1. 08 4月, 2014 1 次提交
    • J
      mm: page_alloc: spill to remote nodes before waking kswapd · 3a025760
      Johannes Weiner 提交于
      On NUMA systems, a node may start thrashing cache or even swap anonymous
      pages while there are still free pages on remote nodes.
      
      This is a result of commits 81c0a2bb ("mm: page_alloc: fair zone
      allocator policy") and fff4068c ("mm: page_alloc: revert NUMA aspect
      of fair allocation policy").
      
      Before those changes, the allocator would first try all allowed zones,
      including those on remote nodes, before waking any kswapds.  But now,
      the allocator fastpath doubles as the fairness pass, which in turn can
      only consider the local node to prevent remote spilling based on
      exhausted fairness batches alone.  Remote nodes are only considered in
      the slowpath, after the kswapds are woken up.  But if remote nodes still
      have free memory, kswapd should not be woken to rebalance the local node
      or it may thrash cash or swap prematurely.
      
      Fix this by adding one more unfair pass over the zonelist that is
      allowed to spill to remote nodes after the local fairness pass fails but
      before entering the slowpath and waking the kswapds.
      
      This also gets rid of the GFP_THISNODE exemption from the fairness
      protocol because the unfair pass is no longer tied to kswapd, which
      GFP_THISNODE is not allowed to wake up.
      
      However, because remote spills can be more frequent now - we prefer them
      over local kswapd reclaim - the allocation batches on remote nodes could
      underflow more heavily.  When resetting the batches, use
      atomic_long_read() directly instead of zone_page_state() to calculate the
      delta as the latter filters negative counter values.
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NRik van Riel <riel@redhat.com>
      Acked-by: NMel Gorman <mgorman@suse.de>
      Cc: <stable@kernel.org>		[3.12+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3a025760
  2. 30 1月, 2014 1 次提交
  3. 24 1月, 2014 3 次提交
  4. 22 1月, 2014 2 次提交
    • O
      mm: thp: __get_page_tail_foll() can use get_huge_page_tail() · c728852f
      Oleg Nesterov 提交于
      Cleanup. Change __get_page_tail_foll() to use get_huge_page_tail()
      to avoid the code duplication.
      Signed-off-by: NOleg Nesterov <oleg@redhat.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Dave Jones <davej@redhat.com>
      Cc: Darren Hart <dvhart@linux.intel.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Mel Gorman <mgorman@suse.de>
      Acked-by: NAndrea Arcangeli <aarcange@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c728852f
    • A
      mm: tail page refcounting optimization for slab and hugetlbfs · 44518d2b
      Andrea Arcangeli 提交于
      This skips the _mapcount mangling for slab and hugetlbfs pages.
      
      The main trouble in doing this is to guarantee that PageSlab and
      PageHeadHuge remains constant for all get_page/put_page run on the tail
      of slab or hugetlbfs compound pages.  Otherwise if they're set during
      get_page but not set during put_page, the _mapcount of the tail page
      would underflow.
      
      PageHeadHuge will remain true until the compound page is released and
      enters the buddy allocator so it won't risk to change even if the tail
      page is the last reference left on the page.
      
      PG_slab instead is cleared before the slab frees the head page with
      put_page, so if the tail pin is released after the slab freed the page,
      we would have a problem.  But in the slab case the tail pin cannot be
      the last reference left on the page.  This is because the slab code is
      free to reuse the compound page after a kfree/kmem_cache_free without
      having to check if there's any tail pin left.  In turn all tail pins
      must be always released while the head is still pinned by the slab code
      and so we know PG_slab will be still set too.
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Reviewed-by: NKhalid Aziz <khalid.aziz@oracle.com>
      Cc: Pravin Shelar <pshelar@nicira.com>
      Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
      Cc: Ben Hutchings <bhutchings@solarflare.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Johannes Weiner <jweiner@redhat.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Minchan Kim <minchan@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      44518d2b
  5. 12 9月, 2013 1 次提交
    • L
      mm: vmscan: fix do_try_to_free_pages() livelock · 6e543d57
      Lisa Du 提交于
      This patch is based on KOSAKI's work and I add a little more description,
      please refer https://lkml.org/lkml/2012/6/14/74.
      
      Currently, I found system can enter a state that there are lots of free
      pages in a zone but only order-0 and order-1 pages which means the zone is
      heavily fragmented, then high order allocation could make direct reclaim
      path's long stall(ex, 60 seconds) especially in no swap and no compaciton
      enviroment.  This problem happened on v3.4, but it seems issue still lives
      in current tree, the reason is do_try_to_free_pages enter live lock:
      
      kswapd will go to sleep if the zones have been fully scanned and are still
      not balanced.  As kswapd thinks there's little point trying all over again
      to avoid infinite loop.  Instead it changes order from high-order to
      0-order because kswapd think order-0 is the most important.  Look at
      73ce02e9 in detail.  If watermarks are ok, kswapd will go back to sleep
      and may leave zone->all_unreclaimable =3D 0.  It assume high-order users
      can still perform direct reclaim if they wish.
      
      Direct reclaim continue to reclaim for a high order which is not a
      COSTLY_ORDER without oom-killer until kswapd turn on
      zone->all_unreclaimble= .  This is because to avoid too early oom-kill.
      So it means direct_reclaim depends on kswapd to break this loop.
      
      In worst case, direct-reclaim may continue to page reclaim forever when
      kswapd sleeps forever until someone like watchdog detect and finally kill
      the process.  As described in:
      http://thread.gmane.org/gmane.linux.kernel.mm/103737
      
      We can't turn on zone->all_unreclaimable from direct reclaim path because
      direct reclaim path don't take any lock and this way is racy.  Thus this
      patch removes zone->all_unreclaimable field completely and recalculates
      zone reclaimable state every time.
      
      Note: we can't take the idea that direct-reclaim see zone->pages_scanned
      directly and kswapd continue to use zone->all_unreclaimable.  Because, it
      is racy.  commit 929bea7c (vmscan: all_unreclaimable() use
      zone->all_unreclaimable as a name) describes the detail.
      
      [akpm@linux-foundation.org: uninline zone_reclaimable_pages() and zone_reclaimable()]
      Cc: Aaditya Kumar <aaditya.kumar.30@gmail.com>
      Cc: Ying Han <yinghan@google.com>
      Cc: Nick Piggin <npiggin@gmail.com>
      Acked-by: NRik van Riel <riel@redhat.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Bob Liu <lliubbo@gmail.com>
      Cc: Neil Zhang <zhangwm@marvell.com>
      Cc: Russell King - ARM Linux <linux@arm.linux.org.uk>
      Reviewed-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NMinchan Kim <minchan@kernel.org>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Signed-off-by: NLisa Du <cldu@marvell.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6e543d57
  6. 10 7月, 2013 1 次提交
  7. 28 2月, 2013 1 次提交
  8. 24 2月, 2013 1 次提交
  9. 12 1月, 2013 2 次提交
    • M
      mm: compaction: partially revert capture of suitable high-order page · 8fb74b9f
      Mel Gorman 提交于
      Eric Wong reported on 3.7 and 3.8-rc2 that ppoll() got stuck when
      waiting for POLLIN on a local TCP socket.  It was easier to trigger if
      there was disk IO and dirty pages at the same time and he bisected it to
      commit 1fb3f8ca ("mm: compaction: capture a suitable high-order page
      immediately when it is made available").
      
      The intention of that patch was to improve high-order allocations under
      memory pressure after changes made to reclaim in 3.6 drastically hurt
      THP allocations but the approach was flawed.  For Eric, the problem was
      that page->pfmemalloc was not being cleared for captured pages leading
      to a poor interaction with swap-over-NFS support causing the packets to
      be dropped.  However, I identified a few more problems with the patch
      including the fact that it can increase contention on zone->lock in some
      cases which could result in async direct compaction being aborted early.
      
      In retrospect the capture patch took the wrong approach.  What it should
      have done is mark the pageblock being migrated as MIGRATE_ISOLATE if it
      was allocating for THP and avoided races that way.  While the patch was
      showing to improve allocation success rates at the time, the benefit is
      marginal given the relative complexity and it should be revisited from
      scratch in the context of the other reclaim-related changes that have
      taken place since the patch was first written and tested.  This patch
      partially reverts commit 1fb3f8ca ("mm: compaction: capture a
      suitable high-order page immediately when it is made available").
      Reported-and-tested-by: NEric Wong <normalperson@yhbt.net>
      Tested-by: NEric Dumazet <eric.dumazet@gmail.com>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Cc: David Miller <davem@davemloft.net>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      8fb74b9f
    • M
      mm: compaction: Partially revert capture of suitable high-order page · 47ecfcb7
      Mel Gorman 提交于
      Eric Wong reported on 3.7 and 3.8-rc2 that ppoll() got stuck when
      waiting for POLLIN on a local TCP socket.  It was easier to trigger if
      there was disk IO and dirty pages at the same time and he bisected it to
      commit 1fb3f8ca ("mm: compaction: capture a suitable high-order page
      immediately when it is made available").
      
      The intention of that patch was to improve high-order allocations under
      memory pressure after changes made to reclaim in 3.6 drastically hurt
      THP allocations but the approach was flawed.  For Eric, the problem was
      that page->pfmemalloc was not being cleared for captured pages leading
      to a poor interaction with swap-over-NFS support causing the packets to
      be dropped.  However, I identified a few more problems with the patch
      including the fact that it can increase contention on zone->lock in some
      cases which could result in async direct compaction being aborted early.
      
      In retrospect the capture patch took the wrong approach.  What it should
      have done is mark the pageblock being migrated as MIGRATE_ISOLATE if it
      was allocating for THP and avoided races that way.  While the patch was
      showing to improve allocation success rates at the time, the benefit is
      marginal given the relative complexity and it should be revisited from
      scratch in the context of the other reclaim-related changes that have
      taken place since the patch was first written and tested.  This patch
      partially reverts commit 1fb3f8ca "mm: compaction: capture a suitable
      high-order page immediately when it is made available".
      Reported-and-tested-by: NEric Wong <normalperson@yhbt.net>
      Tested-by: NEric Dumazet <eric.dumazet@gmail.com>
      Cc: stable@vger.kernel.org
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      47ecfcb7
  10. 12 12月, 2012 1 次提交
  11. 11 12月, 2012 1 次提交
    • M
      mm: numa: Add THP migration for the NUMA working set scanning fault case. · b32967ff
      Mel Gorman 提交于
      Note: This is very heavily based on a patch from Peter Zijlstra with
      	fixes from Ingo Molnar, Hugh Dickins and Johannes Weiner.  That patch
      	put a lot of migration logic into mm/huge_memory.c where it does
      	not belong. This version puts tries to share some of the migration
      	logic with migrate_misplaced_page.  However, it should be noted
      	that now migrate.c is doing more with the pagetable manipulation
      	than is preferred. The end result is barely recognisable so as
      	before, the signed-offs had to be removed but will be re-added if
      	the original authors are ok with it.
      
      Add THP migration for the NUMA working set scanning fault case.
      
      It uses the page lock to serialize. No migration pte dance is
      necessary because the pte is already unmapped when we decide
      to migrate.
      
      [dhillf@gmail.com: Fix memory leak on isolation failure]
      [dhillf@gmail.com: Fix transfer of last_nid information]
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      b32967ff
  12. 09 10月, 2012 12 次提交
  13. 22 8月, 2012 1 次提交
    • M
      mm: compaction: Abort async compaction if locks are contended or taking too long · c67fe375
      Mel Gorman 提交于
      Jim Schutt reported a problem that pointed at compaction contending
      heavily on locks.  The workload is straight-forward and in his own words;
      
      	The systems in question have 24 SAS drives spread across 3 HBAs,
      	running 24 Ceph OSD instances, one per drive.  FWIW these servers
      	are dual-socket Intel 5675 Xeons w/48 GB memory.  I've got ~160
      	Ceph Linux clients doing dd simultaneously to a Ceph file system
      	backed by 12 of these servers.
      
      Early in the test everything looks fine
      
        procs -------------------memory------------------ ---swap-- -----io---- --system-- -----cpu-------
         r  b       swpd       free       buff      cache   si   so    bi    bo   in   cs  us sy  id wa st
        31 15          0     287216        576   38606628    0    0     2  1158    2   14   1  3  95  0  0
        27 15          0     225288        576   38583384    0    0    18 2222016 203357 134876  11 56  17 15  0
        28 17          0     219256        576   38544736    0    0    11 2305932 203141 146296  11 49  23 17  0
         6 18          0     215596        576   38552872    0    0     7 2363207 215264 166502  12 45  22 20  0
        22 18          0     226984        576   38596404    0    0     3 2445741 223114 179527  12 43  23 22  0
      
      and then it goes to pot
      
        procs -------------------memory------------------ ---swap-- -----io---- --system-- -----cpu-------
         r  b       swpd       free       buff      cache   si   so    bi    bo   in   cs  us sy  id wa st
        163  8          0     464308        576   36791368    0    0    11 22210  866  536   3 13  79  4  0
        207 14          0     917752        576   36181928    0    0   712 1345376 134598 47367   7 90   1  2  0
        123 12          0     685516        576   36296148    0    0   429 1386615 158494 60077   8 84   5  3  0
        123 12          0     598572        576   36333728    0    0  1107 1233281 147542 62351   7 84   5  4  0
        622  7          0     660768        576   36118264    0    0   557 1345548 151394 59353   7 85   4  3  0
        223 11          0     283960        576   36463868    0    0    46 1107160 121846 33006   6 93   1  1  0
      
      Note that system CPU usage is very high blocks being written out has
      dropped by 42%. He analysed this with perf and found
      
        perf record -g -a sleep 10
        perf report --sort symbol --call-graph fractal,5
          34.63%  [k] _raw_spin_lock_irqsave
                  |
                  |--97.30%-- isolate_freepages
                  |          compaction_alloc
                  |          unmap_and_move
                  |          migrate_pages
                  |          compact_zone
                  |          compact_zone_order
                  |          try_to_compact_pages
                  |          __alloc_pages_direct_compact
                  |          __alloc_pages_slowpath
                  |          __alloc_pages_nodemask
                  |          alloc_pages_vma
                  |          do_huge_pmd_anonymous_page
                  |          handle_mm_fault
                  |          do_page_fault
                  |          page_fault
                  |          |
                  |          |--87.39%-- skb_copy_datagram_iovec
                  |          |          tcp_recvmsg
                  |          |          inet_recvmsg
                  |          |          sock_recvmsg
                  |          |          sys_recvfrom
                  |          |          system_call
                  |          |          __recv
                  |          |          |
                  |          |           --100.00%-- (nil)
                  |          |
                  |           --12.61%-- memcpy
                   --2.70%-- [...]
      
      There was other data but primarily it is all showing that compaction is
      contended heavily on the zone->lock and zone->lru_lock.
      
      commit [b2eef8c0: mm: compaction: minimise the time IRQs are disabled
      while isolating pages for migration] noted that it was possible for
      migration to hold the lru_lock for an excessive amount of time. Very
      broadly speaking this patch expands the concept.
      
      This patch introduces compact_checklock_irqsave() to check if a lock
      is contended or the process needs to be scheduled. If either condition
      is true then async compaction is aborted and the caller is informed.
      The page allocator will fail a THP allocation if compaction failed due
      to contention. This patch also introduces compact_trylock_irqsave()
      which will acquire the lock only if it is not contended and the process
      does not need to schedule.
      Reported-by: NJim Schutt <jaschut@sandia.gov>
      Tested-by: NJim Schutt <jaschut@sandia.gov>
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c67fe375
  14. 01 8月, 2012 4 次提交
    • M
      netvm: allow skb allocation to use PFMEMALLOC reserves · c93bdd0e
      Mel Gorman 提交于
      Change the skb allocation API to indicate RX usage and use this to fall
      back to the PFMEMALLOC reserve when needed.  SKBs allocated from the
      reserve are tagged in skb->pfmemalloc.  If an SKB is allocated from the
      reserve and the socket is later found to be unrelated to page reclaim, the
      packet is dropped so that the memory remains available for page reclaim.
      Network protocols are expected to recover from this packet loss.
      
      [a.p.zijlstra@chello.nl: Ideas taken from various patches]
      [davem@davemloft.net: Use static branches, coding style corrections]
      [sebastian@breakpoint.cc: Avoid unnecessary cast, fix !CONFIG_NET build]
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Acked-by: NDavid S. Miller <davem@davemloft.net>
      Cc: Neil Brown <neilb@suse.de>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Mike Christie <michaelc@cs.wisc.edu>
      Cc: Eric B Munson <emunson@mgebm.net>
      Cc: Eric Dumazet <eric.dumazet@gmail.com>
      Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Christoph Lameter <cl@linux.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c93bdd0e
    • M
      mm: sl[au]b: add knowledge of PFMEMALLOC reserve pages · 072bb0aa
      Mel Gorman 提交于
      When a user or administrator requires swap for their application, they
      create a swap partition and file, format it with mkswap and activate it
      with swapon.  Swap over the network is considered as an option in diskless
      systems.  The two likely scenarios are when blade servers are used as part
      of a cluster where the form factor or maintenance costs do not allow the
      use of disks and thin clients.
      
      The Linux Terminal Server Project recommends the use of the Network Block
      Device (NBD) for swap according to the manual at
      https://sourceforge.net/projects/ltsp/files/Docs-Admin-Guide/LTSPManual.pdf/download
      There is also documentation and tutorials on how to setup swap over NBD at
      places like https://help.ubuntu.com/community/UbuntuLTSP/EnableNBDSWAP The
      nbd-client also documents the use of NBD as swap.  Despite this, the fact
      is that a machine using NBD for swap can deadlock within minutes if swap
      is used intensively.  This patch series addresses the problem.
      
      The core issue is that network block devices do not use mempools like
      normal block devices do.  As the host cannot control where they receive
      packets from, they cannot reliably work out in advance how much memory
      they might need.  Some years ago, Peter Zijlstra developed a series of
      patches that supported swap over an NFS that at least one distribution is
      carrying within their kernels.  This patch series borrows very heavily
      from Peter's work to support swapping over NBD as a pre-requisite to
      supporting swap-over-NFS.  The bulk of the complexity is concerned with
      preserving memory that is allocated from the PFMEMALLOC reserves for use
      by the network layer which is needed for both NBD and NFS.
      
      Patch 1 adds knowledge of the PFMEMALLOC reserves to SLAB and SLUB to
      	preserve access to pages allocated under low memory situations
      	to callers that are freeing memory.
      
      Patch 2 optimises the SLUB fast path to avoid pfmemalloc checks
      
      Patch 3 introduces __GFP_MEMALLOC to allow access to the PFMEMALLOC
      	reserves without setting PFMEMALLOC.
      
      Patch 4 opens the possibility for softirqs to use PFMEMALLOC reserves
      	for later use by network packet processing.
      
      Patch 5 only sets page->pfmemalloc when ALLOC_NO_WATERMARKS was required
      
      Patch 6 ignores memory policies when ALLOC_NO_WATERMARKS is set.
      
      Patches 7-12 allows network processing to use PFMEMALLOC reserves when
      	the socket has been marked as being used by the VM to clean pages. If
      	packets are received and stored in pages that were allocated under
      	low-memory situations and are unrelated to the VM, the packets
      	are dropped.
      
      	Patch 11 reintroduces __skb_alloc_page which the networking
      	folk may object to but is needed in some cases to propogate
      	pfmemalloc from a newly allocated page to an skb. If there is a
      	strong objection, this patch can be dropped with the impact being
      	that swap-over-network will be slower in some cases but it should
      	not fail.
      
      Patch 13 is a micro-optimisation to avoid a function call in the
      	common case.
      
      Patch 14 tags NBD sockets as being SOCK_MEMALLOC so they can use
      	PFMEMALLOC if necessary.
      
      Patch 15 notes that it is still possible for the PFMEMALLOC reserve
      	to be depleted. To prevent this, direct reclaimers get throttled on
      	a waitqueue if 50% of the PFMEMALLOC reserves are depleted.  It is
      	expected that kswapd and the direct reclaimers already running
      	will clean enough pages for the low watermark to be reached and
      	the throttled processes are woken up.
      
      Patch 16 adds a statistic to track how often processes get throttled
      
      Some basic performance testing was run using kernel builds, netperf on
      loopback for UDP and TCP, hackbench (pipes and sockets), iozone and
      sysbench.  Each of them were expected to use the sl*b allocators
      reasonably heavily but there did not appear to be significant performance
      variances.
      
      For testing swap-over-NBD, a machine was booted with 2G of RAM with a
      swapfile backed by NBD.  8*NUM_CPU processes were started that create
      anonymous memory mappings and read them linearly in a loop.  The total
      size of the mappings were 4*PHYSICAL_MEMORY to use swap heavily under
      memory pressure.
      
      Without the patches and using SLUB, the machine locks up within minutes
      and runs to completion with them applied.  With SLAB, the story is
      different as an unpatched kernel run to completion.  However, the patched
      kernel completed the test 45% faster.
      
      MICRO
                                               3.5.0-rc2 3.5.0-rc2
      					 vanilla     swapnbd
      Unrecognised test vmscan-anon-mmap-write
      MMTests Statistics: duration
      Sys Time Running Test (seconds)             197.80    173.07
      User+Sys Time Running Test (seconds)        206.96    182.03
      Total Elapsed Time (seconds)               3240.70   1762.09
      
      This patch: mm: sl[au]b: add knowledge of PFMEMALLOC reserve pages
      
      Allocations of pages below the min watermark run a risk of the machine
      hanging due to a lack of memory.  To prevent this, only callers who have
      PF_MEMALLOC or TIF_MEMDIE set and are not processing an interrupt are
      allowed to allocate with ALLOC_NO_WATERMARKS.  Once they are allocated to
      a slab though, nothing prevents other callers consuming free objects
      within those slabs.  This patch limits access to slab pages that were
      alloced from the PFMEMALLOC reserves.
      
      When this patch is applied, pages allocated from below the low watermark
      are returned with page->pfmemalloc set and it is up to the caller to
      determine how the page should be protected.  SLAB restricts access to any
      page with page->pfmemalloc set to callers which are known to able to
      access the PFMEMALLOC reserve.  If one is not available, an attempt is
      made to allocate a new page rather than use a reserve.  SLUB is a bit more
      relaxed in that it only records if the current per-CPU page was allocated
      from PFMEMALLOC reserve and uses another partial slab if the caller does
      not have the necessary GFP or process flags.  This was found to be
      sufficient in tests to avoid hangs due to SLUB generally maintaining
      smaller lists than SLAB.
      
      In low-memory conditions it does mean that !PFMEMALLOC allocators can fail
      a slab allocation even though free objects are available because they are
      being preserved for callers that are freeing pages.
      
      [a.p.zijlstra@chello.nl: Original implementation]
      [sebastian@breakpoint.cc: Correct order of page flag clearing]
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Cc: David Miller <davem@davemloft.net>
      Cc: Neil Brown <neilb@suse.de>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Mike Christie <michaelc@cs.wisc.edu>
      Cc: Eric B Munson <emunson@mgebm.net>
      Cc: Eric Dumazet <eric.dumazet@gmail.com>
      Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Christoph Lameter <cl@linux.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      072bb0aa
    • X
      mm: setup pageblock_order before it's used by sparsemem · ca57df79
      Xishi Qiu 提交于
      On architectures with CONFIG_HUGETLB_PAGE_SIZE_VARIABLE set, such as
      Itanium, pageblock_order is a variable with default value of 0.  It's set
      to the right value by set_pageblock_order() in function
      free_area_init_core().
      
      But pageblock_order may be used by sparse_init() before free_area_init_core()
      is called along path:
      sparse_init()
          ->sparse_early_usemaps_alloc_node()
      	->usemap_size()
      	    ->SECTION_BLOCKFLAGS_BITS
      		->((1UL << (PFN_SECTION_SHIFT - pageblock_order)) *
      NR_PAGEBLOCK_BITS)
      
      The uninitialized pageblock_size will cause memory wasting because
      usemap_size() returns a much bigger value then it's really needed.
      
      For example, on an Itanium platform,
      sparse_init() pageblock_order=0 usemap_size=24576
      free_area_init_core() before pageblock_order=0, usemap_size=24576
      free_area_init_core() after pageblock_order=12, usemap_size=8
      
      That means 24K memory has been wasted for each section, so fix it by calling
      set_pageblock_order() from sparse_init().
      Signed-off-by: NXishi Qiu <qiuxishi@huawei.com>
      Signed-off-by: NJiang Liu <liuj97@gmail.com>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Keping Chen <chenkeping@huawei.com>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ca57df79
    • R
      mm: have order > 0 compaction start off where it left · 7db8889a
      Rik van Riel 提交于
      Order > 0 compaction stops when enough free pages of the correct page
      order have been coalesced.  When doing subsequent higher order
      allocations, it is possible for compaction to be invoked many times.
      
      However, the compaction code always starts out looking for things to
      compact at the start of the zone, and for free pages to compact things to
      at the end of the zone.
      
      This can cause quadratic behaviour, with isolate_freepages starting at the
      end of the zone each time, even though previous invocations of the
      compaction code already filled up all free memory on that end of the zone.
      
      This can cause isolate_freepages to take enormous amounts of CPU with
      certain workloads on larger memory systems.
      
      The obvious solution is to have isolate_freepages remember where it left
      off last time, and continue at that point the next time it gets invoked
      for an order > 0 compaction.  This could cause compaction to fail if
      cc->free_pfn and cc->migrate_pfn are close together initially, in that
      case we restart from the end of the zone and try once more.
      
      Forced full (order == -1) compactions are left alone.
      
      [akpm@linux-foundation.org: checkpatch fixes]
      [akpm@linux-foundation.org: s/laste/last/, use 80 cols]
      Signed-off-by: NRik van Riel <riel@redhat.com>
      Reported-by: NJim Schutt <jaschut@sandia.gov>
      Tested-by: NJim Schutt <jaschut@sandia.gov>
      Cc: Minchan Kim <minchan.kim@gmail.com>
      Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Acked-by: NMel Gorman <mel@csn.ul.ie>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7db8889a
  15. 04 6月, 2012 1 次提交
  16. 01 6月, 2012 1 次提交
  17. 30 5月, 2012 2 次提交
    • B
      mm: compaction: handle incorrect MIGRATE_UNMOVABLE type pageblocks · 5ceb9ce6
      Bartlomiej Zolnierkiewicz 提交于
      When MIGRATE_UNMOVABLE pages are freed from MIGRATE_UNMOVABLE type
      pageblock (and some MIGRATE_MOVABLE pages are left in it) waiting until an
      allocation takes ownership of the block may take too long.  The type of
      the pageblock remains unchanged so the pageblock cannot be used as a
      migration target during compaction.
      
      Fix it by:
      
      * Adding enum compact_mode (COMPACT_ASYNC_[MOVABLE,UNMOVABLE], and
        COMPACT_SYNC) and then converting sync field in struct compact_control
        to use it.
      
      * Adding nr_pageblocks_skipped field to struct compact_control and
        tracking how many destination pageblocks were of MIGRATE_UNMOVABLE type.
         If COMPACT_ASYNC_MOVABLE mode compaction ran fully in
        try_to_compact_pages() (COMPACT_COMPLETE) it implies that there is not a
        suitable page for allocation.  In this case then check how if there were
        enough MIGRATE_UNMOVABLE pageblocks to try a second pass in
        COMPACT_ASYNC_UNMOVABLE mode.
      
      * Scanning the MIGRATE_UNMOVABLE pageblocks (during COMPACT_SYNC and
        COMPACT_ASYNC_UNMOVABLE compaction modes) and building a count based on
        finding PageBuddy pages, page_count(page) == 0 or PageLRU pages.  If all
        pages within the MIGRATE_UNMOVABLE pageblock are in one of those three
        sets change the whole pageblock type to MIGRATE_MOVABLE.
      
      My particular test case (on a ARM EXYNOS4 device with 512 MiB, which means
      131072 standard 4KiB pages in 'Normal' zone) is to:
      
      - allocate 120000 pages for kernel's usage
      - free every second page (60000 pages) of memory just allocated
      - allocate and use 60000 pages from user space
      - free remaining 60000 pages of kernel memory
        (now we have fragmented memory occupied mostly by user space pages)
      - try to allocate 100 order-9 (2048 KiB) pages for kernel's usage
      
      The results:
      - with compaction disabled I get 11 successful allocations
      - with compaction enabled - 14 successful allocations
      - with this patch I'm able to get all 100 successful allocations
      
      NOTE: If we can make kswapd aware of order-0 request during compaction, we
      can enhance kswapd with changing mode to COMPACT_ASYNC_FULL
      (COMPACT_ASYNC_MOVABLE + COMPACT_ASYNC_UNMOVABLE).  Please see the
      following thread:
      
      	http://marc.info/?l=linux-mm&m=133552069417068&w=2
      
      [minchan@kernel.org: minor cleanups]
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Marek Szyprowski <m.szyprowski@samsung.com>
      Signed-off-by: NBartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
      Signed-off-by: NKyungmin Park <kyungmin.park@samsung.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      5ceb9ce6
    • Y
      mm: rename is_mlocked_vma() to mlocked_vma_newpage() · 096a7cf4
      Ying Han 提交于
      Andrew pointed out that the is_mlocked_vma() is misnamed.  A function
      with name like that would expect bool return and no side-effects.
      
      Since it is called on the fault path for new page, rename it in this
      patch.
      Signed-off-by: NYing Han <yinghan@google.com>
      Reviewed-by: NRik van Riel <riel@redhat.com>
      Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujtisu.com>
      Reviewed-by: NMinchan Kim <minchan@kernel.org>
      [akpm@linux-foundation.org: s/mlock_vma_newpage/mlock_vma_newpage/, per Minchan]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      096a7cf4
  18. 21 5月, 2012 1 次提交
  19. 03 11月, 2011 1 次提交
    • A
      mm: thp: tail page refcounting fix · 70b50f94
      Andrea Arcangeli 提交于
      Michel while working on the working set estimation code, noticed that
      calling get_page_unless_zero() on a random pfn_to_page(random_pfn)
      wasn't safe, if the pfn ended up being a tail page of a transparent
      hugepage under splitting by __split_huge_page_refcount().
      
      He then found the problem could also theoretically materialize with
      page_cache_get_speculative() during the speculative radix tree lookups
      that uses get_page_unless_zero() in SMP if the radix tree page is freed
      and reallocated and get_user_pages is called on it before
      page_cache_get_speculative has a chance to call get_page_unless_zero().
      
      So the best way to fix the problem is to keep page_tail->_count zero at
      all times.  This will guarantee that get_page_unless_zero() can never
      succeed on any tail page.  page_tail->_mapcount is guaranteed zero and
      is unused for all tail pages of a compound page, so we can simply
      account the tail page references there and transfer them to
      tail_page->_count in __split_huge_page_refcount() (in addition to the
      head_page->_mapcount).
      
      While debugging this s/_count/_mapcount/ change I also noticed get_page is
      called by direct-io.c on pages returned by get_user_pages.  That wasn't
      entirely safe because the two atomic_inc in get_page weren't atomic.  As
      opposed to other get_user_page users like secondary-MMU page fault to
      establish the shadow pagetables would never call any superflous get_page
      after get_user_page returns.  It's safer to make get_page universally safe
      for tail pages and to use get_page_foll() within follow_page (inside
      get_user_pages()).  get_page_foll() is safe to do the refcounting for tail
      pages without taking any locks because it is run within PT lock protected
      critical sections (PT lock for pte and page_table_lock for
      pmd_trans_huge).
      
      The standard get_page() as invoked by direct-io instead will now take
      the compound_lock but still only for tail pages.  The direct-io paths
      are usually I/O bound and the compound_lock is per THP so very
      finegrined, so there's no risk of scalability issues with it.  A simple
      direct-io benchmarks with all lockdep prove locking and spinlock
      debugging infrastructure enabled shows identical performance and no
      overhead.  So it's worth it.  Ideally direct-io should stop calling
      get_page() on pages returned by get_user_pages().  The spinlock in
      get_page() is already optimized away for no-THP builds but doing
      get_page() on tail pages returned by GUP is generally a rare operation
      and usually only run in I/O paths.
      
      This new refcounting on page_tail->_mapcount in addition to avoiding new
      RCU critical sections will also allow the working set estimation code to
      work without any further complexity associated to the tail page
      refcounting with THP.
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Reported-by: NMichel Lespinasse <walken@google.com>
      Reviewed-by: NMichel Lespinasse <walken@google.com>
      Reviewed-by: NMinchan Kim <minchan.kim@gmail.com>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Johannes Weiner <jweiner@redhat.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Gibson <david@gibson.dropbear.id.au>
      Cc: <stable@kernel.org>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      70b50f94
  20. 25 5月, 2011 1 次提交
    • N
      mm: nommu: sort mm->mmap list properly · 6038def0
      Namhyung Kim 提交于
      When I was reading nommu code, I found that it handles the vma list/tree
      in an unusual way.  IIUC, because there can be more than one
      identical/overrapped vmas in the list/tree, it sorts the tree more
      strictly and does a linear search on the tree.  But it doesn't applied to
      the list (i.e.  the list could be constructed in a different order than
      the tree so that we can't use the list when finding the first vma in that
      order).
      
      Since inserting/sorting a vma in the tree and link is done at the same
      time, we can easily construct both of them in the same order.  And linear
      searching on the tree could be more costly than doing it on the list, it
      can be converted to use the list.
      
      Also, after the commit 297c5eee ("mm: make the vma list be doubly
      linked") made the list be doubly linked, there were a couple of code need
      to be fixed to construct the list properly.
      
      Patch 1/6 is a preparation.  It maintains the list sorted same as the tree
      and construct doubly-linked list properly.  Patch 2/6 is a simple
      optimization for the vma deletion.  Patch 3/6 and 4/6 convert tree
      traversal to list traversal and the rest are simple fixes and cleanups.
      
      This patch:
      
      @vma added into @mm should be sorted by start addr, end addr and VMA
      struct addr in that order because we may get identical VMAs in the @mm.
      However this was true only for the rbtree, not for the list.
      
      This patch fixes this by remembering 'rb_prev' during the tree traversal
      like find_vma_prepare() does and linking the @vma via __vma_link_list().
      After this patch, we can iterate the whole VMAs in correct order simply by
      using @mm->mmap list.
      
      [akpm@linux-foundation.org: avoid duplicating __vma_link_list()]
      Signed-off-by: NNamhyung Kim <namhyung@gmail.com>
      Acked-by: NGreg Ungerer <gerg@uclinux.org>
      Cc: David Howells <dhowells@redhat.com>
      Cc: Paul Mundt <lethal@linux-sh.org>
      Cc: Geert Uytterhoeven <geert@linux-m68k.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6038def0
  21. 31 3月, 2011 1 次提交