32/mm/ioremap.c: convert printk/warn_on to warn() · acc8a1c0
      Fabian Frederick 提交于
      Coalesce formats.
      
      [akpm@linux-foundation.org: undo crazy long line]
      Signed-off-by: NFabian Frederick <fabf@skynet.be>
      Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      acc8a1c0
    • C
      sh: Replace __get_cpu_var uses · c473b2c6
      Christoph Lameter 提交于
      __get_cpu_var() is used for multiple purposes in the kernel source.  One
      of them is address calculation via the form &__get_cpu_var(x).  This
      calculates the address for the instance of the percpu variable of the
      current processor based on an offset.
      
      Other use cases are for storing and retrieving data from the current
      processors percpu area.  __get_cpu_var() can be used as an lvalue when
      writing data or on the right side of an assignment.
      
      __get_cpu_var() is defined as :
      
      #define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
      
      __get_cpu_var() always only does an address determination.  However, store
      and retrieve operations could use a segment prefix (or global register on
      other platforms) to avoid the address calculation.
      
      this_cpu_write() and this_cpu_read() can directly take an offset into a
      percpu area and use optimized assembly code to read and write per cpu
      variables.
      
      This patch converts __get_cpu_var into either an explicit address
      calculation using this_cpu_ptr() or into a use of this_cpu operations that
      use the offset.  Thereby address calculations are avoided and less
      registers are used when code is generated.
      
      At the end of the patch set all uses of __get_cpu_var have been removed so
      the macro is removed too.
      
      The patch set includes passes over all arches as well.  Once these
      operations are used throughout then specialized macros can be defined in
      non -x86 arches as well in order to optimize per cpu access by f.e.  using
      a global register that may be set to the per cpu base.
      
      Transformations done to __get_cpu_var()
      
      1. Determine the address of the percpu instance of the current processor.
      
      	DEFINE_PER_CPU(int, y);
      	int *x = &__get_cpu_var(y);
      
          Converts to
      
      	int *x = this_cpu_ptr(&y);
      
      2. Same as #1 but this time an array structure is involved.
      
      	DEFINE_PER_CPU(int, y[20]);
      	int *x = __get_cpu_var(y);
      
          Converts to
      
      	int *x = this_cpu_ptr(y);
      
      3. Retrieve the content of the current processors instance of a per cpu
      variable.
      
      	DEFINE_PER_CPU(int, y);
      	int x = __get_cpu_var(y)
      
         Converts to
      
      	int x = __this_cpu_read(y);
      
      4. Retrieve the content of a percpu struct
      
      	DEFINE_PER_CPU(struct mystruct, y);
      	struct mystruct x = __get_cpu_var(y);
      
         Converts to
      
      	memcpy(&x, this_cpu_ptr(&y), sizeof(x));
      
      5. Assignment to a per cpu variable
      
      	DEFINE_PER_CPU(int, y)
      	__get_cpu_var(y) = x;
      
         Converts to
      
      	__this_cpu_write(y, x);
      
      6. Increment/Decrement etc of a per cpu variable
      
      	DEFINE_PER_CPU(int, y);
      	__get_cpu_var(y)++
      
         Converts to
      
      	__this_cpu_inc(y)
      Signed-off-by: NChristoph Lameter <cl@linux.com>
      Tested-by: Geert Uytterhoeven <geert@linux-m68k.org> [compilation only]
      Cc: Paul Mundt <lethal@linux-sh.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c473b2c6
    • N
      hugetlb: restrict hugepage_migration_support() to x86_64 · c177c81e
      Naoya Horiguchi 提交于
      Currently hugepage migration is available for all archs which support
      pmd-level hugepage, but testing is done only for x86_64 and there're
      bugs for other archs.  So to avoid breaking such archs, this patch
      limits the availability strictly to x86_64 until developers of other
      archs get interested in enabling this feature.
      
      Simply disabling hugepage migration on non-x86_64 archs is not enough to
      fix the reported problem where sys_move_pages() hits the BUG_ON() in
      follow_page(FOLL_GET), so let's fix this by checking if hugepage
      migration is supported in vma_migratable().
      Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Reported-by: NMichael Ellerman <mpe@ellerman.id.au>
      Tested-by: NMichael Ellerman <mpe@ellerman.id.au>
      Acked-by: NHugh Dickins <hughd@google.com>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: Russell King <rmk@arm.linux.org.uk>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: James Hogan <james.hogan@imgtec.com>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Cc: David Miller <davem@davemloft.net>
      Cc: <stable@vger.kernel.org>	[3.12+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c177c81e
  2. 02 6月, 2014 2 次提交
  3. 01 6月, 2014 1 次提交
  4. 31 5月, 2014 19 次提交