- 11 12月, 2012 1 次提交
-
-
由 Christoph Lameter 提交于
Pass a kmem_cache_cpu pointer into unfreeze partials so that a different kmem_cache_cpu structure than the local one can be specified. Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 31 10月, 2012 2 次提交
-
-
由 Glauber Costa 提交于
Some flags are used internally by the allocators for management purposes. One example of that is the CFLGS_OFF_SLAB flag that slab uses to mark that the metadata for that cache is stored outside of the slab. No cache should ever pass those as a creation flags. We can just ignore this bit if it happens to be passed (such as when duplicating a cache in the kmem memcg patches). Because such flags can vary from allocator to allocator, we allow them to make their own decisions on that, defining SLAB_AVAILABLE_FLAGS with all flags that are valid at creation time. Allocators that doesn't have any specific flag requirement should define that to mean all flags. Common code will mask out all flags not belonging to that set. Acked-by: NChristoph Lameter <cl@linux.com> Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NGlauber Costa <glommer@parallels.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Ezequiel Garcia 提交于
This function is identically defined in all three allocators and it's trivial to move it to slab.h Since now it's static, inline, header-defined function this patch also drops the EXPORT_SYMBOL tag. Cc: Pekka Enberg <penberg@kernel.org> Cc: Matt Mackall <mpm@selenic.com> Acked-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NEzequiel Garcia <elezegarcia@gmail.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 24 10月, 2012 4 次提交
-
-
由 Glauber Costa 提交于
Right now, slab and slub have fields in struct page to derive which cache a page belongs to, but they do it slightly differently. slab uses a field called slab_cache, that lives in the third double word. slub, uses a field called "slab", living outside of the doublewords area. Ideally, we could use the same field for this. Since slub heavily makes use of the doubleword region, there isn't really much room to move slub's slab_cache field around. Since slab does not have such strict placement restrictions, we can move it outside the doubleword area. The naming used by slab, "slab_cache", is less confusing, and it is preferred over slub's generic "slab". Signed-off-by: NGlauber Costa <glommer@parallels.com> Acked-by: NChristoph Lameter <cl@linux.com> CC: David Rientjes <rientjes@google.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Glauber Costa 提交于
With all the infrastructure in place, we can now have slabinfo_show done from slab_common.c. A cache-specific function is called to grab information about the cache itself, since that is still heavily dependent on the implementation. But with the values produced by it, all the printing and handling is done from common code. Signed-off-by: NGlauber Costa <glommer@parallels.com> CC: Christoph Lameter <cl@linux.com> CC: David Rientjes <rientjes@google.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Glauber Costa 提交于
The header format is highly similar between slab and slub. The main difference lays in the fact that slab may optionally have statistics added here in case of CONFIG_SLAB_DEBUG, while the slub will stick them somewhere else. By making sure that information conditionally lives inside a globally-visible CONFIG_DEBUG_SLAB switch, we can move the header printing to a common location. Signed-off-by: NGlauber Costa <glommer@parallels.com> Acked-by: NChristoph Lameter <cl@linux.com> CC: David Rientjes <rientjes@google.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Glauber Costa 提交于
This patch moves all the common machinery to slabinfo processing to slab_common.c. We can do better by noticing that the output is heavily common, and having the allocators to just provide finished information about this. But after this first step, this can be done easier. Signed-off-by: NGlauber Costa <glommer@parallels.com> Acked-by: NChristoph Lameter <cl@linux.com> CC: David Rientjes <rientjes@google.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 19 10月, 2012 1 次提交
-
-
由 Joonsoo Kim 提交于
When we try to free object, there is some of case that we need to take a node lock. This is the necessary step for preventing a race. After taking a lock, then we try to cmpxchg_double_slab(). But, there is a possible scenario that cmpxchg_double_slab() is failed with taking a lock. Following example explains it. CPU A CPU B need lock ... need lock ... lock!! lock..but spin free success spin... unlock lock!! free fail In this case, retry with taking a lock is occured in CPU A. I think that in this case for CPU A, "release a lock first, and re-take a lock if necessary" is preferable way. There are two reasons for this. First, this makes __slab_free()'s logic somehow simple. With this patch, 'was_frozen = 1' is "always" handled without taking a lock. So we can remove one code path. Second, it may reduce lock contention. When we do retrying, status of slab is already changed, so we don't need a lock anymore in almost every case. "release a lock first, and re-take a lock if necessary" policy is helpful to this. Signed-off-by: NJoonsoo Kim <js1304@gmail.com> Acked-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 03 10月, 2012 1 次提交
-
-
由 Fengguang Wu 提交于
Acked-by: NGlauber Costa <glommer@parallels.com> Acked-by: NChristoph Lameter <cl@linux.com> Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NFengguang Wu <fengguang.wu@intel.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 25 9月, 2012 1 次提交
-
-
由 Ezequiel Garcia 提交于
This patch does not fix anything, and its only goal is to enable us to obtain some common code between SLAB and SLUB. Neither behavior nor produced code is affected. Cc: Christoph Lameter <cl@linux.com> Signed-off-by: NEzequiel Garcia <elezegarcia@gmail.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 19 9月, 2012 1 次提交
-
-
由 Dave Jones 提交于
It doesn't seem worth adding a new taint flag for this, so just re-use the one from 'bad page' Acked-by: Christoph Lameter <cl@linux.com> # SLUB Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NDave Jones <davej@redhat.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 18 9月, 2012 1 次提交
-
-
由 Joonsoo Kim 提交于
get_partial() is currently not checking pfmemalloc_match() meaning that it is possible for pfmemalloc pages to leak to non-pfmemalloc users. This is a problem in the following situation. Assume that there is a request from normal allocation and there are no objects in the per-cpu cache and no node-partial slab. In this case, slab_alloc enters the slow path and new_slab_objects() is called which may return a PFMEMALLOC page. As the current user is not allowed to access PFMEMALLOC page, deactivate_slab() is called ([5091b74a: mm: slub: optimise the SLUB fast path to avoid pfmemalloc checks]) and returns an object from PFMEMALLOC page. Next time, when we get another request from normal allocation, slab_alloc() enters the slow-path and calls new_slab_objects(). In new_slab_objects(), we call get_partial() and get a partial slab which was just deactivated but is a pfmemalloc page. We extract one object from it and re-deactivate. "deactivate -> re-get in get_partial -> re-deactivate" occures repeatedly. As a result, access to PFMEMALLOC page is not properly restricted and it can cause a performance degradation due to frequent deactivation. deactivation frequently. This patch changes get_partial_node() to take pfmemalloc_match() into account and prevents the "deactivate -> re-get in get_partial() scenario. Instead, new_slab() is called. Signed-off-by: NJoonsoo Kim <js1304@gmail.com> Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 10 9月, 2012 1 次提交
-
-
由 Christoph Lameter 提交于
Tony Luck reported the following problem on IA-64: Worked fine yesterday on next-20120905, crashes today. First sign of trouble was an unaligned access, then a NULL dereference. SL*B related bits of my config: CONFIG_SLUB_DEBUG=y # CONFIG_SLAB is not set CONFIG_SLUB=y CONFIG_SLABINFO=y # CONFIG_SLUB_DEBUG_ON is not set # CONFIG_SLUB_STATS is not set And he console log. PID hash table entries: 4096 (order: 1, 32768 bytes) Dentry cache hash table entries: 262144 (order: 7, 2097152 bytes) Inode-cache hash table entries: 131072 (order: 6, 1048576 bytes) Memory: 2047920k/2086064k available (13992k code, 38144k reserved, 6012k data, 880k init) kernel unaligned access to 0xca2ffc55fb373e95, ip=0xa0000001001be550 swapper[0]: error during unaligned kernel access -1 [1] Modules linked in: Pid: 0, CPU 0, comm: swapper psr : 00001010084a2018 ifs : 800000000000060f ip : [<a0000001001be550>] Not tainted (3.6.0-rc4-zx1-smp-next-20120906) ip is at new_slab+0x90/0x680 unat: 0000000000000000 pfs : 000000000000060f rsc : 0000000000000003 rnat: 9666960159966a59 bsps: a0000001001441c0 pr : 9666960159965a59 ldrs: 0000000000000000 ccv : 0000000000000000 fpsr: 0009804c8a70433f csd : 0000000000000000 ssd : 0000000000000000 b0 : a0000001001be500 b6 : a00000010112cb20 b7 : a0000001011660a0 f6 : 0fff7f0f0f0f0e54f0000 f7 : 0ffe8c5c1000000000000 f8 : 1000d8000000000000000 f9 : 100068800000000000000 f10 : 10005f0f0f0f0e54f0000 f11 : 1003e0000000000000078 r1 : a00000010155eef0 r2 : 0000000000000000 r3 : fffffffffffc1638 r8 : e0000040600081b8 r9 : ca2ffc55fb373e95 r10 : 0000000000000000 r11 : e000004040001646 r12 : a000000101287e20 r13 : a000000101280000 r14 : 0000000000004000 r15 : 0000000000000078 r16 : ca2ffc55fb373e75 r17 : e000004040040000 r18 : fffffffffffc1646 r19 : e000004040001646 r20 : fffffffffffc15f8 r21 : 000000000000004d r22 : a00000010132fa68 r23 : 00000000000000ed r24 : 0000000000000000 r25 : 0000000000000000 r26 : 0000000000000001 r27 : a0000001012b8500 r28 : a00000010135f4a0 r29 : 0000000000000000 r30 : 0000000000000000 r31 : 0000000000000001 Unable to handle kernel NULL pointer dereference (address 0000000000000018) swapper[0]: Oops 11003706212352 [2] Modules linked in: Pid: 0, CPU 0, comm: swapper psr : 0000121008022018 ifs : 800000000000cc18 ip : [<a0000001004dc8f1>] Not tainted (3.6.0-rc4-zx1-smp-next-20120906) ip is at __copy_user+0x891/0x960 unat: 0000000000000000 pfs : 0000000000000813 rsc : 0000000000000003 rnat: 0000000000000000 bsps: 0000000000000000 pr : 9666960159961765 ldrs: 0000000000000000 ccv : 0000000000000000 fpsr: 0009804c0270033f csd : 0000000000000000 ssd : 0000000000000000 b0 : a00000010004b550 b6 : a00000010004b740 b7 : a00000010000c750 f6 : 000000000000000000000 f7 : 1003e9e3779b97f4a7c16 f8 : 1003e0a00000010001550 f9 : 100068800000000000000 f10 : 10005f0f0f0f0e54f0000 f11 : 1003e0000000000000078 r1 : a00000010155eef0 r2 : a0000001012870b0 r3 : a0000001012870b8 r8 : 0000000000000298 r9 : 0000000000000013 r10 : 0000000000000000 r11 : 9666960159961a65 r12 : a000000101287010 r13 : a000000101280000 r14 : a000000101287068 r15 : a000000101287080 r16 : 0000000000000298 r17 : 0000000000000010 r18 : 0000000000000018 r19 : a000000101287310 r20 : 0000000000000290 r21 : 0000000000000000 r22 : 0000000000000000 r23 : a000000101386f58 r24 : 0000000000000000 r25 : 000000007fffffff r26 : a000000101287078 r27 : a0000001013c69b0 r28 : 0000000000000000 r29 : 0000000000000014 r30 : 0000000000000000 r31 : 0000000000000813 Sedat Dilek and Hugh Dickins reported similar problems as well. Earlier patches in the common set moved the zeroing of the kmem_cache structure into common code. See "Move allocation of kmem_cache into common code". The allocation for the two special structures is still done from SLUB specific code but no zeroing is done since the cache creation functions used to zero. This now needs to be updated so that the structures are zeroed during allocation in kmem_cache_init(). Otherwise random pointer values may be followed. Reported-by: NTony Luck <tony.luck@intel.com> Reported-by: NSedat Dilek <sedat.dilek@gmail.com> Tested-by: NSedat Dilek <sedat.dilek@gmail.com> Reported-by: NHugh Dickins <hughd@google.com> Tested-by: NSedat Dilek <sedat.dilek@gmail.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 05 9月, 2012 14 次提交
-
-
由 Pekka Enberg 提交于
This reverts commit 96d17b7b which caused the following errors at boot: [ 1.114885] kobject (ffff88001a802578): tried to init an initialized object, something is seriously wrong. [ 1.114885] Pid: 1, comm: swapper/0 Tainted: G W 3.6.0-rc1+ #6 [ 1.114885] Call Trace: [ 1.114885] [<ffffffff81273f37>] kobject_init+0x87/0xa0 [ 1.115555] [<ffffffff8127426a>] kobject_init_and_add+0x2a/0x90 [ 1.115555] [<ffffffff8127c870>] ? sprintf+0x40/0x50 [ 1.115555] [<ffffffff81124c60>] sysfs_slab_add+0x80/0x210 [ 1.115555] [<ffffffff81100175>] kmem_cache_create+0xa5/0x250 [ 1.115555] [<ffffffff81cf24cd>] ? md_init+0x144/0x144 [ 1.115555] [<ffffffff81cf25b6>] local_init+0xa4/0x11b [ 1.115555] [<ffffffff81cf24e1>] dm_init+0x14/0x45 [ 1.115836] [<ffffffff810001ba>] do_one_initcall+0x3a/0x160 [ 1.116834] [<ffffffff81cc2c90>] kernel_init+0x133/0x1b7 [ 1.117835] [<ffffffff81cc25c4>] ? do_early_param+0x86/0x86 [ 1.117835] [<ffffffff8171aff4>] kernel_thread_helper+0x4/0x10 [ 1.118401] [<ffffffff81cc2b5d>] ? start_kernel+0x33f/0x33f [ 1.119832] [<ffffffff8171aff0>] ? gs_change+0xb/0xb [ 1.120325] ------------[ cut here ]------------ [ 1.120835] WARNING: at fs/sysfs/dir.c:536 sysfs_add_one+0xc1/0xf0() [ 1.121437] sysfs: cannot create duplicate filename '/kernel/slab/:t-0000016' [ 1.121831] Modules linked in: [ 1.122138] Pid: 1, comm: swapper/0 Tainted: G W 3.6.0-rc1+ #6 [ 1.122831] Call Trace: [ 1.123074] [<ffffffff81195ce1>] ? sysfs_add_one+0xc1/0xf0 [ 1.123833] [<ffffffff8103adfa>] warn_slowpath_common+0x7a/0xb0 [ 1.124405] [<ffffffff8103aed1>] warn_slowpath_fmt+0x41/0x50 [ 1.124832] [<ffffffff81195ce1>] sysfs_add_one+0xc1/0xf0 [ 1.125337] [<ffffffff81195eb3>] create_dir+0x73/0xd0 [ 1.125832] [<ffffffff81196221>] sysfs_create_dir+0x81/0xe0 [ 1.126363] [<ffffffff81273d3d>] kobject_add_internal+0x9d/0x210 [ 1.126832] [<ffffffff812742a3>] kobject_init_and_add+0x63/0x90 [ 1.127406] [<ffffffff81124c60>] sysfs_slab_add+0x80/0x210 [ 1.127832] [<ffffffff81100175>] kmem_cache_create+0xa5/0x250 [ 1.128384] [<ffffffff81cf24cd>] ? md_init+0x144/0x144 [ 1.128833] [<ffffffff81cf25b6>] local_init+0xa4/0x11b [ 1.129831] [<ffffffff81cf24e1>] dm_init+0x14/0x45 [ 1.130305] [<ffffffff810001ba>] do_one_initcall+0x3a/0x160 [ 1.130831] [<ffffffff81cc2c90>] kernel_init+0x133/0x1b7 [ 1.131351] [<ffffffff81cc25c4>] ? do_early_param+0x86/0x86 [ 1.131830] [<ffffffff8171aff4>] kernel_thread_helper+0x4/0x10 [ 1.132392] [<ffffffff81cc2b5d>] ? start_kernel+0x33f/0x33f [ 1.132830] [<ffffffff8171aff0>] ? gs_change+0xb/0xb [ 1.133315] ---[ end trace 2703540871c8fab7 ]--- [ 1.133830] ------------[ cut here ]------------ [ 1.134274] WARNING: at lib/kobject.c:196 kobject_add_internal+0x1f5/0x210() [ 1.134829] kobject_add_internal failed for :t-0000016 with -EEXIST, don't try to register things with the same name in the same directory. [ 1.135829] Modules linked in: [ 1.136135] Pid: 1, comm: swapper/0 Tainted: G W 3.6.0-rc1+ #6 [ 1.136828] Call Trace: [ 1.137071] [<ffffffff81273e95>] ? kobject_add_internal+0x1f5/0x210 [ 1.137830] [<ffffffff8103adfa>] warn_slowpath_common+0x7a/0xb0 [ 1.138402] [<ffffffff8103aed1>] warn_slowpath_fmt+0x41/0x50 [ 1.138830] [<ffffffff811955a3>] ? release_sysfs_dirent+0x73/0xf0 [ 1.139419] [<ffffffff81273e95>] kobject_add_internal+0x1f5/0x210 [ 1.139830] [<ffffffff812742a3>] kobject_init_and_add+0x63/0x90 [ 1.140429] [<ffffffff81124c60>] sysfs_slab_add+0x80/0x210 [ 1.140830] [<ffffffff81100175>] kmem_cache_create+0xa5/0x250 [ 1.141829] [<ffffffff81cf24cd>] ? md_init+0x144/0x144 [ 1.142307] [<ffffffff81cf25b6>] local_init+0xa4/0x11b [ 1.142829] [<ffffffff81cf24e1>] dm_init+0x14/0x45 [ 1.143307] [<ffffffff810001ba>] do_one_initcall+0x3a/0x160 [ 1.143829] [<ffffffff81cc2c90>] kernel_init+0x133/0x1b7 [ 1.144352] [<ffffffff81cc25c4>] ? do_early_param+0x86/0x86 [ 1.144829] [<ffffffff8171aff4>] kernel_thread_helper+0x4/0x10 [ 1.145405] [<ffffffff81cc2b5d>] ? start_kernel+0x33f/0x33f [ 1.145828] [<ffffffff8171aff0>] ? gs_change+0xb/0xb [ 1.146313] ---[ end trace 2703540871c8fab8 ]--- Conflicts: mm/slub.c Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Get rid of the refcount stuff in the allocators and do that part of kmem_cache management in the common code. Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Do the initial settings of the fields in common code. This will allow us to push more processing into common code later and improve readability. Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Shift the allocations to common code. That way the allocation and freeing of the kmem_cache structures is handled by common code. Reviewed-by: NGlauber Costa <glommer@parallels.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Simplify locking by moving the slab_add_sysfs after all locks have been dropped. Eases the upcoming move to provide sysfs support for all allocators. Reviewed-by: NGlauber Costa <glommer@parallels.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
The slab aliasing logic causes some strange contortions in slub. So add a call to deal with aliases to slab_common.c but disable it for other slab allocators by providng stubs that fail to create aliases. Full general support for aliases will require additional cleanup passes and more standardization of fields in kmem_cache. Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Duping of the slabname has to be done by each slab. Moving this code to slab_common avoids duplicate implementations. With this patch we have common string handling for all slab allocators. Strings passed to kmem_cache_create() are copied internally. Subsystems can create temporary strings to create slab caches. Slabs allocated in early states of bootstrap will never be freed (and those can never be freed since they are essential to slab allocator operations). During bootstrap we therefore do not have to worry about duping names. Reviewed-by: NGlauber Costa <glommer@parallels.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
What is done there can be done in __kmem_cache_shutdown. This affects RCU handling somewhat. On rcu free all slab allocators do not refer to other management structures than the kmem_cache structure. Therefore these other structures can be freed before the rcu deferred free to the page allocator occurs. Reviewed-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
The freeing action is basically the same in all slab allocators. Move to the common kmem_cache_destroy() function. Reviewed-by: NGlauber Costa <glommer@parallels.com> Reviewed-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Make all allocators use the "kmem_cache" slabname for the "kmem_cache" structure. Reviewed-by: NGlauber Costa <glommer@parallels.com> Reviewed-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
kmem_cache_destroy does basically the same in all allocators. Extract common code which is easy since we already have common mutex handling. Reviewed-by: NGlauber Costa <glommer@parallels.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Move the code to append the new kmem_cache to the list of slab caches to the kmem_cache_create code in the shared code. This is possible now since the acquisition of the mutex was moved into kmem_cache_create(). Acked-by: NDavid Rientjes <rientjes@google.com> Reviewed-by: NGlauber Costa <glommer@parallels.com> Reviewed-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Do not use kmalloc() but kmem_cache_alloc() for the allocation of the kmem_cache structures in slub. Reviewed-by: NGlauber Costa <glommer@parallels.com> Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Add additional debugging to check that the objects is actually from the cache the caller claims. Doing so currently trips up some other debugging code. It takes a lot to infer from that what was happening. Reviewed-by: NGlauber Costa <glommer@parallels.com> Signed-off-by: NChristoph Lameter <cl@linux.com> [ penberg@kernel.org: Use pr_err() ] Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 16 8月, 2012 3 次提交
-
-
由 Joonsoo Kim 提交于
In current implementation, after unfreezing, we doesn't touch oldpage, so it remain 'NOT NULL'. When we call this_cpu_cmpxchg() with this old oldpage, this_cpu_cmpxchg() is mostly be failed. We can change value of oldpage to NULL after unfreezing, because unfreeze_partial() ensure that all the cpu partial slabs is removed from cpu partial list. In this time, we could expect that this_cpu_cmpxchg is mostly succeed. Acked-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Only applies to scenarios where debugging is on: Validation of slabs can currently occur while debugging information is updated from the fast paths of the allocator. This results in various races where we get false reports about slab metadata not being in order. This patch makes the fast paths take the node lock so that serialization with slab validation will occur. Causes additional slowdown in debug scenarios. Reported-by: NWaiman Long <Waiman.Long@hp.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Glauber Costa 提交于
When freeing objects, the slub allocator will most of the time free empty pages by calling __free_pages(). But high-order kmalloc will be diposed by means of put_page() instead. It makes no sense to call put_page() in kernel pages that are provided by the object allocators, so we shouldn't be doing this ourselves. Aside from the consistency change, we don't change the flow too much. put_page()'s would call its dtor function, which is __free_pages. We also already do all of the Compound page tests ourselves, and the Mlock test we lose don't really matter. Signed-off-by: NGlauber Costa <glommer@parallels.com> Acked-by: NChristoph Lameter <cl@linux.com> CC: David Rientjes <rientjes@google.com> CC: Pekka Enberg <penberg@kernel.org> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 01 8月, 2012 2 次提交
-
-
由 Christoph Lameter 提交于
This patch removes the check for pfmemalloc from the alloc hotpath and puts the logic after the election of a new per cpu slab. For a pfmemalloc page we do not use the fast path but force the use of the slow path which is also used for the debug case. This has the side-effect of weakening pfmemalloc processing in the following way; 1. A process that is allocating for network swap calls __slab_alloc. pfmemalloc_match is true so the freelist is loaded and c->freelist is now pointing to a pfmemalloc page. 2. A process that is attempting normal allocations calls slab_alloc, finds the pfmemalloc page on the freelist and uses it because it did not check pfmemalloc_match() The patch allows non-pfmemalloc allocations to use pfmemalloc pages with the kmalloc slabs being the most vunerable caches on the grounds they are most likely to have a mix of pfmemalloc and !pfmemalloc requests. A later patch will still protect the system as processes will get throttled if the pfmemalloc reserves get depleted but performance will not degrade as smoothly. [mgorman@suse.de: Expanded changelog] Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
When a user or administrator requires swap for their application, they create a swap partition and file, format it with mkswap and activate it with swapon. Swap over the network is considered as an option in diskless systems. The two likely scenarios are when blade servers are used as part of a cluster where the form factor or maintenance costs do not allow the use of disks and thin clients. The Linux Terminal Server Project recommends the use of the Network Block Device (NBD) for swap according to the manual at https://sourceforge.net/projects/ltsp/files/Docs-Admin-Guide/LTSPManual.pdf/download There is also documentation and tutorials on how to setup swap over NBD at places like https://help.ubuntu.com/community/UbuntuLTSP/EnableNBDSWAP The nbd-client also documents the use of NBD as swap. Despite this, the fact is that a machine using NBD for swap can deadlock within minutes if swap is used intensively. This patch series addresses the problem. The core issue is that network block devices do not use mempools like normal block devices do. As the host cannot control where they receive packets from, they cannot reliably work out in advance how much memory they might need. Some years ago, Peter Zijlstra developed a series of patches that supported swap over an NFS that at least one distribution is carrying within their kernels. This patch series borrows very heavily from Peter's work to support swapping over NBD as a pre-requisite to supporting swap-over-NFS. The bulk of the complexity is concerned with preserving memory that is allocated from the PFMEMALLOC reserves for use by the network layer which is needed for both NBD and NFS. Patch 1 adds knowledge of the PFMEMALLOC reserves to SLAB and SLUB to preserve access to pages allocated under low memory situations to callers that are freeing memory. Patch 2 optimises the SLUB fast path to avoid pfmemalloc checks Patch 3 introduces __GFP_MEMALLOC to allow access to the PFMEMALLOC reserves without setting PFMEMALLOC. Patch 4 opens the possibility for softirqs to use PFMEMALLOC reserves for later use by network packet processing. Patch 5 only sets page->pfmemalloc when ALLOC_NO_WATERMARKS was required Patch 6 ignores memory policies when ALLOC_NO_WATERMARKS is set. Patches 7-12 allows network processing to use PFMEMALLOC reserves when the socket has been marked as being used by the VM to clean pages. If packets are received and stored in pages that were allocated under low-memory situations and are unrelated to the VM, the packets are dropped. Patch 11 reintroduces __skb_alloc_page which the networking folk may object to but is needed in some cases to propogate pfmemalloc from a newly allocated page to an skb. If there is a strong objection, this patch can be dropped with the impact being that swap-over-network will be slower in some cases but it should not fail. Patch 13 is a micro-optimisation to avoid a function call in the common case. Patch 14 tags NBD sockets as being SOCK_MEMALLOC so they can use PFMEMALLOC if necessary. Patch 15 notes that it is still possible for the PFMEMALLOC reserve to be depleted. To prevent this, direct reclaimers get throttled on a waitqueue if 50% of the PFMEMALLOC reserves are depleted. It is expected that kswapd and the direct reclaimers already running will clean enough pages for the low watermark to be reached and the throttled processes are woken up. Patch 16 adds a statistic to track how often processes get throttled Some basic performance testing was run using kernel builds, netperf on loopback for UDP and TCP, hackbench (pipes and sockets), iozone and sysbench. Each of them were expected to use the sl*b allocators reasonably heavily but there did not appear to be significant performance variances. For testing swap-over-NBD, a machine was booted with 2G of RAM with a swapfile backed by NBD. 8*NUM_CPU processes were started that create anonymous memory mappings and read them linearly in a loop. The total size of the mappings were 4*PHYSICAL_MEMORY to use swap heavily under memory pressure. Without the patches and using SLUB, the machine locks up within minutes and runs to completion with them applied. With SLAB, the story is different as an unpatched kernel run to completion. However, the patched kernel completed the test 45% faster. MICRO 3.5.0-rc2 3.5.0-rc2 vanilla swapnbd Unrecognised test vmscan-anon-mmap-write MMTests Statistics: duration Sys Time Running Test (seconds) 197.80 173.07 User+Sys Time Running Test (seconds) 206.96 182.03 Total Elapsed Time (seconds) 3240.70 1762.09 This patch: mm: sl[au]b: add knowledge of PFMEMALLOC reserve pages Allocations of pages below the min watermark run a risk of the machine hanging due to a lack of memory. To prevent this, only callers who have PF_MEMALLOC or TIF_MEMDIE set and are not processing an interrupt are allowed to allocate with ALLOC_NO_WATERMARKS. Once they are allocated to a slab though, nothing prevents other callers consuming free objects within those slabs. This patch limits access to slab pages that were alloced from the PFMEMALLOC reserves. When this patch is applied, pages allocated from below the low watermark are returned with page->pfmemalloc set and it is up to the caller to determine how the page should be protected. SLAB restricts access to any page with page->pfmemalloc set to callers which are known to able to access the PFMEMALLOC reserve. If one is not available, an attempt is made to allocate a new page rather than use a reserve. SLUB is a bit more relaxed in that it only records if the current per-CPU page was allocated from PFMEMALLOC reserve and uses another partial slab if the caller does not have the necessary GFP or process flags. This was found to be sufficient in tests to avoid hangs due to SLUB generally maintaining smaller lists than SLAB. In low-memory conditions it does mean that !PFMEMALLOC allocators can fail a slab allocation even though free objects are available because they are being preserved for callers that are freeing pages. [a.p.zijlstra@chello.nl: Original implementation] [sebastian@breakpoint.cc: Correct order of page flag clearing] Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 7月, 2012 1 次提交
-
-
由 David Rientjes 提交于
kmemcheck_alloc_shadow() requires irqs to be enabled, so wait to disable them until after its called for __GFP_WAIT allocations. This fixes a warning for such allocations: WARNING: at kernel/lockdep.c:2739 lockdep_trace_alloc+0x14e/0x1c0() Acked-by: NFengguang Wu <fengguang.wu@intel.com> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Tested-by: NFengguang Wu <fengguang.wu@intel.com> Signed-off-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 09 7月, 2012 5 次提交
-
-
由 Christoph Lameter 提交于
Move the mutex handling into the common kmem_cache_create() function. Then we can also move more checks out of SLAB's kmem_cache_create() into the common code. Reviewed-by: NGlauber Costa <glommer@parallels.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Use the mutex definition from SLAB and make it the common way to take a sleeping lock. This has the effect of using a mutex instead of a rw semaphore for SLUB. SLOB gains the use of a mutex for kmem_cache_create serialization. Not needed now but SLOB may acquire some more features later (like slabinfo / sysfs support) through the expansion of the common code that will need this. Reviewed-by: NGlauber Costa <glommer@parallels.com> Reviewed-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
All allocators have some sort of support for the bootstrap status. Setup a common definition for the boot states and make all slab allocators use that definition. Reviewed-by: NGlauber Costa <glommer@parallels.com> Reviewed-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Christoph Lameter 提交于
Kmem_cache_create() does a variety of sanity checks but those vary depending on the allocator. Use the strictest tests and put them into a slab_common file. Make the tests conditional on CONFIG_DEBUG_VM. This patch has the effect of adding sanity checks for SLUB and SLOB under CONFIG_DEBUG_VM and removes the checks in SLAB for !CONFIG_DEBUG_VM. Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Julia Lawall 提交于
If list_for_each_entry, etc complete a traversal of the list, the iterator variable ends up pointing to an address at an offset from the list head, and not a meaningful structure. Thus this value should not be used after the end of the iterator. The patch replaces s->name by al->name, which is referenced nearby. This problem was found using Coccinelle (http://coccinelle.lip6.fr/). Signed-off-by: NJulia Lawall <Julia.Lawall@lip6.fr> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
- 20 6月, 2012 2 次提交
-
-
由 Joonsoo Kim 提交于
Current implementation of unfreeze_partials() is so complicated, but benefit from it is insignificant. In addition many code in do {} while loop have a bad influence to a fail rate of cmpxchg_double_slab. Under current implementation which test status of cpu partial slab and acquire list_lock in do {} while loop, we don't need to acquire a list_lock and gain a little benefit when front of the cpu partial slab is to be discarded, but this is a rare case. In case that add_partial is performed and cmpxchg_double_slab is failed, remove_partial should be called case by case. I think that these are disadvantages of current implementation, so I do refactoring unfreeze_partials(). Minimizing code in do {} while loop introduce a reduced fail rate of cmpxchg_double_slab. Below is output of 'slabinfo -r kmalloc-256' when './perf stat -r 33 hackbench 50 process 4000 > /dev/null' is done. ** before ** Cmpxchg_double Looping ------------------------ Locked Cmpxchg Double redos 182685 Unlocked Cmpxchg Double redos 0 ** after ** Cmpxchg_double Looping ------------------------ Locked Cmpxchg Double redos 177995 Unlocked Cmpxchg Double redos 1 We can see cmpxchg_double_slab fail rate is improved slightly. Bolow is output of './perf stat -r 30 hackbench 50 process 4000 > /dev/null'. ** before ** Performance counter stats for './hackbench 50 process 4000' (30 runs): 108517.190463 task-clock # 7.926 CPUs utilized ( +- 0.24% ) 2,919,550 context-switches # 0.027 M/sec ( +- 3.07% ) 100,774 CPU-migrations # 0.929 K/sec ( +- 4.72% ) 124,201 page-faults # 0.001 M/sec ( +- 0.15% ) 401,500,234,387 cycles # 3.700 GHz ( +- 0.24% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 250,576,913,354 instructions # 0.62 insns per cycle ( +- 0.13% ) 45,934,956,860 branches # 423.297 M/sec ( +- 0.14% ) 188,219,787 branch-misses # 0.41% of all branches ( +- 0.56% ) 13.691837307 seconds time elapsed ( +- 0.24% ) ** after ** Performance counter stats for './hackbench 50 process 4000' (30 runs): 107784.479767 task-clock # 7.928 CPUs utilized ( +- 0.22% ) 2,834,781 context-switches # 0.026 M/sec ( +- 2.33% ) 93,083 CPU-migrations # 0.864 K/sec ( +- 3.45% ) 123,967 page-faults # 0.001 M/sec ( +- 0.15% ) 398,781,421,836 cycles # 3.700 GHz ( +- 0.22% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 250,189,160,419 instructions # 0.63 insns per cycle ( +- 0.09% ) 45,855,370,128 branches # 425.436 M/sec ( +- 0.10% ) 169,881,248 branch-misses # 0.37% of all branches ( +- 0.43% ) 13.596272341 seconds time elapsed ( +- 0.22% ) No regression is found, but rather we can see slightly better result. Acked-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-
由 Joonsoo Kim 提交于
get_freelist(), unfreeze_partials() are only called with interrupt disabled, so __cmpxchg_double_slab() is suitable. Acked-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NJoonsoo Kim <js1304@gmail.com> Signed-off-by: NPekka Enberg <penberg@kernel.org>
-