- 01 2月, 2009 1 次提交
-
-
由 Rusty Russell 提交于
cpumask_and() only initializes nr_cpu_ids bits, so the (deprecated) first_cpu() might find one of those uninitialized bits if nr_cpu_ids is less than NR_CPUS (as it can be for CONFIG_CPUMASK_OFFSTACK). Signed-off-by: NRusty Russell <rusty@rustcorp.com.au> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 04 1月, 2009 1 次提交
-
-
由 Mike Travis 提交于
Impact: prevents panic from stack overflow on numa-capable machines. Some of the "removal of stack hogs" changes in kernel/sched.c by using node_to_cpumask_ptr were undone by the early cpumask API updates, and causes a panic due to stack overflow. This patch undoes those changes by using cpumask_of_node() which returns a 'const struct cpumask *'. In addition, cpu_coregoup_map is replaced with cpu_coregroup_mask further reducing stack usage. (Both of these updates removed 9 FIXME's!) Also: Pick up some remaining changes from the old 'cpumask_t' functions to the new 'struct cpumask *' functions. Optimize memory traffic by allocating each percpu local_cpu_mask on the same node as the referring cpu. Signed-off-by: NMike Travis <travis@sgi.com> Acked-by: NRusty Russell <rusty@rustcorp.com.au> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 17 12月, 2008 1 次提交
-
-
由 Bharata B Rao 提交于
Impact: fix potential of rare crash for_each_leaf_rt_rq() walks an RCU protected list (rq->leaf_rt_rq_list), but doesn't use list_for_each_entry_rcu(). Fix this. Signed-off-by: NBharata B Rao <bharata@linux.vnet.ibm.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 29 11月, 2008 1 次提交
-
-
由 Alexey Dobriyan 提交于
Move double_lock_balance()/double_unlock_balance() higher to fix the following with gcc-3.4.6: CC kernel/sched.o In file included from kernel/sched.c:1605: kernel/sched_rt.c: In function `find_lock_lowest_rq': kernel/sched_rt.c:914: sorry, unimplemented: inlining failed in call to 'double_unlock_balance': function body not available kernel/sched_rt.c:1077: sorry, unimplemented: called from here make[2]: *** [kernel/sched.o] Error 1 Signed-off-by: NAlexey Dobriyan <adobriyan@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 26 11月, 2008 1 次提交
-
-
由 Rusty Russell 提交于
Impact: build fix for !CONFIG_SMP Signed-off-by: NRusty Russell <rusty@rustcorp.com.au> Acked-by: NMike Travis <travis@sgi.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 25 11月, 2008 5 次提交
-
-
由 Rusty Russell 提交于
Impact: Trivial API conversion NR_CPUS -> nr_cpu_ids cpumask_t -> struct cpumask sizeof(cpumask_t) -> cpumask_size() cpumask_a = cpumask_b -> cpumask_copy(&cpumask_a, &cpumask_b) cpu_set() -> cpumask_set_cpu() first_cpu() -> cpumask_first() cpumask_of_cpu() -> cpumask_of() cpus_* -> cpumask_* There are some FIXMEs where we all archs to complete infrastructure (patches have been sent): cpu_coregroup_map -> cpu_coregroup_mask node_to_cpumask* -> cpumask_of_node There is also one FIXME where we pass an array of cpumasks to partition_sched_domains(): this implies knowing the definition of 'struct cpumask' and the size of a cpumask. This will be fixed in a future patch. Signed-off-by: NRusty Russell <rusty@rustcorp.com.au> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Rusty Russell 提交于
Impact: (future) size reduction for large NR_CPUS. Dynamically allocating cpumasks (when CONFIG_CPUMASK_OFFSTACK) saves space for small nr_cpu_ids but big CONFIG_NR_CPUS. cpumask_var_t is just a struct cpumask for !CONFIG_CPUMASK_OFFSTACK. Signed-off-by: NRusty Russell <rusty@rustcorp.com.au> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Rusty Russell 提交于
Impact: stack reduction for large NR_CPUS Dynamically allocating cpumasks (when CONFIG_CPUMASK_OFFSTACK) saves stack space. We simply return if the allocation fails: since we don't use it we could just pass NULL to cpupri_find and have it handle that. Signed-off-by: NRusty Russell <rusty@rustcorp.com.au> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Rusty Russell 提交于
Impact: (future) size reduction for large NR_CPUS. Dynamically allocating cpumasks (when CONFIG_CPUMASK_OFFSTACK) saves space for small nr_cpu_ids but big CONFIG_NR_CPUS. cpumask_var_t is just a struct cpumask for !CONFIG_CPUMASK_OFFSTACK. def_root_domain is static, and so its masks are initialized with alloc_bootmem_cpumask_var. After that, alloc_cpumask_var is used. Signed-off-by: NRusty Russell <rusty@rustcorp.com.au> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Rusty Russell 提交于
Impact: trivial wrap of member accesses This eases the transition in the next patch. We also get rid of a temporary cpumask in find_idlest_cpu() thanks to for_each_cpu_and, and sched_balance_self() due to getting weight before setting sd to NULL. Signed-off-by: NRusty Russell <rusty@rustcorp.com.au> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 07 11月, 2008 1 次提交
-
-
由 Sripathi Kodi 提交于
We have a test case which measures the variation in the amount of time needed to perform a fixed amount of work on the preempt_rt kernel. We started seeing deterioration in it's performance recently. The test should never take more than 10 microseconds, but we started 5-10% failure rate. Using elimination method, we traced the problem to commit 1b12bbc7 (lockdep: re-annotate scheduler runqueues). When LOCKDEP is disabled, this patch only adds an additional function call to double_unlock_balance(). Hence I inlined double_unlock_balance() and the problem went away. Here is a patch to make this change. Signed-off-by: NSripathi Kodi <sripathik@in.ibm.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 03 11月, 2008 1 次提交
-
-
由 Dimitri Sivanich 提交于
Impact: micro-optimization to SCHED_FIFO/RR scheduling A very minor improvement, but might it be better to check sched_rt_runtime(rt_rq) before taking the rt_runtime_lock? Peter Zijlstra observes: > Yes, I think its ok to do so. > > Like pointed out in the other thread, there are two races: > > - sched_rt_runtime() going to RUNTIME_INF, and that will be handled > properly by sched_rt_runtime_exceeded() > > - sched_rt_runtime() going to !RUNTIME_INF, and here we can miss an > accounting cycle, but I don't think that is something to worry too > much about. Signed-off-by: NDimitri Sivanich <sivanich@sgi.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu> -- kernel/sched_rt.c | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-)
-
- 22 10月, 2008 1 次提交
-
-
由 Li Zefan 提交于
a patch from Henrik Austad did this: >> Do not declare select_task_rq as part of sched_class when CONFIG_SMP is >> not set. Peter observed: > While a proper cleanup, could you do it by re-arranging the methods so > as to not create an additional ifdef? Do not declare select_task_rq and some other methods as part of sched_class when CONFIG_SMP is not set. Also gather those methods to avoid CONFIG_SMP mess. Idea-by: NHenrik Austad <henrik.austad@gmail.com> Signed-off-by: NLi Zefan <lizf@cn.fujitsu.com> Acked-by: NPeter Zijlstra <peterz@infradead.org> Acked-by: NHenrik Austad <henrik@austad.us> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 04 10月, 2008 1 次提交
-
-
由 Dario Faggioli 提交于
While working on the new version of the code for SCHED_SPORADIC I noticed something strange in the present throttling mechanism. More specifically in the throttling timer handler in sched_rt.c (do_sched_rt_period_timer()) and in rt_rq_enqueue(). The problem is that, when unthrottling a runqueue, rt_rq_enqueue() only asks for rescheduling if the runqueue has a sched_entity associated to it (i.e., rt_rq->rt_se != NULL). Now, if the runqueue is the root rq (which has a rt_se = NULL) rescheduling does not take place, and it is delayed to some undefined instant in the future. This imply some random bandwidth usage by the RT tasks under throttling. For instance, setting rt_runtime_us/rt_period_us = 950ms/1000ms an RT task will get less than 95%. In our tests we got something varying between 70% to 95%. Using smaller time values, e.g., 95ms/100ms, things are even worse, and I can see values also going down to 20-25%!! The tests we performed are simply running 'yes' as a SCHED_FIFO task, and checking the CPU usage with top, but we can investigate thoroughly if you think it is needed. Things go much better, for us, with the attached patch... Don't know if it is the best approach, but it solved the issue for us. Signed-off-by: NDario Faggioli <raistlin@linux.it> Signed-off-by: NMichael Trimarchi <trimarchimichael@yahoo.it> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: <stable@kernel.org> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 23 9月, 2008 1 次提交
-
-
由 Peter Zijlstra 提交于
Hopefully clarify some of this code a little. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 22 9月, 2008 1 次提交
-
-
由 Peter Zijlstra 提交于
Lin Ming reported a 10% OLTP regression against 2.6.27-rc4. The difference seems to come from different preemption agressiveness, which affects the cache footprint of the workload and its effective cache trashing. Aggresively preempt a task if its avg overlap is very small, this should avoid the task going to sleep and find it still running when we schedule back to it - saving a wakeup. Reported-by: NLin Ming <ming.m.lin@intel.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 14 9月, 2008 1 次提交
-
-
由 Frank Mayhar 提交于
Overview This patch reworks the handling of POSIX CPU timers, including the ITIMER_PROF, ITIMER_VIRT timers and rlimit handling. It was put together with the help of Roland McGrath, the owner and original writer of this code. The problem we ran into, and the reason for this rework, has to do with using a profiling timer in a process with a large number of threads. It appears that the performance of the old implementation of run_posix_cpu_timers() was at least O(n*3) (where "n" is the number of threads in a process) or worse. Everything is fine with an increasing number of threads until the time taken for that routine to run becomes the same as or greater than the tick time, at which point things degrade rather quickly. This patch fixes bug 9906, "Weird hang with NPTL and SIGPROF." Code Changes This rework corrects the implementation of run_posix_cpu_timers() to make it run in constant time for a particular machine. (Performance may vary between one machine and another depending upon whether the kernel is built as single- or multiprocessor and, in the latter case, depending upon the number of running processors.) To do this, at each tick we now update fields in signal_struct as well as task_struct. The run_posix_cpu_timers() function uses those fields to make its decisions. We define a new structure, "task_cputime," to contain user, system and scheduler times and use these in appropriate places: struct task_cputime { cputime_t utime; cputime_t stime; unsigned long long sum_exec_runtime; }; This is included in the structure "thread_group_cputime," which is a new substructure of signal_struct and which varies for uniprocessor versus multiprocessor kernels. For uniprocessor kernels, it uses "task_cputime" as a simple substructure, while for multiprocessor kernels it is a pointer: struct thread_group_cputime { struct task_cputime totals; }; struct thread_group_cputime { struct task_cputime *totals; }; We also add a new task_cputime substructure directly to signal_struct, to cache the earliest expiration of process-wide timers, and task_cputime also replaces the it_*_expires fields of task_struct (used for earliest expiration of thread timers). The "thread_group_cputime" structure contains process-wide timers that are updated via account_user_time() and friends. In the non-SMP case the structure is a simple aggregator; unfortunately in the SMP case that simplicity was not achievable due to cache-line contention between CPUs (in one measured case performance was actually _worse_ on a 16-cpu system than the same test on a 4-cpu system, due to this contention). For SMP, the thread_group_cputime counters are maintained as a per-cpu structure allocated using alloc_percpu(). The timer functions update only the timer field in the structure corresponding to the running CPU, obtained using per_cpu_ptr(). We define a set of inline functions in sched.h that we use to maintain the thread_group_cputime structure and hide the differences between UP and SMP implementations from the rest of the kernel. The thread_group_cputime_init() function initializes the thread_group_cputime structure for the given task. The thread_group_cputime_alloc() is a no-op for UP; for SMP it calls the out-of-line function thread_group_cputime_alloc_smp() to allocate and fill in the per-cpu structures and fields. The thread_group_cputime_free() function, also a no-op for UP, in SMP frees the per-cpu structures. The thread_group_cputime_clone_thread() function (also a UP no-op) for SMP calls thread_group_cputime_alloc() if the per-cpu structures haven't yet been allocated. The thread_group_cputime() function fills the task_cputime structure it is passed with the contents of the thread_group_cputime fields; in UP it's that simple but in SMP it must also safely check that tsk->signal is non-NULL (if it is it just uses the appropriate fields of task_struct) and, if so, sums the per-cpu values for each online CPU. Finally, the three functions account_group_user_time(), account_group_system_time() and account_group_exec_runtime() are used by timer functions to update the respective fields of the thread_group_cputime structure. Non-SMP operation is trivial and will not be mentioned further. The per-cpu structure is always allocated when a task creates its first new thread, via a call to thread_group_cputime_clone_thread() from copy_signal(). It is freed at process exit via a call to thread_group_cputime_free() from cleanup_signal(). All functions that formerly summed utime/stime/sum_sched_runtime values from from all threads in the thread group now use thread_group_cputime() to snapshot the values in the thread_group_cputime structure or the values in the task structure itself if the per-cpu structure hasn't been allocated. Finally, the code in kernel/posix-cpu-timers.c has changed quite a bit. The run_posix_cpu_timers() function has been split into a fast path and a slow path; the former safely checks whether there are any expired thread timers and, if not, just returns, while the slow path does the heavy lifting. With the dedicated thread group fields, timers are no longer "rebalanced" and the process_timer_rebalance() function and related code has gone away. All summing loops are gone and all code that used them now uses the thread_group_cputime() inline. When process-wide timers are set, the new task_cputime structure in signal_struct is used to cache the earliest expiration; this is checked in the fast path. Performance The fix appears not to add significant overhead to existing operations. It generally performs the same as the current code except in two cases, one in which it performs slightly worse (Case 5 below) and one in which it performs very significantly better (Case 2 below). Overall it's a wash except in those two cases. I've since done somewhat more involved testing on a dual-core Opteron system. Case 1: With no itimer running, for a test with 100,000 threads, the fixed kernel took 1428.5 seconds, 513 seconds more than the unfixed system, all of which was spent in the system. There were twice as many voluntary context switches with the fix as without it. Case 2: With an itimer running at .01 second ticks and 4000 threads (the most an unmodified kernel can handle), the fixed kernel ran the test in eight percent of the time (5.8 seconds as opposed to 70 seconds) and had better tick accuracy (.012 seconds per tick as opposed to .023 seconds per tick). Case 3: A 4000-thread test with an initial timer tick of .01 second and an interval of 10,000 seconds (i.e. a timer that ticks only once) had very nearly the same performance in both cases: 6.3 seconds elapsed for the fixed kernel versus 5.5 seconds for the unfixed kernel. With fewer threads (eight in these tests), the Case 1 test ran in essentially the same time on both the modified and unmodified kernels (5.2 seconds versus 5.8 seconds). The Case 2 test ran in about the same time as well, 5.9 seconds versus 5.4 seconds but again with much better tick accuracy, .013 seconds per tick versus .025 seconds per tick for the unmodified kernel. Since the fix affected the rlimit code, I also tested soft and hard CPU limits. Case 4: With a hard CPU limit of 20 seconds and eight threads (and an itimer running), the modified kernel was very slightly favored in that while it killed the process in 19.997 seconds of CPU time (5.002 seconds of wall time), only .003 seconds of that was system time, the rest was user time. The unmodified kernel killed the process in 20.001 seconds of CPU (5.014 seconds of wall time) of which .016 seconds was system time. Really, though, the results were too close to call. The results were essentially the same with no itimer running. Case 5: With a soft limit of 20 seconds and a hard limit of 2000 seconds (where the hard limit would never be reached) and an itimer running, the modified kernel exhibited worse tick accuracy than the unmodified kernel: .050 seconds/tick versus .028 seconds/tick. Otherwise, performance was almost indistinguishable. With no itimer running this test exhibited virtually identical behavior and times in both cases. In times past I did some limited performance testing. those results are below. On a four-cpu Opteron system without this fix, a sixteen-thread test executed in 3569.991 seconds, of which user was 3568.435s and system was 1.556s. On the same system with the fix, user and elapsed time were about the same, but system time dropped to 0.007 seconds. Performance with eight, four and one thread were comparable. Interestingly, the timer ticks with the fix seemed more accurate: The sixteen-thread test with the fix received 149543 ticks for 0.024 seconds per tick, while the same test without the fix received 58720 for 0.061 seconds per tick. Both cases were configured for an interval of 0.01 seconds. Again, the other tests were comparable. Each thread in this test computed the primes up to 25,000,000. I also did a test with a large number of threads, 100,000 threads, which is impossible without the fix. In this case each thread computed the primes only up to 10,000 (to make the runtime manageable). System time dominated, at 1546.968 seconds out of a total 2176.906 seconds (giving a user time of 629.938s). It received 147651 ticks for 0.015 seconds per tick, still quite accurate. There is obviously no comparable test without the fix. Signed-off-by: NFrank Mayhar <fmayhar@google.com> Cc: Roland McGrath <roland@redhat.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 11 9月, 2008 1 次提交
-
-
由 Zhang, Yanmin 提交于
On my tulsa x86-64 machine, kernel 2.6.25-rc5 couldn't boot randomly. Basically, function __enable_runtime forgets to reset rt_rq->rt_throttled to 0. When every cpu is up, per-cpu migration_thread is created and it runs very fast, sometimes to mark the corresponding rt_rq->rt_throttled to 1 very quickly. After all cpus are up, with below calling chain: sched_init_smp => arch_init_sched_domains => build_sched_domains => ... => cpu_attach_domain => rq_attach_root => set_rq_online => ... => _enable_runtime _enable_runtime is called against every rt_rq again, so rt_rq->rt_time is reset to 0, but rt_rq->rt_throttled might be still 1. Later on function do_sched_rt_period_timer couldn't reset it, and all RT tasks couldn't be scheduled to run on that cpu. here is RT task migration_thread which is woken up when a task is migrated to another cpu. Below patch fixes it against 2.6.27-rc5. Signed-off-by: NZhang Yanmin <yanmin_zhang@linux.intel.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 28 8月, 2008 2 次提交
-
-
由 Peter Zijlstra 提交于
It fixes an accounting bug where we would continue accumulating runtime even though the bandwidth control is disabled. This would lead to very long throttle periods once bandwidth control gets turned on again. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 John Blackwood 提交于
When sysctl_sched_rt_runtime is set to something other than -1 and the CONFIG_RT_GROUP_SCHED kernel parameter is NOT enabled, we get into a state where we see one or more CPUs idling forvever even though there are real-time tasks in their rt runqueue that are able to run (no longer throttled). The sequence is: - A real-time task is running when the timer sets the rt runqueue to throttled, and the rt task is resched_task()ed and switched out, and idle is switched in since there are no non-rt tasks to run on that cpu. - Eventually the do_sched_rt_period_timer() runs and un-throttles the rt runqueue, but we just exit the timer interrupt and go back to executing the idle task in the idle loop forever. If we change the sched_rt_rq_enqueue() routine to use some of the code from the CONFIG_RT_GROUP_SCHED enabled version of this same routine and resched_task() the currently executing task (idle in our case) if it is a lower priority task than the higher rt task in the now un-throttled runqueue, the problem is no longer observed. Signed-off-by: NJohn Blackwood <john.blackwood@ccur.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 19 8月, 2008 2 次提交
-
-
由 Peter Zijlstra 提交于
More extensive disable of bandwidth control. It allows sysctl_sched_rt_runtime to disable full group bandwidth control. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
It fixes an accounting bug where we would continue accumulating runtime even though the bandwidth control is disabled. This would lead to very long throttle periods once bandwidth control gets turned on again. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 14 8月, 2008 1 次提交
-
-
由 Peter Zijlstra 提交于
When we hot-unplug a cpu and rebuild the sched-domain, all cpus will be detatched. Alex observed the case where a runqueue was stealing bandwidth from an already disabled runqueue to satisfy its own needs. Stop this by skipping over already disabled runqueues. Reported-by: NAlex Nixon <alex.nixon@citrix.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Tested-by: NAlex Nixon <alex.nixon@citrix.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 11 8月, 2008 1 次提交
-
-
由 Peter Zijlstra 提交于
Instead of using a per-rq lock class, use the regular nesting operations. However, take extra care with double_lock_balance() as it can release the already held rq->lock (and therefore change its nesting class). So what can happen is: spin_lock(rq->lock); // this rq subclass 0 double_lock_balance(rq, other_rq); // release rq // acquire other_rq->lock subclass 0 // acquire rq->lock subclass 1 spin_unlock(other_rq->lock); leaving you with rq->lock in subclass 1 So a subsequent double_lock_balance() call can try to nest a subclass 1 lock while already holding a subclass 1 lock. Fix this by introducing double_unlock_balance() which releases the other rq's lock, but also re-sets the subclass for this rq's lock to 0. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 24 7月, 2008 1 次提交
-
-
由 Peter Zijlstra 提交于
Reported-by: NDaniel Walker <dwalker@mvista.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 18 7月, 2008 3 次提交
-
-
由 David Howells 提交于
Fix inc_rt_tasks() to not declare variable 'rq' if it's not needed. It is declared if CONFIG_SMP or CONFIG_RT_GROUP_SCHED, but only used if CONFIG_SMP. This is a consequence of patch 1f11eb6a plus patch 1100ac91. Signed-off-by: NDavid Howells <dhowells@redhat.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Max Krasnyansky 提交于
This is based on Linus' idea of creating cpu_active_map that prevents scheduler load balancer from migrating tasks to the cpu that is going down. It allows us to simplify domain management code and avoid unecessary domain rebuilds during cpu hotplug event handling. Please ignore the cpusets part for now. It needs some more work in order to avoid crazy lock nesting. Although I did simplfy and unify domain reinitialization logic. We now simply call partition_sched_domains() in all the cases. This means that we're using exact same code paths as in cpusets case and hence the test below cover cpusets too. Cpuset changes to make rebuild_sched_domains() callable from various contexts are in the separate patch (right next after this one). This not only boots but also easily handles while true; do make clean; make -j 8; done and while true; do on-off-cpu 1; done at the same time. (on-off-cpu 1 simple does echo 0/1 > /sys/.../cpu1/online thing). Suprisingly the box (dual-core Core2) is quite usable. In fact I'm typing this on right now in gnome-terminal and things are moving just fine. Also this is running with most of the debug features enabled (lockdep, mutex, etc) no BUG_ONs or lockdep complaints so far. I believe I addressed all of the Dmitry's comments for original Linus' version. I changed both fair and rt balancer to mask out non-active cpus. And replaced cpu_is_offline() with !cpu_active() in the main scheduler code where it made sense (to me). Signed-off-by: NMax Krasnyanskiy <maxk@qualcomm.com> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NGregory Haskins <ghaskins@novell.com> Cc: dmitry.adamushko@gmail.com Cc: pj@sgi.com Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Dmitry Adamushko 提交于
(1) handle in a generic way all cases when a newly woken-up task is not migratable (not just a corner case when "rt_se->nr_cpus_allowed == 1") (2) if current is to be preempted, then make sure "p" will be picked up by pick_next_task_rt(). i.e. move task's group at the head of its list as well. currently, it's not a case for the group-scheduling case as described here: http://www.ussg.iu.edu/hypermail/linux/kernel/0807.0/0134.htmlSigned-off-by: NDmitry Adamushko <dmitry.adamushko@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Gregory Haskins <ghaskins@novell.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 27 6月, 2008 3 次提交
-
-
由 Dhaval Giani 提交于
Signed-off-by: NDhaval Giani <dhaval@linux.vnet.ibm.com> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Try again.. Initial commit: 18d95a28 Revert: 6363ca57Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
In file included from /mnt/build/linux-2.6/kernel/sched.c:1496: /mnt/build/linux-2.6/kernel/sched_rt.c: In function '__enable_runtime': /mnt/build/linux-2.6/kernel/sched_rt.c:339: warning: unused variable 'rd' /mnt/build/linux-2.6/kernel/sched_rt.c: In function 'requeue_rt_entity': /mnt/build/linux-2.6/kernel/sched_rt.c:692: warning: unused variable 'queue' Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 20 6月, 2008 5 次提交
-
-
由 Peter Zijlstra 提交于
So if the group ever gets throttled, it will never wake up again. Reported-by: N"Daniel K." <dk@uw.no> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Tested-by: NDaniel K. <dk@uw.no> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
So if the group ever gets throttled, it will never wake up again. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Daniel K." <dk@uw.no> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Reported-by: N"Daniel K." <dk@uw.no>
-
由 Peter Zijlstra 提交于
Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Daniel K." <dk@uw.no> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Now we exceed the runtime and get throttled - the period rollover tick will subtract the cpu quota from the runtime and check if we're below quota. However with this cpu having a very small portion of the runtime it will not refresh as fast as it should. Therefore, also rebalance the runtime when we're throttled. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Daniel K." <dk@uw.no> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Daniel K." <dk@uw.no> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 19 6月, 2008 2 次提交
-
-
由 Peter Zijlstra 提交于
In tick_task_rt() we first call update_curr_rt() which can dequeue a runqueue due to it running out of runtime, and then we try to requeue it, of it also having exhausted its RR quota. Obviously requeueing something that is no longer on the runqueue will not have the expected result. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Tested-by: NDaniel K. <dk@uw.no> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
The bandwidth throttle code dequeues a group when it runs out of quota, and re-queues it once the period rolls over and the quota gets refreshed. Sadly it failed to take the hierarchy into consideration. Share more of the enqueue/dequeue code with regular task opterations. Also, some operations like sched_setscheduler() can dequeue/enqueue tasks that are in throttled runqueues, we should not inadvertly re-enqueue empty runqueues so check for that. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Tested-by: NDaniel K. <dk@uw.no> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 18 6月, 2008 1 次提交
-
-
由 Dmitry Adamushko 提交于
regarding this commit: 45c01e82 I think we can do it simpler. Please take a look at the patch below. Instead of having 2 separate arrays (which is + ~800 bytes on x86_32 and twice so on x86_64), let's add "exclusive" (the ones that are bound to this CPU) tasks to the head of the queue and "shared" ones -- to the end. In case of a few newly woken up "exclusive" tasks, they are 'stacked' (not queued as now), meaning that a task {i+1} is being placed in front of the previously woken up task {i}. But I don't think that this behavior may cause any realistic problems. There are a couple of changes on top of this one. (1) in check_preempt_curr_rt() I don't think there is a need for the "pick_next_rt_entity(rq, &rq->rt) != &rq->curr->rt" check. enqueue_task_rt(p) and check_preempt_curr_rt() are always called one after another with rq->lock being held so the following check "p->rt.nr_cpus_allowed == 1 && rq->curr->rt.nr_cpus_allowed != 1" should be enough (well, just its left part) to guarantee that 'p' has been queued in front of the 'curr'. (2) in set_cpus_allowed_rt() I don't thinks there is a need for requeue_task_rt() here. Perhaps, the only case when 'requeue' (+ reschedule) might be useful is as follows: i) weight == 1 && cpu_isset(task_cpu(p), *new_mask) i.e. a task is being bound to this CPU); ii) 'p' != rq->curr but here, 'p' has already been on this CPU for a while and was not migrated. i.e. it's possible that 'rq->curr' would not have high chances to be migrated right at this particular moment (although, has chance in a bit longer term), should we allow it to be preempted. Anyway, I think we should not perhaps make it more complex trying to address some rare corner cases. For instance, that's why a single queue approach would be preferable. Unless I'm missing something obvious, this approach gives us similar functionality at lower cost. Verified only compilation-wise. (Almost)-Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 10 6月, 2008 1 次提交
-
-
由 Peter Zijlstra 提交于
Cliff Wickman wrote: > I built an ia64 kernel from Andrew's tree (2.6.26-rc2-mm1) > and get a very predictable hotplug cpu problem. > billberry1:/tmp/cpw # ./dis > disabled cpu 17 > enabled cpu 17 > billberry1:/tmp/cpw # ./dis > disabled cpu 17 > enabled cpu 17 > billberry1:/tmp/cpw # ./dis > > The script that disables the cpu always hangs (unkillable) > on the 3rd attempt. > > And a bit further: > The kstopmachine thread always sits on the run queue (real time) for about > 30 minutes before running. this fix solves some (but not all) issues between CPU hotplug and RT bandwidth throttling. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-