1. 09 6月, 2015 4 次提交
  2. 19 5月, 2015 1 次提交
    • I
      x86/fpu: Harmonize FPU register state types · c47ada30
      Ingo Molnar 提交于
      Use these consistent names:
      
          struct fregs_state           # was: i387_fsave_struct
          struct fxregs_state          # was: i387_fxsave_struct
          struct swregs_state          # was: i387_soft_struct
          struct xregs_state           # was: xsave_struct
          union  fpregs_state          # was: thread_xstate
      
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Dave Hansen <dave.hansen@linux.intel.com>
      Cc: Fenghua Yu <fenghua.yu@intel.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      c47ada30
  3. 18 11月, 2014 4 次提交
    • D
      x86, mpx: Cleanup unused bound tables · 1de4fa14
      Dave Hansen 提交于
      The previous patch allocates bounds tables on-demand.  As noted in
      an earlier description, these can add up to *HUGE* amounts of
      memory.  This has caused OOMs in practice when running tests.
      
      This patch adds support for freeing bounds tables when they are no
      longer in use.
      
      There are two types of mappings in play when unmapping tables:
       1. The mapping with the actual data, which userspace is
          munmap()ing or brk()ing away, etc...
       2. The mapping for the bounds table *backing* the data
          (is tagged with VM_MPX, see the patch "add MPX specific
          mmap interface").
      
      If userspace use the prctl() indroduced earlier in this patchset
      to enable the management of bounds tables in kernel, when it
      unmaps the first type of mapping with the actual data, the kernel
      needs to free the mapping for the bounds table backing the data.
      This patch hooks in at the very end of do_unmap() to do so.
      We look at the addresses being unmapped and find the bounds
      directory entries and tables which cover those addresses.  If
      an entire table is unused, we clear associated directory entry
      and free the table.
      
      Once we unmap the bounds table, we would have a bounds directory
      entry pointing at empty address space. That address space might
      now be allocated for some other (random) use, and the MPX
      hardware might now try to walk it as if it were a bounds table.
      That would be bad.  So any unmapping of an enture bounds table
      has to be accompanied by a corresponding write to the bounds
      directory entry to invalidate it.  That write to the bounds
      directory can fault, which causes the following problem:
      
      Since we are doing the freeing from munmap() (and other paths
      like it), we hold mmap_sem for write. If we fault, the page
      fault handler will attempt to acquire mmap_sem for read and
      we will deadlock.  To avoid the deadlock, we pagefault_disable()
      when touching the bounds directory entry and use a
      get_user_pages() to resolve the fault.
      
      The unmapping of bounds tables happends under vm_munmap().  We
      also (indirectly) call vm_munmap() to _do_ the unmapping of the
      bounds tables.  We avoid unbounded recursion by disallowing
      freeing of bounds tables *for* bounds tables.  This would not
      occur normally, so should not have any practical impact.  Being
      strict about it here helps ensure that we do not have an
      exploitable stack overflow.
      Based-on-patch-by: NQiaowei Ren <qiaowei.ren@intel.com>
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Cc: linux-mm@kvack.org
      Cc: linux-mips@linux-mips.org
      Cc: Dave Hansen <dave@sr71.net>
      Link: http://lkml.kernel.org/r/20141114151831.E4531C4A@viggo.jf.intel.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      1de4fa14
    • D
      x86, mpx: On-demand kernel allocation of bounds tables · fe3d197f
      Dave Hansen 提交于
      This is really the meat of the MPX patch set.  If there is one patch to
      review in the entire series, this is the one.  There is a new ABI here
      and this kernel code also interacts with userspace memory in a
      relatively unusual manner.  (small FAQ below).
      
      Long Description:
      
      This patch adds two prctl() commands to provide enable or disable the
      management of bounds tables in kernel, including on-demand kernel
      allocation (See the patch "on-demand kernel allocation of bounds tables")
      and cleanup (See the patch "cleanup unused bound tables"). Applications
      do not strictly need the kernel to manage bounds tables and we expect
      some applications to use MPX without taking advantage of this kernel
      support. This means the kernel can not simply infer whether an application
      needs bounds table management from the MPX registers.  The prctl() is an
      explicit signal from userspace.
      
      PR_MPX_ENABLE_MANAGEMENT is meant to be a signal from userspace to
      require kernel's help in managing bounds tables.
      
      PR_MPX_DISABLE_MANAGEMENT is the opposite, meaning that userspace don't
      want kernel's help any more. With PR_MPX_DISABLE_MANAGEMENT, the kernel
      won't allocate and free bounds tables even if the CPU supports MPX.
      
      PR_MPX_ENABLE_MANAGEMENT will fetch the base address of the bounds
      directory out of a userspace register (bndcfgu) and then cache it into
      a new field (->bd_addr) in  the 'mm_struct'.  PR_MPX_DISABLE_MANAGEMENT
      will set "bd_addr" to an invalid address.  Using this scheme, we can
      use "bd_addr" to determine whether the management of bounds tables in
      kernel is enabled.
      
      Also, the only way to access that bndcfgu register is via an xsaves,
      which can be expensive.  Caching "bd_addr" like this also helps reduce
      the cost of those xsaves when doing table cleanup at munmap() time.
      Unfortunately, we can not apply this optimization to #BR fault time
      because we need an xsave to get the value of BNDSTATUS.
      
      ==== Why does the hardware even have these Bounds Tables? ====
      
      MPX only has 4 hardware registers for storing bounds information.
      If MPX-enabled code needs more than these 4 registers, it needs to
      spill them somewhere. It has two special instructions for this
      which allow the bounds to be moved between the bounds registers
      and some new "bounds tables".
      
      They are similar conceptually to a page fault and will be raised by
      the MPX hardware during both bounds violations or when the tables
      are not present. This patch handles those #BR exceptions for
      not-present tables by carving the space out of the normal processes
      address space (essentially calling the new mmap() interface indroduced
      earlier in this patch set.) and then pointing the bounds-directory
      over to it.
      
      The tables *need* to be accessed and controlled by userspace because
      the instructions for moving bounds in and out of them are extremely
      frequent. They potentially happen every time a register pointing to
      memory is dereferenced. Any direct kernel involvement (like a syscall)
      to access the tables would obviously destroy performance.
      
      ==== Why not do this in userspace? ====
      
      This patch is obviously doing this allocation in the kernel.
      However, MPX does not strictly *require* anything in the kernel.
      It can theoretically be done completely from userspace. Here are
      a few ways this *could* be done. I don't think any of them are
      practical in the real-world, but here they are.
      
      Q: Can virtual space simply be reserved for the bounds tables so
         that we never have to allocate them?
      A: As noted earlier, these tables are *HUGE*. An X-GB virtual
         area needs 4*X GB of virtual space, plus 2GB for the bounds
         directory. If we were to preallocate them for the 128TB of
         user virtual address space, we would need to reserve 512TB+2GB,
         which is larger than the entire virtual address space today.
         This means they can not be reserved ahead of time. Also, a
         single process's pre-popualated bounds directory consumes 2GB
         of virtual *AND* physical memory. IOW, it's completely
         infeasible to prepopulate bounds directories.
      
      Q: Can we preallocate bounds table space at the same time memory
         is allocated which might contain pointers that might eventually
         need bounds tables?
      A: This would work if we could hook the site of each and every
         memory allocation syscall. This can be done for small,
         constrained applications. But, it isn't practical at a larger
         scale since a given app has no way of controlling how all the
         parts of the app might allocate memory (think libraries). The
         kernel is really the only place to intercept these calls.
      
      Q: Could a bounds fault be handed to userspace and the tables
         allocated there in a signal handler instead of in the kernel?
      A: (thanks to tglx) mmap() is not on the list of safe async
         handler functions and even if mmap() would work it still
         requires locking or nasty tricks to keep track of the
         allocation state there.
      
      Having ruled out all of the userspace-only approaches for managing
      bounds tables that we could think of, we create them on demand in
      the kernel.
      Based-on-patch-by: NQiaowei Ren <qiaowei.ren@intel.com>
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Cc: linux-mm@kvack.org
      Cc: linux-mips@linux-mips.org
      Cc: Dave Hansen <dave@sr71.net>
      Link: http://lkml.kernel.org/r/20141114151829.AD4310DE@viggo.jf.intel.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      fe3d197f
    • D
      x86, mpx: Decode MPX instruction to get bound violation information · fcc7ffd6
      Dave Hansen 提交于
      This patch sets bound violation fields of siginfo struct in #BR
      exception handler by decoding the user instruction and constructing
      the faulting pointer.
      
      We have to be very careful when decoding these instructions.  They
      are completely controlled by userspace and may be changed at any
      time up to and including the point where we try to copy them in to
      the kernel.  They may or may not be MPX instructions and could be
      completely invalid for all we know.
      
      Note: This code is based on Qiaowei Ren's specialized MPX
      decoder, but uses the generic decoder whenever possible.  It was
      tested for robustness by generating a completely random data
      stream and trying to decode that stream.  I also unmapped random
      pages inside the stream to test the "partial instruction" short
      read code.
      
      We kzalloc() the siginfo instead of stack allocating it because
      we need to memset() it anyway, and doing this makes it much more
      clear when it got initialized by the MPX instruction decoder.
      
      Changes from the old decoder:
       * Use the generic decoder instead of custom functions.  Saved
         ~70 lines of code overall.
       * Remove insn->addr_bytes code (never used??)
       * Make sure never to possibly overflow the regoff[] array, plus
         check the register range correctly in 32 and 64-bit modes.
       * Allow get_reg() to return an error and have mpx_get_addr_ref()
         handle when it sees errors.
       * Only call insn_get_*() near where we actually use the values
         instead if trying to call them all at once.
       * Handle short reads from copy_from_user() and check the actual
         number of read bytes against what we expect from
         insn_get_length().  If a read stops in the middle of an
         instruction, we error out.
       * Actually check the opcodes intead of ignoring them.
       * Dynamically kzalloc() siginfo_t so we don't leak any stack
         data.
       * Detect and handle decoder failures instead of ignoring them.
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Based-on-patch-by: NQiaowei Ren <qiaowei.ren@intel.com>
      Cc: linux-mm@kvack.org
      Cc: linux-mips@linux-mips.org
      Cc: Dave Hansen <dave@sr71.net>
      Link: http://lkml.kernel.org/r/20141114151828.5BDD0915@viggo.jf.intel.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      fcc7ffd6
    • Q
      x86, mpx: Add MPX-specific mmap interface · 57319d80
      Qiaowei Ren 提交于
      We have chosen to perform the allocation of bounds tables in
      kernel (See the patch "on-demand kernel allocation of bounds
      tables") and to mark these VMAs with VM_MPX.
      
      However, there is currently no suitable interface to actually do
      this.  Existing interfaces, like do_mmap_pgoff(), have no way to
      set a modified ->vm_ops or ->vm_flags and don't hold mmap_sem
      long enough to let a caller do it.
      
      This patch wraps mmap_region() and hold mmap_sem long enough to
      make the modifications to the VMA which we need.
      
      Also note the 32/64-bit #ifdef in the header.  We actually need
      to do this at runtime eventually.  But, for now, we don't support
      running 32-bit binaries on 64-bit kernels.  Support for this will
      come in later patches.
      Signed-off-by: NQiaowei Ren <qiaowei.ren@intel.com>
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Cc: linux-mm@kvack.org
      Cc: linux-mips@linux-mips.org
      Cc: Dave Hansen <dave@sr71.net>
      Link: http://lkml.kernel.org/r/20141114151827.CE440F67@viggo.jf.intel.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      57319d80