1. 24 2月, 2013 1 次提交
  2. 08 2月, 2013 2 次提交
  3. 21 1月, 2013 1 次提交
  4. 10 1月, 2013 1 次提交
  5. 11 12月, 2012 5 次提交
    • M
      mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate · b8593bfd
      Mel Gorman 提交于
      The PTE scanning rate and fault rates are two of the biggest sources of
      system CPU overhead with automatic NUMA placement.  Ideally a proper policy
      would detect if a workload was properly placed, schedule and adjust the
      PTE scanning rate accordingly. We do not track the necessary information
      to do that but we at least know if we migrated or not.
      
      This patch scans slower if a page was not migrated as the result of a
      NUMA hinting fault up to sysctl_numa_balancing_scan_period_max which is
      now higher than the previous default. Once every minute it will reset
      the scanner in case of phase changes.
      
      This is hilariously crude and the numbers are arbitrary. Workloads will
      converge quite slowly in comparison to what a proper policy should be able
      to do. On the plus side, we will chew up less CPU for workloads that have
      no need for automatic balancing.
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      b8593bfd
    • P
      mm: sched: numa: Implement slow start for working set sampling · 4b96a29b
      Peter Zijlstra 提交于
      Add a 1 second delay before starting to scan the working set of
      a task and starting to balance it amongst nodes.
      
      [ note that before the constant per task WSS sampling rate patch
        the initial scan would happen much later still, in effect that
        patch caused this regression. ]
      
      The theory is that short-run tasks benefit very little from NUMA
      placement: they come and go, and they better stick to the node
      they were started on. As tasks mature and rebalance to other CPUs
      and nodes, so does their NUMA placement have to change and so
      does it start to matter more and more.
      
      In practice this change fixes an observable kbuild regression:
      
         # [ a perf stat --null --repeat 10 test of ten bzImage builds to /dev/shm ]
      
         !NUMA:
         45.291088843 seconds time elapsed                                          ( +-  0.40% )
         45.154231752 seconds time elapsed                                          ( +-  0.36% )
      
         +NUMA, no slow start:
         46.172308123 seconds time elapsed                                          ( +-  0.30% )
         46.343168745 seconds time elapsed                                          ( +-  0.25% )
      
         +NUMA, 1 sec slow start:
         45.224189155 seconds time elapsed                                          ( +-  0.25% )
         45.160866532 seconds time elapsed                                          ( +-  0.17% )
      
      and it also fixes an observable perf bench (hackbench) regression:
      
         # perf stat --null --repeat 10 perf bench sched messaging
      
         -NUMA:
      
         -NUMA:                  0.246225691 seconds time elapsed                   ( +-  1.31% )
         +NUMA no slow start:    0.252620063 seconds time elapsed                   ( +-  1.13% )
      
         +NUMA 1sec delay:       0.248076230 seconds time elapsed                   ( +-  1.35% )
      
      The implementation is simple and straightforward, most of the patch
      deals with adding the /proc/sys/kernel/numa_balancing_scan_delay_ms tunable
      knob.
      Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Rik van Riel <riel@redhat.com>
      [ Wrote the changelog, ran measurements, tuned the default. ]
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Reviewed-by: NRik van Riel <riel@redhat.com>
      4b96a29b
    • P
      mm: sched: numa: Implement constant, per task Working Set Sampling (WSS) rate · 6e5fb223
      Peter Zijlstra 提交于
      Previously, to probe the working set of a task, we'd use
      a very simple and crude method: mark all of its address
      space PROT_NONE.
      
      That method has various (obvious) disadvantages:
      
       - it samples the working set at dissimilar rates,
         giving some tasks a sampling quality advantage
         over others.
      
       - creates performance problems for tasks with very
         large working sets
      
       - over-samples processes with large address spaces but
         which only very rarely execute
      
      Improve that method by keeping a rotating offset into the
      address space that marks the current position of the scan,
      and advance it by a constant rate (in a CPU cycles execution
      proportional manner). If the offset reaches the last mapped
      address of the mm then it then it starts over at the first
      address.
      
      The per-task nature of the working set sampling functionality in this tree
      allows such constant rate, per task, execution-weight proportional sampling
      of the working set, with an adaptive sampling interval/frequency that
      goes from once per 100ms up to just once per 8 seconds.  The current
      sampling volume is 256 MB per interval.
      
      As tasks mature and converge their working set, so does the
      sampling rate slow down to just a trickle, 256 MB per 8
      seconds of CPU time executed.
      
      This, beyond being adaptive, also rate-limits rarely
      executing systems and does not over-sample on overloaded
      systems.
      
      [ In AutoNUMA speak, this patch deals with the effective sampling
        rate of the 'hinting page fault'. AutoNUMA's scanning is
        currently rate-limited, but it is also fundamentally
        single-threaded, executing in the knuma_scand kernel thread,
        so the limit in AutoNUMA is global and does not scale up with
        the number of CPUs, nor does it scan tasks in an execution
        proportional manner.
      
        So the idea of rate-limiting the scanning was first implemented
        in the AutoNUMA tree via a global rate limit. This patch goes
        beyond that by implementing an execution rate proportional
        working set sampling rate that is not implemented via a single
        global scanning daemon. ]
      
      [ Dan Carpenter pointed out a possible NULL pointer dereference in the
        first version of this patch. ]
      Based-on-idea-by: NAndrea Arcangeli <aarcange@redhat.com>
      Bug-Found-By: NDan Carpenter <dan.carpenter@oracle.com>
      Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Rik van Riel <riel@redhat.com>
      [ Wrote changelog and fixed bug. ]
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Reviewed-by: NRik van Riel <riel@redhat.com>
      6e5fb223
    • P
      mm: numa: Add fault driven placement and migration · cbee9f88
      Peter Zijlstra 提交于
      NOTE: This patch is based on "sched, numa, mm: Add fault driven
      	placement and migration policy" but as it throws away all the policy
      	to just leave a basic foundation I had to drop the signed-offs-by.
      
      This patch creates a bare-bones method for setting PTEs pte_numa in the
      context of the scheduler that when faulted later will be faulted onto the
      node the CPU is running on.  In itself this does nothing useful but any
      placement policy will fundamentally depend on receiving hints on placement
      from fault context and doing something intelligent about it.
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Acked-by: NRik van Riel <riel@redhat.com>
      cbee9f88
    • I
      Revert "sched/autogroup: Fix crash on reboot when autogroup is disabled" · c1ad41f1
      Ingo Molnar 提交于
      This reverts commit 5258f386,
      because the underlying autogroups bug got fixed upstream in
      a better way, via:
      
        fd8ef117 Revert "sched, autogroup: Stop going ahead if autogroup is disabled"
      
      Cc: Mike Galbraith <efault@gmx.de>
      Cc: Yong Zhang <yong.zhang0@gmail.com>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      c1ad41f1
  6. 29 11月, 2012 1 次提交
  7. 30 10月, 2012 1 次提交
    • M
      sched/autogroup: Fix crash on reboot when autogroup is disabled · 5258f386
      Mike Galbraith 提交于
      Due to these two commits:
      
        8323f26c sched: Fix race in task_group()
        800d4d30 sched, autogroup: Stop going ahead if autogroup is disabled
      
      ... autogroup scheduling's dynamic knobs are wrecked.
      
      With both patches applied, all you have to do to crash a box is
      disable autogroup during boot up, then reboot.. boom, NULL pointer
      dereference due to 800d4d30 not allowing autogroup to move things,
      and 8323f26c making that the only way to switch runqueues.
      
      Remove most of the (dysfunctional) knobs and turn the remaining
      sched_autogroup_enabled knob readonly.
      
      If the user fiddles with cgroups hereafter, once tasks
      are moved, autogroup won't mess with them again unless
      they call setsid().
      
      No knobs, no glitz, nada, just a cute little thing folks can
      turn on if they don't want to muck about with cgroups and/or
      systemd.
      Signed-off-by: NMike Galbraith <efault@gmx.de>
      Cc: Xiaotian Feng <xtfeng@gmail.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Xiaotian Feng <dannyfeng@tencent.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: <stable@vger.kernel.org> # v3.6
      Link: http://lkml.kernel.org/r/1351451963.4999.8.camel@maggy.simpson.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
      5258f386
  8. 09 10月, 2012 1 次提交
  9. 06 10月, 2012 1 次提交
  10. 17 9月, 2012 1 次提交
  11. 04 9月, 2012 1 次提交
  12. 01 8月, 2012 1 次提交
  13. 31 7月, 2012 2 次提交
    • S
      sysctl: suppress kmemleak messages · fd4b616b
      Steven Rostedt 提交于
      register_sysctl_table() is a strange function, as it makes internal
      allocations (a header) to register a sysctl_table.  This header is a
      handle to the table that is created, and can be used to unregister the
      table.  But if the table is permanent and never unregistered, the header
      acts the same as a static variable.
      
      Unfortunately, this allocation of memory that is never expected to be
      freed fools kmemleak in thinking that we have leaked memory.  For those
      sysctl tables that are never unregistered, and have no pointer referencing
      them, kmemleak will think that these are memory leaks:
      
      unreferenced object 0xffff880079fb9d40 (size 192):
        comm "swapper/0", pid 0, jiffies 4294667316 (age 12614.152s)
        hex dump (first 32 bytes):
          00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
          00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
        backtrace:
          [<ffffffff8146b590>] kmemleak_alloc+0x73/0x98
          [<ffffffff8110a935>] kmemleak_alloc_recursive.constprop.42+0x16/0x18
          [<ffffffff8110b852>] __kmalloc+0x107/0x153
          [<ffffffff8116fa72>] kzalloc.constprop.8+0xe/0x10
          [<ffffffff811703c9>] __register_sysctl_paths+0xe1/0x160
          [<ffffffff81170463>] register_sysctl_paths+0x1b/0x1d
          [<ffffffff8117047d>] register_sysctl_table+0x18/0x1a
          [<ffffffff81afb0a1>] sysctl_init+0x10/0x14
          [<ffffffff81b05a6f>] proc_sys_init+0x2f/0x31
          [<ffffffff81b0584c>] proc_root_init+0xa5/0xa7
          [<ffffffff81ae5b7e>] start_kernel+0x3d0/0x40a
          [<ffffffff81ae52a7>] x86_64_start_reservations+0xae/0xb2
          [<ffffffff81ae53ad>] x86_64_start_kernel+0x102/0x111
          [<ffffffffffffffff>] 0xffffffffffffffff
      
      The sysctl_base_table used by sysctl itself is one such instance that
      registers the table to never be unregistered.
      
      Use kmemleak_not_leak() to suppress the kmemleak false positive.
      Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
      Acked-by: NCatalin Marinas <catalin.marinas@arm.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      fd4b616b
    • K
      coredump: warn about unsafe suid_dumpable / core_pattern combo · 54b50199
      Kees Cook 提交于
      When suid_dumpable=2, detect unsafe core_pattern settings and warn when
      they are seen.
      Signed-off-by: NKees Cook <keescook@chromium.org>
      Suggested-by: NAndrew Morton <akpm@linux-foundation.org>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Cc: Alan Cox <alan@linux.intel.com>
      Cc: "Eric W. Biederman" <ebiederm@xmission.com>
      Cc: Doug Ledford <dledford@redhat.com>
      Cc: Serge Hallyn <serge.hallyn@canonical.com>
      Cc: James Morris <james.l.morris@oracle.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      54b50199
  14. 30 7月, 2012 1 次提交
    • K
      fs: add link restrictions · 800179c9
      Kees Cook 提交于
      This adds symlink and hardlink restrictions to the Linux VFS.
      
      Symlinks:
      
      A long-standing class of security issues is the symlink-based
      time-of-check-time-of-use race, most commonly seen in world-writable
      directories like /tmp. The common method of exploitation of this flaw
      is to cross privilege boundaries when following a given symlink (i.e. a
      root process follows a symlink belonging to another user). For a likely
      incomplete list of hundreds of examples across the years, please see:
      http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=/tmp
      
      The solution is to permit symlinks to only be followed when outside
      a sticky world-writable directory, or when the uid of the symlink and
      follower match, or when the directory owner matches the symlink's owner.
      
      Some pointers to the history of earlier discussion that I could find:
      
       1996 Aug, Zygo Blaxell
        http://marc.info/?l=bugtraq&m=87602167419830&w=2
       1996 Oct, Andrew Tridgell
        http://lkml.indiana.edu/hypermail/linux/kernel/9610.2/0086.html
       1997 Dec, Albert D Cahalan
        http://lkml.org/lkml/1997/12/16/4
       2005 Feb, Lorenzo Hernández García-Hierro
        http://lkml.indiana.edu/hypermail/linux/kernel/0502.0/1896.html
       2010 May, Kees Cook
        https://lkml.org/lkml/2010/5/30/144
      
      Past objections and rebuttals could be summarized as:
      
       - Violates POSIX.
         - POSIX didn't consider this situation and it's not useful to follow
           a broken specification at the cost of security.
       - Might break unknown applications that use this feature.
         - Applications that break because of the change are easy to spot and
           fix. Applications that are vulnerable to symlink ToCToU by not having
           the change aren't. Additionally, no applications have yet been found
           that rely on this behavior.
       - Applications should just use mkstemp() or O_CREATE|O_EXCL.
         - True, but applications are not perfect, and new software is written
           all the time that makes these mistakes; blocking this flaw at the
           kernel is a single solution to the entire class of vulnerability.
       - This should live in the core VFS.
         - This should live in an LSM. (https://lkml.org/lkml/2010/5/31/135)
       - This should live in an LSM.
         - This should live in the core VFS. (https://lkml.org/lkml/2010/8/2/188)
      
      Hardlinks:
      
      On systems that have user-writable directories on the same partition
      as system files, a long-standing class of security issues is the
      hardlink-based time-of-check-time-of-use race, most commonly seen in
      world-writable directories like /tmp. The common method of exploitation
      of this flaw is to cross privilege boundaries when following a given
      hardlink (i.e. a root process follows a hardlink created by another
      user). Additionally, an issue exists where users can "pin" a potentially
      vulnerable setuid/setgid file so that an administrator will not actually
      upgrade a system fully.
      
      The solution is to permit hardlinks to only be created when the user is
      already the existing file's owner, or if they already have read/write
      access to the existing file.
      
      Many Linux users are surprised when they learn they can link to files
      they have no access to, so this change appears to follow the doctrine
      of "least surprise". Additionally, this change does not violate POSIX,
      which states "the implementation may require that the calling process
      has permission to access the existing file"[1].
      
      This change is known to break some implementations of the "at" daemon,
      though the version used by Fedora and Ubuntu has been fixed[2] for
      a while. Otherwise, the change has been undisruptive while in use in
      Ubuntu for the last 1.5 years.
      
      [1] http://pubs.opengroup.org/onlinepubs/9699919799/functions/linkat.html
      [2] http://anonscm.debian.org/gitweb/?p=collab-maint/at.git;a=commitdiff;h=f4114656c3a6c6f6070e315ffdf940a49eda3279
      
      This patch is based on the patches in Openwall and grsecurity, along with
      suggestions from Al Viro. I have added a sysctl to enable the protected
      behavior, and documentation.
      Signed-off-by: NKees Cook <keescook@chromium.org>
      Acked-by: NIngo Molnar <mingo@elte.hu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      800179c9
  15. 05 4月, 2012 1 次提交
  16. 29 3月, 2012 3 次提交
  17. 14 2月, 2012 1 次提交
  18. 25 1月, 2012 3 次提交
  19. 05 12月, 2011 1 次提交
  20. 01 11月, 2011 1 次提交
    • D
      kernel/sysctl.c: add cap_last_cap to /proc/sys/kernel · 73efc039
      Dan Ballard 提交于
      Userspace needs to know the highest valid capability of the running
      kernel, which right now cannot reliably be retrieved from the header files
      only.  The fact that this value cannot be determined properly right now
      creates various problems for libraries compiled on newer header files
      which are run on older kernels.  They assume capabilities are available
      which actually aren't.  libcap-ng is one example.  And we ran into the
      same problem with systemd too.
      
      Now the capability is exported in /proc/sys/kernel/cap_last_cap.
      
      [akpm@linux-foundation.org: make cap_last_cap const, per Ulrich]
      Signed-off-by: NDan Ballard <dan@mindstab.net>
      Cc: Randy Dunlap <rdunlap@xenotime.net>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Lennart Poettering <lennart@poettering.net>
      Cc: Kay Sievers <kay.sievers@vrfy.org>
      Cc: Ulrich Drepper <drepper@akkadia.org>
      Cc: James Morris <jmorris@namei.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      73efc039
  21. 30 10月, 2011 1 次提交
  22. 14 8月, 2011 1 次提交
  23. 21 7月, 2011 1 次提交
  24. 04 6月, 2011 1 次提交
  25. 23 5月, 2011 1 次提交
  26. 20 5月, 2011 1 次提交
    • C
      arch/tile: support signal "exception-trace" hook · 571d76ac
      Chris Metcalf 提交于
      This change adds support for /proc/sys/debug/exception-trace to tile.
      Like x86 and sparc, by default it is set to "1", generating a one-line
      printk whenever a user process crashes.  By setting it to "2", we get
      a much more complete userspace diagnostic at crash time, including
      a user-space backtrace, register dump, and memory dump around the
      address of the crash.
      
      Some vestiges of the Tilera-internal version of this support are
      removed with this patch (the show_crashinfo variable and the
      arch_coredump_signal function).  We retain a "crashinfo" boot parameter
      which allows you to set the boot-time value of exception-trace.
      Signed-off-by: NChris Metcalf <cmetcalf@tilera.com>
      571d76ac
  27. 04 4月, 2011 1 次提交
    • E
      capabilites: allow the application of capability limits to usermode helpers · 17f60a7d
      Eric Paris 提交于
      There is no way to limit the capabilities of usermodehelpers. This problem
      reared its head recently when someone complained that any user with
      cap_net_admin was able to load arbitrary kernel modules, even though the user
      didn't have cap_sys_module.  The reason is because the actual load is done by
      a usermode helper and those always have the full cap set.  This patch addes new
      sysctls which allow us to bound the permissions of usermode helpers.
      
      /proc/sys/kernel/usermodehelper/bset
      /proc/sys/kernel/usermodehelper/inheritable
      
      You must have CAP_SYS_MODULE  and CAP_SETPCAP to change these (changes are
      &= ONLY).  When the kernel launches a usermodehelper it will do so with these
      as the bset and pI.
      
      -v2:	make globals static
      	create spinlock to protect globals
      
      -v3:	require both CAP_SETPCAP and CAP_SYS_MODULE
      -v4:	fix the typo s/CAP_SET_PCAP/CAP_SETPCAP/ because I didn't commit
      Signed-off-by: NEric Paris <eparis@redhat.com>
      No-objection-from: Serge E. Hallyn <serge.hallyn@canonical.com>
      Acked-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NSerge E. Hallyn <serge.hallyn@canonical.com>
      Acked-by: NAndrew G. Morgan <morgan@kernel.org>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      17f60a7d
  28. 24 3月, 2011 2 次提交
  29. 08 3月, 2011 1 次提交
    • A
      unfuck proc_sysctl ->d_compare() · dfef6dcd
      Al Viro 提交于
      a) struct inode is not going to be freed under ->d_compare();
      however, the thing PROC_I(inode)->sysctl points to just might.
      Fortunately, it's enough to make freeing that sucker delayed,
      provided that we don't step on its ->unregistering, clear
      the pointer to it in PROC_I(inode) before dropping the reference
      and check if it's NULL in ->d_compare().
      
      b) I'm not sure that we *can* walk into NULL inode here (we recheck
      dentry->seq between verifying that it's still hashed / fetching
      dentry->d_inode and passing it to ->d_compare() and there's no
      negative hashed dentries in /proc/sys/*), but if we can walk into
      that, we really should not have ->d_compare() return 0 on it!
      Said that, I really suspect that this check can be simply killed.
      Nick?
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      dfef6dcd