1. 09 10月, 2009 1 次提交
    • J
      Btrfs: release delalloc reservations on extent item insertion · 32c00aff
      Josef Bacik 提交于
      This patch fixes an issue with the delalloc metadata space reservation
      code.  The problem is we used to free the reservation as soon as we
      allocated the delalloc region.  The problem with this is if we are not
      inserting an inline extent, we don't actually insert the extent item until
      after the ordered extent is written out.  This patch does 3 things,
      
      1) It moves the reservation clearing stuff into the ordered code, so when
      we remove the ordered extent we remove the reservation.
      2) It adds a EXTENT_DO_ACCOUNTING flag that gets passed when we clear
      delalloc bits in the cases where we want to clear the metadata reservation
      when we clear the delalloc extent, in the case that we do an inline extent
      or we invalidate the page.
      3) It adds another waitqueue to the space info so that when we start a fs
      wide delalloc flush, anybody else who also hits that area will simply wait
      for the flush to finish and then try to make their allocation.
      
      This has been tested thoroughly to make sure we did not regress on
      performance.
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      32c00aff
  2. 05 10月, 2009 1 次提交
    • C
      Btrfs: fix deadlock on async thread startup · 61d92c32
      Chris Mason 提交于
      The btrfs async worker threads are used for a wide variety of things,
      including processing bio end_io functions.  This means that when
      the endio threads aren't running, the rest of the FS isn't
      able to do the final processing required to clear PageWriteback.
      
      The endio threads also try to exit as they become idle and
      start more as the work piles up.  The problem is that starting more
      threads means kthreadd may need to allocate ram, and that allocation
      may wait until the global number of writeback pages on the system is
      below a certain limit.
      
      The result of that throttling is that end IO threads wait on
      kthreadd, who is waiting on IO to end, which will never happen.
      
      This commit fixes the deadlock by handing off thread startup to a
      dedicated thread.  It also fixes a bug where the on-demand thread
      creation was creating far too many threads because it didn't take into
      account threads being started by other procs.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      61d92c32
  3. 30 9月, 2009 1 次提交
  4. 29 9月, 2009 1 次提交
    • J
      Btrfs: proper -ENOSPC handling · 9ed74f2d
      Josef Bacik 提交于
      At the start of a transaction we do a btrfs_reserve_metadata_space() and
      specify how many items we plan on modifying.  Then once we've done our
      modifications and such, just call btrfs_unreserve_metadata_space() for
      the same number of items we reserved.
      
      For keeping track of metadata needed for data I've had to add an extent_io op
      for when we merge extents.  This lets us track space properly when we are doing
      sequential writes, so we don't end up reserving way more metadata space than
      what we need.
      
      The only place where the metadata space accounting is not done is in the
      relocation code.  This is because Yan is going to be reworking that code in the
      near future, so running btrfs-vol -b could still possibly result in a ENOSPC
      related panic.  This patch also turns off the metadata_ratio stuff in order to
      allow users to more efficiently use their disk space.
      
      This patch makes it so we track how much metadata we need for an inode's
      delayed allocation extents by tracking how many extents are currently
      waiting for allocation.  It introduces two new callbacks for the
      extent_io tree's, merge_extent_hook and split_extent_hook.  These help
      us keep track of when we merge delalloc extents together and split them
      up.  Reservations are handled prior to any actually dirty'ing occurs,
      and then we unreserve after we dirty.
      
      btrfs_unreserve_metadata_for_delalloc() will make the appropriate
      unreservations as needed based on the number of reservations we
      currently have and the number of extents we currently have.  Doing the
      reservation outside of doing any of the actual dirty'ing lets us do
      things like filemap_flush() the inode to try and force delalloc to
      happen, or as a last resort actually start allocation on all delalloc
      inodes in the fs.  This has survived dbench, fs_mark and an fsx torture
      test.
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      9ed74f2d
  5. 22 9月, 2009 5 次提交
    • J
      Btrfs: account for space used by the super mirrors · 1b2da372
      Josef Bacik 提交于
      As we get closer to proper -ENOSPC handling in btrfs, we need more accurate
      space accounting for the space info's.  Currently we exclude the free space for
      the super mirrors, but the space they take up isn't accounted for in any of the
      counters.  This patch introduces bytes_super, which keeps track of the amount
      of bytes used for a super mirror in the block group cache and space info.  This
      makes sure that our free space caclucations will be completely accurate.
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      1b2da372
    • J
      Btrfs: make balance code choose more wisely when relocating · ba1bf481
      Josef Bacik 提交于
      Currently, we can panic the box if the first block group we go to move is of a
      type where there is no space left to move those extents.  For example, if we
      fill the disk up with data, and then we try to balance and we have no room to
      move the data nor room to allocate new chunks, we will panic.  Change this by
      checking to see if we have room to move this chunk around, and if not, return
      -ENOSPC and move on to the next chunk.  This will make sure we remove block
      groups that are moveable, like if we have alot of empty metadata block groups,
      and then that way we make room to be able to balance our data chunks as well.
      Tested this with an fs that would panic on btrfs-vol -b normally, but no longer
      panics with this patch.
      
      V1->V2:
      -actually search for a free extent on the device to make sure we can allocate a
      chunk if need be.
      
      -fix btrfs_shrink_device to make sure we actually try to relocate all the
      chunks, and then if we can't return -ENOSPC so if we are doing a btrfs-vol -r
      we don't remove the device with data still on it.
      
      -check to make sure the block group we are going to relocate isn't the last one
      in that particular space
      
      -fix a bug in btrfs_shrink_device where we would change the device's size and
      not fix it if we fail to do our relocate
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      ba1bf481
    • Y
      Btrfs: add snapshot/subvolume destroy ioctl · 76dda93c
      Yan, Zheng 提交于
      This patch adds snapshot/subvolume destroy ioctl.  A subvolume that isn't being
      used and doesn't contains links to other subvolumes can be destroyed.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      76dda93c
    • Y
      Btrfs: change how subvolumes are organized · 4df27c4d
      Yan, Zheng 提交于
      btrfs allows subvolumes and snapshots anywhere in the directory tree.
      If we snapshot a subvolume that contains a link to other subvolume
      called subvolA, subvolA can be accessed through both the original
      subvolume and the snapshot. This is similar to creating hard link to
      directory, and has the very similar problems.
      
      The aim of this patch is enforcing there is only one access point to
      each subvolume. Only the first directory entry (the one added when
      the subvolume/snapshot was created) is treated as valid access point.
      The first directory entry is distinguished by checking root forward
      reference. If the corresponding root forward reference is missing,
      we know the entry is not the first one.
      
      This patch also adds snapshot/subvolume rename support, the code
      allows rename subvolume link across subvolumes.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      4df27c4d
    • Y
      Btrfs: do not reuse objectid of deleted snapshot/subvol · 13a8a7c8
      Yan, Zheng 提交于
      The new back reference format does not allow reusing objectid of
      deleted snapshot/subvol. So we use ++highest_objectid to allocate
      objectid for new snapshot/subvol.
      
      Now we use ++highest_objectid to allocate objectid for both new inode
      and new snapshot/subvolume, so this patch removes 'find hole' code in
      btrfs_find_free_objectid.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      13a8a7c8
  6. 18 9月, 2009 1 次提交
    • Y
      Btrfs: improve async block group caching · 11833d66
      Yan Zheng 提交于
      This patch gets rid of two limitations of async block group caching.
      The old code delays handling pinned extents when block group is in
      caching. To allocate logged file extents, the old code need wait
      until block group is fully cached. To get rid of the limitations,
      This patch introduces a data structure to track the progress of
      caching. Base on the caching progress, we know which extents should
      be added to the free space cache when handling the pinned extents.
      The logged file extents are also handled in a similar way.
      
      This patch also changes how pinned extents are tracked. The old
      code uses one tree to track pinned extents, and copy the pinned
      extents tree at transaction commit time. This patch makes it use
      two trees to track pinned extents. One tree for extents that are
      pinned in the running transaction, one tree for extents that can
      be unpinned. At transaction commit time, we swap the two trees.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      11833d66
  7. 12 9月, 2009 1 次提交
    • C
      Btrfs: Fix extent replacment race · a1ed835e
      Chris Mason 提交于
      Data COW means that whenever we write to a file, we replace any old
      extent pointers with new ones.  There was a window where a readpage
      might find the old extent pointers on disk and cache them in the
      extent_map tree in ram in the middle of a given write replacing them.
      
      Even though both the readpage and the write had their respective bytes
      in the file locked, the extent readpage inserts may cover more bytes than
      it had locked down.
      
      This commit closes the race by keeping the new extent pinned in the extent
      map tree until after the on-disk btree is properly setup with the new
      extent pointers.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      a1ed835e
  8. 30 7月, 2009 1 次提交
    • Y
      Btrfs: preserve commit_root for async caching · 276e680d
      Yan Zheng 提交于
      The async block group caching code uses the commit_root pointer
      to get a stable version of the extent allocation tree for scanning.
      This copy of the tree root isn't going to change and it significantly
      reduces the complexity of the scanning code.
      
      During a commit, we have a loop where we update the extent allocation
      tree root.  We need to loop because updating the root pointer in
      the tree of tree roots may allocate blocks which may change the
      extent allocation tree.
      
      Right now the commit_root pointer is changed inside this loop.  It
      is more correct to change the commit_root pointer only after all the
      looping is done.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      276e680d
  9. 28 7月, 2009 1 次提交
    • J
      Btrfs: change how we unpin extents · 68b38550
      Josef Bacik 提交于
      We are racy with async block caching and unpinning extents.  This patch makes
      things much less complicated by only unpinning the extent if the block group is
      cached.  We check the block_group->cached var under the block_group->lock spin
      lock.  If it is set to BTRFS_CACHE_FINISHED then we update the pinned counters,
      and unpin the extent and add the free space back.  If it is not set to this, we
      start the caching of the block group so the next time we unpin extents we can
      unpin the extent.  This keeps us from racing with the async caching threads,
      lets us kill the fs wide async thread counter, and keeps us from having to set
      DELALLOC bits for every extent we hit if there are caching kthreads going.
      
      One thing that needed to be changed was btrfs_free_super_mirror_extents.  Now
      instead of just looking for LOCKED extents, we also look for DIRTY extents,
      since we could have left some extents pinned in the previous transaction that
      will never get freed now that we are unmounting, which would cause us to leak
      memory.  So btrfs_free_super_mirror_extents has been changed to
      btrfs_free_pinned_extents, and it will clear the extents locked for the super
      mirror, and any remaining pinned extents that may be present.  Thank you,
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      68b38550
  10. 24 7月, 2009 2 次提交
    • J
      Btrfs: async block group caching · 817d52f8
      Josef Bacik 提交于
      This patch moves the caching of the block group off to a kthread in order to
      allow people to allocate sooner.  Instead of blocking up behind the caching
      mutex, we instead kick of the caching kthread, and then attempt to make an
      allocation.  If we cannot, we wait on the block groups caching waitqueue, which
      the caching kthread will wake the waiting threads up everytime it finds 2 meg
      worth of space, and then again when its finished caching.  This is how I tested
      the speedup from this
      
      mkfs the disk
      mount the disk
      fill the disk up with fs_mark
      unmount the disk
      mount the disk
      time touch /mnt/foo
      
      Without my changes this took 11 seconds on my box, with these changes it now
      takes 1 second.
      
      Another change thats been put in place is we lock the super mirror's in the
      pinned extent map in order to keep us from adding that stuff as free space when
      caching the block group.  This doesn't really change anything else as far as the
      pinned extent map is concerned, since for actual pinned extents we use
      EXTENT_DIRTY, but it does mean that when we unmount we have to go in and unlock
      those extents to keep from leaking memory.
      
      I've also added a check where when we are reading block groups from disk, if the
      amount of space used == the size of the block group, we go ahead and mark the
      block group as cached.  This drastically reduces the amount of time it takes to
      cache the block groups.  Using the same test as above, except doing a dd to a
      file and then unmounting, it used to take 33 seconds to umount, now it takes 3
      seconds.
      
      This version uses the commit_root in the caching kthread, and then keeps track
      of how many async caching threads are running at any given time so if one of the
      async threads is still running as we cross transactions we can wait until its
      finished before handling the pinned extents.  Thank you,
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      817d52f8
    • J
      Btrfs: use hybrid extents+bitmap rb tree for free space · 96303081
      Josef Bacik 提交于
      Currently btrfs has a problem where it can use a ridiculous amount of RAM simply
      tracking free space.  As free space gets fragmented, we end up with thousands of
      entries on an rb-tree per block group, which usually spans 1 gig of area.  Since
      we currently don't ever flush free space cache back to disk this gets to be a
      bit unweildly on large fs's with lots of fragmentation.
      
      This patch solves this problem by using PAGE_SIZE bitmaps for parts of the free
      space cache.  Initially we calculate a threshold of extent entries we can
      handle, which is however many extent entries we can cram into 16k of ram.  The
      maximum amount of RAM that should ever be used to track 1 gigabyte of diskspace
      will be 32k of RAM, which scales much better than we did before.
      
      Once we pass the extent threshold, we start adding bitmaps and using those
      instead for tracking the free space.  This patch also makes it so that any free
      space thats less than 4 * sectorsize we go ahead and put into a bitmap.  This is
      nice since we try and allocate out of the front of a block group, so if the
      front of a block group is heavily fragmented and then has a huge chunk of free
      space at the end, we go ahead and add the fragmented areas to bitmaps and use a
      normal extent entry to track the big chunk at the back of the block group.
      
      I've also taken the opportunity to revamp how we search for free space.
      Previously we indexed free space via an offset indexed rb tree and a bytes
      indexed rb tree.  I've dropped the bytes indexed rb tree and use only the offset
      indexed rb tree.  This cuts the number of tree operations we were doing
      previously down by half, and gives us a little bit of a better allocation
      pattern since we will always start from a specific offset and search forward
      from there, instead of searching for the size we need and try and get it as
      close as possible to the offset we want.
      
      I've given this a healthy amount of testing pre-new format stuff, as well as
      post-new format stuff.  I've booted up my fedora box which is installed on btrfs
      with this patch and ran with it for a few days without issues.  I've not seen
      any performance regressions in any of my tests.
      
      Since the last patch Yan Zheng fixed a problem where we could have overlapping
      entries, so updating their offset inline would cause problems.  Thanks,
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      96303081
  11. 22 7月, 2009 1 次提交
  12. 03 7月, 2009 1 次提交
    • Y
      Btrfs: update backrefs while dropping snapshot · 2c47e605
      Yan Zheng 提交于
      The new backref format has restriction on type of backref item.  If a tree
      block isn't referenced by its owner tree, full backrefs must be used for the
      pointers in it. When a tree block loses its owner tree's reference, backrefs
      for the pointers in it should be updated to full backrefs. Current
      btrfs_drop_snapshot misses the code that updates backrefs, so it's unsafe for
      general use.
      
      This patch adds backrefs update code to btrfs_drop_snapshot.  It isn't a
      problem in the restricted form btrfs_drop_snapshot is used today, but for
      general snapshot deletion this update is required.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      2c47e605
  13. 24 6月, 2009 1 次提交
  14. 10 6月, 2009 5 次提交
    • A
      Fix btrfs when ACLs are configured out · 7df336ec
      Al Viro 提交于
      ... otherwise generic_permission() will allow *anything* for all
      files you don't own and that have some group permissions.
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      7df336ec
    • C
      Btrfs: implement FS_IOC_GETFLAGS/SETFLAGS/GETVERSION · 6cbff00f
      Christoph Hellwig 提交于
      Add support for the standard attributes set via chattr and read via
      lsattr.  Currently we store the attributes in the flags value in
      the btrfs inode, but I wonder whether we should split it into two so
      that we don't have to keep converting between the two formats.
      
      Remove the btrfs_clear_flag/btrfs_set_flag/btrfs_test_flag macros
      as they were confusing the existing code and got in the way of the
      new additions.
      
      Also add the FS_IOC_GETVERSION ioctl for getting i_generation as it's
      trivial.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      6cbff00f
    • C
      Btrfs: autodetect SSD devices · c289811c
      Chris Mason 提交于
      During mount, btrfs will check the queue nonrot flag
      for all the devices found in the FS.  If they are all
      non-rotating, SSD mode is enabled by default.
      
      If the FS was mounted with -o nossd, the non-rotating
      flag is ignored.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      c289811c
    • C
      Btrfs: add mount -o ssd_spread to spread allocations out · 451d7585
      Chris Mason 提交于
      Some SSDs perform best when reusing block numbers often, while
      others perform much better when clustering strictly allocates
      big chunks of unused space.
      
      The default mount -o ssd will find rough groupings of blocks
      where there are a bunch of free blocks that might have some
      allocated blocks mixed in.
      
      mount -o ssd_spread will make sure there are no allocated blocks
      mixed in.  It should perform better on lower end SSDs.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      451d7585
    • Y
      Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) · 5d4f98a2
      Yan Zheng 提交于
      This commit introduces a new kind of back reference for btrfs metadata.
      Once a filesystem has been mounted with this commit, IT WILL NO LONGER
      BE MOUNTABLE BY OLDER KERNELS.
      
      When a tree block in subvolume tree is cow'd, the reference counts of all
      extents it points to are increased by one.  At transaction commit time,
      the old root of the subvolume is recorded in a "dead root" data structure,
      and the btree it points to is later walked, dropping reference counts
      and freeing any blocks where the reference count goes to 0.
      
      The increments done during cow and decrements done after commit cancel out,
      and the walk is a very expensive way to go about freeing the blocks that
      are no longer referenced by the new btree root.  This commit reduces the
      transaction overhead by avoiding the need for dead root records.
      
      When a non-shared tree block is cow'd, we free the old block at once, and the
      new block inherits old block's references. When a tree block with reference
      count > 1 is cow'd, we increase the reference counts of all extents
      the new block points to by one, and decrease the old block's reference count by
      one.
      
      This dead tree avoidance code removes the need to modify the reference
      counts of lower level extents when a non-shared tree block is cow'd.
      But we still need to update back ref for all pointers in the block.
      This is because the location of the block is recorded in the back ref
      item.
      
      We can solve this by introducing a new type of back ref. The new
      back ref provides information about pointer's key, level and in which
      tree the pointer lives. This information allow us to find the pointer
      by searching the tree. The shortcoming of the new back ref is that it
      only works for pointers in tree blocks referenced by their owner trees.
      
      This is mostly a problem for snapshots, where resolving one of these
      fuzzy back references would be O(number_of_snapshots) and quite slow.
      The solution used here is to use the fuzzy back references in the common
      case where a given tree block is only referenced by one root,
      and use the full back references when multiple roots have a reference
      on a given block.
      
      This commit adds per subvolume red-black tree to keep trace of cached
      inodes. The red-black tree helps the balancing code to find cached
      inodes whose inode numbers within a given range.
      
      This commit improves the balancing code by introducing several data
      structures to keep the state of balancing. The most important one
      is the back ref cache. It caches how the upper level tree blocks are
      referenced. This greatly reduce the overhead of checking back ref.
      
      The improved balancing code scales significantly better with a large
      number of snapshots.
      
      This is a very large commit and was written in a number of
      pieces.  But, they depend heavily on the disk format change and were
      squashed together to make sure git bisect didn't end up in a
      bad state wrt space balancing or the format change.
      Signed-off-by: NYan Zheng <zheng.yan@oracle.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      5d4f98a2
  15. 25 4月, 2009 2 次提交
    • C
      Btrfs: fix fallocate deadlock on inode extent lock · e980b50c
      Chris Mason 提交于
      The btrfs fallocate call takes an extent lock on the entire range
      being fallocated, and then runs through insert_reserved_extent on each
      extent as they are allocated.
      
      The problem with this is that btrfs_drop_extents may decide to try
      and take the same extent lock fallocate was already holding.  The solution
      used here is to push down knowledge of the range that is already locked
      going into btrfs_drop_extents.
      
      It turns out that at least one other caller had the same bug.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      e980b50c
    • J
      Btrfs: try to keep a healthy ratio of metadata vs data block groups · 97e728d4
      Josef Bacik 提交于
      This patch makes the chunk allocator keep a good ratio of metadata vs data
      block groups.  By default for every 8 data block groups, we'll allocate 1
      metadata chunk, or about 12% of the disk will be allocated for metadata.  This
      can be changed by specifying the metadata_ratio mount option.
      
      This is simply the number of data block groups that have to be allocated to
      force a metadata chunk allocation.  By making sure we allocate metadata chunks
      more often, we are less likely to get into situations where the whole disk
      has been allocated as data block groups.
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      97e728d4
  16. 03 4月, 2009 6 次提交
    • W
      Btrfs: fix typos in comments · d4a78947
      Wu Fengguang 提交于
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      d4a78947
    • S
      Btrfs: add flushoncommit mount option · dccae999
      Sage Weil 提交于
      The 'flushoncommit' mount option forces any data dirtied by a write in a
      prior transaction to commit as part of the current commit.  This makes
      the committed state a fully consistent view of the file system from the
      application's perspective (i.e., it includes all completed file system
      operations).  This was previously the behavior only when a snapshot is
      created.
      
      This is used by Ceph to ensure that completed writes make it to the
      platter along with the metadata operations they are bound to (by
      BTRFS_IOC_TRANS_{START,END}).
      Signed-off-by: NSage Weil <sage@newdream.net>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      dccae999
    • S
      Btrfs: notreelog mount option · 3a5e1404
      Sage Weil 提交于
      Add a 'notreelog' mount option to disable the tree log (used by fsync,
      O_SYNC writes).  This is much slower, but the tree logging produces
      inconsistent views into the FS for ceph.
      Signed-off-by: NSage Weil <sage@newdream.net>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      3a5e1404
    • C
      Btrfs: rework allocation clustering · fa9c0d79
      Chris Mason 提交于
      Because btrfs is copy-on-write, we end up picking new locations for
      blocks very often.  This makes it fairly difficult to maintain perfect
      read patterns over time, but we can at least do some optimizations
      for writes.
      
      This is done today by remembering the last place we allocated and
      trying to find a free space hole big enough to hold more than just one
      allocation.  The end result is that we tend to write sequentially to
      the drive.
      
      This happens all the time for metadata and it happens for data
      when mounted -o ssd.  But, the way we record it is fairly racey
      and it tends to fragment the free space over time because we are trying
      to allocate fairly large areas at once.
      
      This commit gets rid of the races by adding a free space cluster object
      with dedicated locking to make sure that only one process at a time
      is out replacing the cluster.
      
      The free space fragmentation is somewhat solved by allowing a cluster
      to be comprised of smaller free space extents.  This part definitely
      adds some CPU time to the cluster allocations, but it allows the allocator
      to consume the small holes left behind by cow.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      fa9c0d79
    • J
      Btrfs: kill the pinned_mutex · 04018de5
      Josef Bacik 提交于
      This patch removes the pinned_mutex.  The extent io map has an internal tree
      lock that protects the tree itself, and since we only copy the extent io map
      when we are committing the transaction we don't need it there.  We also don't
      need it when caching the block group since searching through the tree is also
      protected by the internal map spin lock.
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      04018de5
    • J
      Btrfs: kill the block group alloc mutex · 6226cb0a
      Josef Bacik 提交于
      This patch removes the block group alloc mutex used to protect the free space
      tree for allocations and replaces it with a spin lock which is used only to
      protect the free space rb tree.  This means we only take the lock when we are
      directly manipulating the tree, which makes us a touch faster with
      multi-threaded workloads.
      
      This patch also gets rid of btrfs_find_free_space and replaces it with
      btrfs_find_space_for_alloc, which takes the number of bytes you want to
      allocate, and empty_size, which is used to indicate how much free space should
      be at the end of the allocation.
      
      It will return an offset for the allocator to use.  If we don't end up using it
      we _must_ call btrfs_add_free_space to put it back.  This is the tradeoff to
      kill the alloc_mutex, since we need to make sure nobody else comes along and
      takes our space.
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      6226cb0a
  17. 01 4月, 2009 2 次提交
    • N
      mm: page_mkwrite change prototype to match fault · c2ec175c
      Nick Piggin 提交于
      Change the page_mkwrite prototype to take a struct vm_fault, and return
      VM_FAULT_xxx flags.  There should be no functional change.
      
      This makes it possible to return much more detailed error information to
      the VM (and also can provide more information eg.  virtual_address to the
      driver, which might be important in some special cases).
      
      This is required for a subsequent fix.  And will also make it easier to
      merge page_mkwrite() with fault() in future.
      Signed-off-by: NNick Piggin <npiggin@suse.de>
      Cc: Chris Mason <chris.mason@oracle.com>
      Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
      Cc: Miklos Szeredi <miklos@szeredi.hu>
      Cc: Steven Whitehouse <swhiteho@redhat.com>
      Cc: Mark Fasheh <mfasheh@suse.com>
      Cc: Joel Becker <joel.becker@oracle.com>
      Cc: Artem Bityutskiy <dedekind@infradead.org>
      Cc: Felix Blyakher <felixb@sgi.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c2ec175c
    • C
      Btrfs: add extra flushing for renames and truncates · 5a3f23d5
      Chris Mason 提交于
      Renames and truncates are both common ways to replace old data with new
      data.  The filesystem can make an effort to make sure the new data is
      on disk before actually replacing the old data.
      
      This is especially important for rename, which many application use as
      though it were atomic for both the data and the metadata involved.  The
      current btrfs code will happily replace a file that is fully on disk
      with one that was just created and still has pending IO.
      
      If we crash after transaction commit but before the IO is done, we'll end
      up replacing a good file with a zero length file.  The solution used
      here is to create a list of inodes that need special ordering and force
      them to disk before the commit is done.  This is similar to the
      ext3 style data=ordering, except it is only done on selected files.
      
      Btrfs is able to get away with this because it does not wait on commits
      very often, even for fsync (which use a sub-commit).
      
      For renames, we order the file when it wasn't already
      on disk and when it is replacing an existing file.  Larger files
      are sent to filemap_flush right away (before the transaction handle is
      opened).
      
      For truncates, we order if the file goes from non-zero size down to
      zero size.  This is a little different, because at the time of the
      truncate the file has no dirty bytes to order.  But, we flag the inode
      so that it is added to the ordered list on close (via release method).  We
      also immediately add it to the ordered list of the current transaction
      so that we can try to flush down any writes the application sneaks in
      before commit.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      5a3f23d5
  18. 25 3月, 2009 5 次提交
    • C
      Btrfs: tree logging unlink/rename fixes · 12fcfd22
      Chris Mason 提交于
      The tree logging code allows individual files or directories to be logged
      without including operations on other files and directories in the FS.
      It tries to commit the minimal set of changes to disk in order to
      fsync the single file or directory that was sent to fsync or O_SYNC.
      
      The tree logging code was allowing files and directories to be unlinked
      if they were part of a rename operation where only one directory
      in the rename was in the fsync log.  This patch adds a few new rules
      to the tree logging.
      
      1) on rename or unlink, if the inode being unlinked isn't in the fsync
      log, we must force a full commit before doing an fsync of the directory
      where the unlink was done.  The commit isn't done during the unlink,
      but it is forced the next time we try to log the parent directory.
      
      Solution: record transid of last unlink/rename per directory when the
      directory wasn't already logged.  For renames this is only done when
      renaming to a different directory.
      
      mkdir foo/some_dir
      normal commit
      rename foo/some_dir foo2/some_dir
      mkdir foo/some_dir
      fsync foo/some_dir/some_file
      
      The fsync above will unlink the original some_dir without recording
      it in its new location (foo2).  After a crash, some_dir will be gone
      unless the fsync of some_file forces a full commit
      
      2) we must log any new names for any file or dir that is in the fsync
      log.  This way we make sure not to lose files that are unlinked during
      the same transaction.
      
      2a) we must log any new names for any file or dir during rename
      when the directory they are being removed from was logged.
      
      2a is actually the more important variant.  Without the extra logging
      a crash might unlink the old name without recreating the new one
      
      3) after a crash, we must go through any directories with a link count
      of zero and redo the rm -rf
      
      mkdir f1/foo
      normal commit
      rm -rf f1/foo
      fsync(f1)
      
      The directory f1 was fully removed from the FS, but fsync was never
      called on f1, only its parent dir.  After a crash the rm -rf must
      be replayed.  This must be able to recurse down the entire
      directory tree.  The inode link count fixup code takes care of the
      ugly details.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      12fcfd22
    • C
      Btrfs: leave btree locks spinning more often · b9473439
      Chris Mason 提交于
      btrfs_mark_buffer dirty would set dirty bits in the extent_io tree
      for the buffers it was dirtying.  This may require a kmalloc and it
      was not atomic.  So, anyone who called btrfs_mark_buffer_dirty had to
      set any btree locks they were holding to blocking first.
      
      This commit changes dirty tracking for extent buffers to just use a flag
      in the extent buffer.  Now that we have one and only one extent buffer
      per page, this can be safely done without losing dirty bits along the way.
      
      This also introduces a path->leave_spinning flag that callers of
      btrfs_search_slot can use to indicate they will properly deal with a
      path returned where all the locks are spinning instead of blocking.
      
      Many of the btree search callers now expect spinning paths,
      resulting in better btree concurrency overall.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      b9473439
    • C
      Btrfs: process the delayed reference queue in clusters · c3e69d58
      Chris Mason 提交于
      The delayed reference queue maintains pending operations that need to
      be done to the extent allocation tree.  These are processed by
      finding records in the tree that are not currently being processed one at
      a time.
      
      This is slow because it uses lots of time searching through the rbtree
      and because it creates lock contention on the extent allocation tree
      when lots of different procs are running delayed refs at the same time.
      
      This commit changes things to grab a cluster of refs for processing,
      using a cursor into the rbtree as the starting point of the next search.
      This way we walk smoothly through the rbtree.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      c3e69d58
    • C
      Btrfs: do extent allocation and reference count updates in the background · 56bec294
      Chris Mason 提交于
      The extent allocation tree maintains a reference count and full
      back reference information for every extent allocated in the
      filesystem.  For subvolume and snapshot trees, every time
      a block goes through COW, the new copy of the block adds a reference
      on every block it points to.
      
      If a btree node points to 150 leaves, then the COW code needs to go
      and add backrefs on 150 different extents, which might be spread all
      over the extent allocation tree.
      
      These updates currently happen during btrfs_cow_block, and most COWs
      happen during btrfs_search_slot.  btrfs_search_slot has locks held
      on both the parent and the node we are COWing, and so we really want
      to avoid IO during the COW if we can.
      
      This commit adds an rbtree of pending reference count updates and extent
      allocations.  The tree is ordered by byte number of the extent and byte number
      of the parent for the back reference.  The tree allows us to:
      
      1) Modify back references in something close to disk order, reducing seeks
      2) Significantly reduce the number of modifications made as block pointers
      are balanced around
      3) Do all of the extent insertion and back reference modifications outside
      of the performance critical btrfs_search_slot code.
      
      #3 has the added benefit of greatly reducing the btrfs stack footprint.
      The extent allocation tree modifications are done without the deep
      (and somewhat recursive) call chains used in the past.
      
      These delayed back reference updates must be done before the transaction
      commits, and so the rbtree is tied to the transaction.  Throttling is
      implemented to help keep the queue of backrefs at a reasonable size.
      
      Since there was a similar mechanism in place for the extent tree
      extents, that is removed and replaced by the delayed reference tree.
      
      Yan Zheng <yan.zheng@oracle.com> helped review and fixup this code.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      56bec294
    • C
      Btrfs: don't preallocate metadata blocks during btrfs_search_slot · 9fa8cfe7
      Chris Mason 提交于
      In order to avoid doing expensive extent management with tree locks held,
      btrfs_search_slot will preallocate tree blocks for use by COW without
      any tree locks held.
      
      A later commit moves all of the extent allocation work for COW into
      a delayed update mechanism, and this preallocation will no longer be
      required.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      9fa8cfe7
  19. 11 3月, 2009 1 次提交
    • C
      Btrfs: Fix locking around adding new space_info · 4184ea7f
      Chris Mason 提交于
      Storage allocated to different raid levels in btrfs is tracked by
      a btrfs_space_info structure, and all of the current space_infos are
      collected into a list_head.
      
      Most filesystems have 3 or 4 of these structs total, and the list is
      only changed when new raid levels are added or at unmount time.
      
      This commit adds rcu locking on the list head, and properly frees
      things at unmount time.  It also clears the space_info->full flag
      whenever new space is added to the FS.
      
      The locking for the space info list goes like this:
      
      reads: protected by rcu_read_lock()
      writes: protected by the chunk_mutex
      
      At unmount time we don't need special locking because all the readers
      are gone.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      4184ea7f
  20. 21 2月, 2009 1 次提交
    • J
      Btrfs: add better -ENOSPC handling · 6a63209f
      Josef Bacik 提交于
      This is a step in the direction of better -ENOSPC handling.  Instead of
      checking the global bytes counter we check the space_info bytes counters to
      make sure we have enough space.
      
      If we don't we go ahead and try to allocate a new chunk, and then if that fails
      we return -ENOSPC.  This patch adds two counters to btrfs_space_info,
      bytes_delalloc and bytes_may_use.
      
      bytes_delalloc account for extents we've actually setup for delalloc and will
      be allocated at some point down the line. 
      
      bytes_may_use is to keep track of how many bytes we may use for delalloc at
      some point.  When we actually set the extent_bit for the delalloc bytes we
      subtract the reserved bytes from the bytes_may_use counter.  This keeps us from
      not actually being able to allocate space for any delalloc bytes.
      Signed-off-by: NJosef Bacik <jbacik@redhat.com>
      
      
      
      6a63209f