- 09 12月, 2008 2 次提交
-
-
由 Yan Zheng 提交于
This patch implements superblock duplication. Superblocks are stored at offset 16K, 64M and 256G on every devices. Spaces used by superblocks are preserved by the allocator, which uses a reverse mapping function to find the logical addresses that correspond to superblocks. Thank you, Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
-
由 Chris Mason 提交于
Btrfs stores checksums for each data block. Until now, they have been stored in the subvolume trees, indexed by the inode that is referencing the data block. This means that when we read the inode, we've probably read in at least some checksums as well. But, this has a few problems: * The checksums are indexed by logical offset in the file. When compression is on, this means we have to do the expensive checksumming on the uncompressed data. It would be faster if we could checksum the compressed data instead. * If we implement encryption, we'll be checksumming the plain text and storing that on disk. This is significantly less secure. * For either compression or encryption, we have to get the plain text back before we can verify the checksum as correct. This makes the raid layer balancing and extent moving much more expensive. * It makes the front end caching code more complex, as we have touch the subvolume and inodes as we cache extents. * There is potentitally one copy of the checksum in each subvolume referencing an extent. The solution used here is to store the extent checksums in a dedicated tree. This allows us to index the checksums by phyiscal extent start and length. It means: * The checksum is against the data stored on disk, after any compression or encryption is done. * The checksum is stored in a central location, and can be verified without following back references, or reading inodes. This makes compression significantly faster by reducing the amount of data that needs to be checksummed. It will also allow much faster raid management code in general. The checksums are indexed by a key with a fixed objectid (a magic value in ctree.h) and offset set to the starting byte of the extent. This allows us to copy the checksum items into the fsync log tree directly (or any other tree), without having to invent a second format for them. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 02 12月, 2008 5 次提交
-
-
由 Josef Bacik 提交于
This patch gives us the space we will need in order to have different csum algorithims at some point in the future. We save the csum algorithim type in the superblock, and use those instead of define's. Signed-off-by: NJosef Bacik <jbacik@redhat.com>
-
由 Josef Bacik 提交于
This needs to be applied on top of my previous patches, but is needed for more than just my new stuff. We're going to the wrong label when we have an error, we try to stop the workers, but they are started below all of this code. This fixes it so we go to the right error label and not panic when we fail one of these cases. Signed-off-by: NJosef Bacik <jbacik@redhat.com>
-
由 Josef Bacik 提交于
This adds the necessary disk format for handling compatibility flags in the future to handle disk format changes. We have a compat_flags, compat_ro_flags and incompat_flags set for the super block. Compat flags will be to hold the features that are compatible with older versions of btrfs, compat_ro flags have features that are compatible with older versions of btrfs if the fs is mounted read only, and incompat_flags has features that are incompatible with older versions of btrfs. This also axes the compat_flags field for the inode and just makes the flags field a 64bit field, and changes the root item flags field to 64bit. Signed-off-by: NJosef Bacik <jbacik@redhat.com>
-
由 Christoph Hellwig 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Christoph Hellwig 提交于
Shut up various sparse warnings about symbols that should be either static or have their declarations in scope. Signed-off-by: NChristoph Hellwig <hch@lst.de>
-
- 20 11月, 2008 4 次提交
-
-
由 Yan Zheng 提交于
The log replay produces dirty roots. These dirty roots should be dropped immediately if the fs is mounted as ro. Otherwise they can be added to the dirty root list again when remounting the fs as rw. Thank you, Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
-
由 Chris Mason 提交于
The btrfs git kernel trees is used to build a standalone tree for compiling against older kernels. This commit makes the standalone tree work with 2.6.27 Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
fsync log replay can change the filesystem, so it cannot be delayed until mount -o rw,remount, and it can't be forgotten entirely. So, this patch changes btrfs to do with reiserfs, ext3 and xfs do, which is to do the log replay even when mounted readonly. On a readonly device if log replay is required, the mount is aborted. Getting all of this right had required fixing up some of the error handling in open_ctree. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
While building large bios in writepages, btrfs may end up waiting for other page writeback to finish if WB_SYNC_ALL is used. While it is waiting, the bio it is building has a number of pages with the writeback bit set and they aren't getting to the disk any time soon. This lowers the latencies of writeback in general by sending down the bio being built before waiting for other pages. The bio submission code tries to limit the total number of async bios in flight by waiting when we're over a certain number of async bios. But, the waits are happening while writepages is building bios, and this can easily lead to stalls and other problems for people calling wait_on_page_writeback. The current fix is to let the congestion tests take care of waiting. sync() and others make sure to drain the current async requests to make sure that everything that was pending when the sync was started really get to disk. The code would drain pending requests both before and after submitting a new request. But, if one of the requests is waiting for page writeback to finish, the draining waits might block that page writeback. This changes the draining code to only wait after submitting the bio being processed. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 18 11月, 2008 5 次提交
-
-
由 Chris Mason 提交于
For larger multi-device filesystems, there was logic to limit the number of devices unplugged to just the page that was sent to our sync_page function. But, the code wasn't always unplugging the right device. Since this was just an optimization, disable it for now. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
For a directory tree: /mnt/subvolA/subvolB btrfsctl -s /mnt/subvolA/subvolB /mnt Will create a directory loop with subvolA under subvolB. This commit uses the forward refs for each subvol and snapshot to error out before creating the loop. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Each subvolume has its own private inode number space, and so we need to fill in different device numbers for each subvolume to avoid confusing applications. This commit puts a struct super_block into struct btrfs_root so it can call set_anon_super() and get a different device number generated for each root. btrfs_rename is changed to prevent renames across subvols. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Before, all snapshots and subvolumes lived in a single flat directory. This was awkward and confusing because the single flat directory was only writable with the ioctls. This commit changes the ioctls to create subvols and snapshots at any point in the directory tree. This requires making separate ioctls for snapshot and subvol creation instead of a combining them into one. The subvol ioctl does: btrfsctl -S subvol_name parent_dir After the ioctl is done subvol_name lives inside parent_dir. The snapshot ioctl does: btrfsctl -s path_for_snapshot root_to_snapshot path_for_snapshot can be an absolute or relative path. btrfsctl breaks it up into directory and basename components. root_to_snapshot can be any file or directory in the FS. The snapshot is taken of the entire root where that file lives. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Yan Zheng 提交于
Seed device is a special btrfs with SEEDING super flag set and can only be mounted in read-only mode. Seed devices allow people to create new btrfs on top of it. The new FS contains the same contents as the seed device, but it can be mounted in read-write mode. This patch does the following: 1) split code in btrfs_alloc_chunk into two parts. The first part does makes the newly allocated chunk usable, but does not do any operation that modifies the chunk tree. The second part does the the chunk tree modifications. This division is for the bootstrap step of adding storage to the seed device. 2) Update device management code to handle seed device. The basic idea is: For an FS grown from seed devices, its seed devices are put into a list. Seed devices are opened on demand at mounting time. If any seed device is missing or has been changed, btrfs kernel module will refuse to mount the FS. 3) make btrfs_find_block_group not return NULL when all block groups are read-only. Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
-
- 13 11月, 2008 2 次提交
-
-
由 Yan Zheng 提交于
This patch adds mount ro and remount support. The main changes in patch are: adding btrfs_remount and related helper function; splitting the transaction related code out of close_ctree into btrfs_commit_super; updating allocator to properly handle read only block group. Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
-
由 Chris Mason 提交于
This fixes latency problems on metadata reads by making sure they don't go through the async submit queue, and by tuning down the amount of readahead done during btree searches. Also, the btrfs bdi congestion function is tuned to ignore the number of pending async bios and checksums pending. There is additional code that throttles new async bios now and the congestion function doesn't need to worry about it anymore. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 11 11月, 2008 1 次提交
-
-
由 Chris Mason 提交于
When btrfs unplugs, it tries to find the correct device to unplug via search through the extent_map tree. This avoids unplugging a device that doesn't need it, but is a waste of time for filesystems with a small number of devices. This patch checks the total number of devices before doing the search. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 07 11月, 2008 2 次提交
-
-
由 Chris Mason 提交于
When reading compressed extents, try to put pages into the page cache for any pages covered by the compressed extent that readpages didn't already preload. Add an async work queue to handle transformations at delayed allocation processing time. Right now this is just compression. The workflow is: 1) Find offsets in the file marked for delayed allocation 2) Lock the pages 3) Lock the state bits 4) Call the async delalloc code The async delalloc code clears the state lock bits and delalloc bits. It is important this happens before the range goes into the work queue because otherwise it might deadlock with other work queue items that try to lock those extent bits. The file pages are compressed, and if the compression doesn't work the pages are written back directly. An ordered work queue is used to make sure the inodes are written in the same order that pdflush or writepages sent them down. This changes extent_write_cache_pages to let the writepage function update the wbc nr_written count. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Btrfs uses kernel threads to create async work queues for cpu intensive operations such as checksumming and decompression. These work well, but they make it difficult to keep IO order intact. A single writepages call from pdflush or fsync will turn into a number of bios, and each bio is checksummed in parallel. Once the checksum is computed, the bio is sent down to the disk, and since we don't control the order in which the parallel operations happen, they might go down to the disk in almost any order. The code deals with this somewhat by having deep work queues for a single kernel thread, making it very likely that a single thread will process all the bios for a single inode. This patch introduces an explicitly ordered work queue. As work structs are placed into the queue they are put onto the tail of a list. They have three callbacks: ->func (cpu intensive processing here) ->ordered_func (order sensitive processing here) ->ordered_free (free the work struct, all processing is done) The work struct has three callbacks. The func callback does the cpu intensive work, and when it completes the work struct is marked as done. Every time a work struct completes, the list is checked to see if the head is marked as done. If so the ordered_func callback is used to do the order sensitive processing and the ordered_free callback is used to do any cleanup. Then we loop back and check the head of the list again. This patch also changes the checksumming code to use the ordered workqueues. One a 4 drive array, it increases streaming writes from 280MB/s to 350MB/s. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 30 10月, 2008 4 次提交
-
-
由 Yan Zheng 提交于
This patch adds transaction IDs to root tree pointers. Transaction IDs in tree pointers are compared with the generation numbers in block headers when reading root blocks of trees. This can detect some types of IO errors. Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
-
由 Josef Bacik 提交于
This patch removes the giant fs_info->alloc_mutex and replaces it with a bunch of little locks. There is now a pinned_mutex, which is used when messing with the pinned_extents extent io tree, and the extent_ins_mutex which is used with the pending_del and extent_ins extent io trees. The locking for the extent tree stuff was inspired by a patch that Yan Zheng wrote to fix a race condition, I cleaned it up some and changed the locking around a little bit, but the idea remains the same. Basically instead of holding the extent_ins_mutex throughout the processing of an extent on the extent_ins or pending_del trees, we just hold it while we're searching and when we clear the bits on those trees, and lock the extent for the duration of the operations on the extent. Also to keep from getting hung up waiting to lock an extent, I've added a try_lock_extent so if we cannot lock the extent, move on to the next one in the tree and we'll come back to that one. I have tested this heavily and it does not appear to break anything. This has to be applied on top of my find_free_extent redo patch. I tested this patch on top of Yan's space reblancing code and it worked fine. The only thing that has changed since the last version is I pulled out all my debugging stuff, apparently I forgot to run guilt refresh before I sent the last patch out. Thank you, Signed-off-by: NJosef Bacik <jbacik@redhat.com>
-
由 Yan Zheng 提交于
This patch improves the space balancing code to keep more sharing of tree blocks. The only case that breaks sharing of tree blocks is data extents get fragmented during balancing. The main changes in this patch are: Add a 'drop sub-tree' function. This solves the problem in old code that BTRFS_HEADER_FLAG_WRITTEN check breaks sharing of tree block. Remove relocation mapping tree. Relocation mappings are stored in struct btrfs_ref_path and updated dynamically during walking up/down the reference path. This reduces CPU usage and simplifies code. This patch also fixes a bug. Root items for reloc trees should be updated in btrfs_free_reloc_root. Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
-
由 Chris Mason 提交于
This is a large change for adding compression on reading and writing, both for inline and regular extents. It does some fairly large surgery to the writeback paths. Compression is off by default and enabled by mount -o compress. Even when the -o compress mount option is not used, it is possible to read compressed extents off the disk. If compression for a given set of pages fails to make them smaller, the file is flagged to avoid future compression attempts later. * While finding delalloc extents, the pages are locked before being sent down to the delalloc handler. This allows the delalloc handler to do complex things such as cleaning the pages, marking them writeback and starting IO on their behalf. * Inline extents are inserted at delalloc time now. This allows us to compress the data before inserting the inline extent, and it allows us to insert an inline extent that spans multiple pages. * All of the in-memory extent representations (extent_map.c, ordered-data.c etc) are changed to record both an in-memory size and an on disk size, as well as a flag for compression. From a disk format point of view, the extent pointers in the file are changed to record the on disk size of a given extent and some encoding flags. Space in the disk format is allocated for compression encoding, as well as encryption and a generic 'other' field. Neither the encryption or the 'other' field are currently used. In order to limit the amount of data read for a single random read in the file, the size of a compressed extent is limited to 128k. This is a software only limit, the disk format supports u64 sized compressed extents. In order to limit the ram consumed while processing extents, the uncompressed size of a compressed extent is limited to 256k. This is a software only limit and will be subject to tuning later. Checksumming is still done on compressed extents, and it is done on the uncompressed version of the data. This way additional encodings can be layered on without having to figure out which encoding to checksum. Compression happens at delalloc time, which is basically singled threaded because it is usually done by a single pdflush thread. This makes it tricky to spread the compression load across all the cpus on the box. We'll have to look at parallel pdflush walks of dirty inodes at a later time. Decompression is hooked into readpages and it does spread across CPUs nicely. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 02 10月, 2008 2 次提交
-
-
由 Jim Meyering 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Jim Meyering 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 30 9月, 2008 1 次提交
-
-
由 Chris Mason 提交于
This improves the comments at the top of many functions. It didn't dive into the guts of functions because I was trying to avoid merging problems with the new allocator and back reference work. extent-tree.c and volumes.c were both skipped, and there is definitely more work todo in cleaning and commenting the code. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 29 9月, 2008 1 次提交
-
-
由 Chris Mason 提交于
btrfs-vol -a /dev/xxx will zero the first and last two MB of the device. The kernel code needs to wait for this IO to finish before it adds the device. btrfs metadata IO does not happen through the block device inode. A separate address space is used, allowing the zero filled buffer heads in the block device inode to be written to disk after FS metadata starts going down to the disk via the btrfs metadata inode. The end result is zero filled metadata blocks after adding new devices into the filesystem. The fix is a simple filemap_write_and_wait on the block device inode before actually inserting it into the pool of available devices. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 26 9月, 2008 4 次提交
-
-
由 Zheng Yan 提交于
This patch updates the space balancing code to utilize the new backref format. Before, btrfs-vol -b would break any COW links on data blocks or metadata. This was slow and caused the amount of space used to explode if a large number of snapshots were present. The new code can keeps the sharing of all data extents and most of the tree blocks. To maintain the sharing of data extents, the space balance code uses a seperate inode hold data extent pointers, then updates the references to point to the new location. To maintain the sharing of tree blocks, the space balance code uses reloc trees to relocate tree blocks in reference counted roots. There is one reloc tree for each subvol, and all reloc trees share same root key objectid. Reloc trees are snapshots of the latest committed roots of subvols (root->commit_root). To relocate a tree block referenced by a subvol, there are two steps. COW the block through subvol's reloc tree, then update block pointer in the subvol to point to the new block. Since all reloc trees share same root key objectid, doing special handing for tree blocks owned by them is easy. Once a tree block has been COWed in one reloc tree, we can use the resulting new block directly when the same block is required to COW again through other reloc trees. In this way, relocated tree blocks are shared between reloc trees, so they are also shared between subvols. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Zheng Yan 提交于
Btrfs has a cache of reference counts in leaves, allowing it to avoid reading tree leaves while deleting snapshots. To reduce contention with multiple subvolumes, this cache is private to each subvolume. This patch adds shared reference cache support. The new space balancing code plays with multiple subvols at the same time, So the old per-subvol reference cache is not well suited. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Btrfs metadata writeback is fairly expensive. Once a tree block is written it must be cowed before it can be changed again. The btree writepages code has a threshold based on a count of dirty btree bytes which is updated as IO is sent out. This changes btree_writepages to skip the writeout if there are less than 32MB of dirty bytes from the btrees, improving performance across many workloads. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Btrfs had compatibility code for kernels back to 2.6.18. These have been removed, and will be maintained in a separate backport git tree from now on. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
- 25 9月, 2008 7 次提交
-
-
由 Zheng Yan 提交于
This patch makes the back reference system to explicit record the location of parent node for all types of extents. The location of parent node is placed into the offset field of backref key. Every time a tree block is balanced, the back references for the affected lower level extents are updated. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Tree blocks were using async bio submission, but the sum was still being done directly during writepage. This moves the checksumming into the worker thread. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Josef Bacik 提交于
1) replace the per fs_info extent_io_tree that tracked free space with two rb-trees per block group to track free space areas via offset and size. The reason to do this is because most allocations come with a hint byte where to start, so we can usually find a chunk of free space at that hint byte to satisfy the allocation and get good space packing. If we cannot find free space at or after the given offset we fall back on looking for a chunk of the given size as close to that given offset as possible. When we fall back on the size search we also try to find a slot as close to the size we want as possible, to avoid breaking small chunks off of huge areas if possible. 2) remove the extent_io_tree that tracked the block group cache from fs_info and replaced it with an rb-tree thats tracks block group cache via offset. also added a per space_info list that tracks the block group cache for the particular space so we can lookup related block groups easily. 3) cleaned up the allocation code to make it a little easier to read and a little less complicated. Basically there are 3 steps, first look from our provided hint. If we couldn't find from that given hint, start back at our original search start and look for space from there. If that fails try to allocate space if we can and start looking again. If not we're screwed and need to start over again. 4) small fixes. there were some issues in volumes.c where we wouldn't allocate the rest of the disk. fixed cow_file_range to actually pass the alloc_hint, which has helped a good bit in making the fs_mark test I run have semi-normal results as we run out of space. Generally with data allocations we don't track where we last allocated from, so everytime we did a data allocation we'd search through every block group that we have looking for free space. Now searching a block group with no free space isn't terribly time consuming, it was causing a slight degradation as we got more data block groups. The alloc_hint has fixed this slight degredation and made things semi-normal. There is still one nagging problem I'm working on where we will get ENOSPC when there is definitely plenty of space. This only happens with metadata allocations, and only when we are almost full. So you generally hit the 85% mark first, but sometimes you'll hit the BUG before you hit the 85% wall. I'm still tracking it down, but until then this seems to be pretty stable and make a significant performance gain. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
I had incorrectly disabled the check for the block number being correct in the header block. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
This is the same way the transaction code makes sure that all the other tree blocks are safely on disk. There's an extent_io tree for each root, and any blocks allocated to the tree logs are recorded in that tree. At tree-log sync, the extent_io tree is walked to flush down the dirty pages and wait for them. The main benefit is less time spent walking the tree log and skipping clean pages, and getting sequential IO down to the drive. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Since tree log blocks get freed every transaction, they never really need to be written to disk. This skips the step where we update metadata to record they were allocated. Signed-off-by: NChris Mason <chris.mason@oracle.com>
-
由 Chris Mason 提交于
Signed-off-by: NChris Mason <chris.mason@oracle.com>
-