- 22 3月, 2012 4 次提交
-
-
由 KAMEZAWA Hiroyuki 提交于
Now, page-stat-per-memcg is recorded into per page_cgroup flag by duplicating page's status into the flag. The reason is that memcg has a feature to move a page from a group to another group and we have race between "move" and "page stat accounting", Under current logic, assume CPU-A and CPU-B. CPU-A does "move" and CPU-B does "page stat accounting". When CPU-A goes 1st, CPU-A CPU-B update "struct page" info. move_lock_mem_cgroup(memcg) see pc->flags copy page stat to new group overwrite pc->mem_cgroup. move_unlock_mem_cgroup(memcg) move_lock_mem_cgroup(mem) set pc->flags update page stat accounting move_unlock_mem_cgroup(mem) stat accounting is guarded by move_lock_mem_cgroup() and "move" logic (CPU-A) doesn't see changes in "struct page" information. But it's costly to have the same information both in 'struct page' and 'struct page_cgroup'. And, there is a potential problem. For example, assume we have PG_dirty accounting in memcg. PG_..is a flag for struct page. PCG_ is a flag for struct page_cgroup. (This is just an example. The same problem can be found in any kind of page stat accounting.) CPU-A CPU-B TestSet PG_dirty (delay) TestClear PG_dirty if (TestClear(PCG_dirty)) memcg->nr_dirty-- if (TestSet(PCG_dirty)) memcg->nr_dirty++ Here, memcg->nr_dirty = +1, this is wrong. This race was reported by Greg Thelen <gthelen@google.com>. Now, only FILE_MAPPED is supported but fortunately, it's serialized by page table lock and this is not real bug, _now_, If this potential problem is caused by having duplicated information in struct page and struct page_cgroup, we may be able to fix this by using original 'struct page' information. But we'll have a problem in "move account" Assume we use only PG_dirty. CPU-A CPU-B TestSet PG_dirty (delay) move_lock_mem_cgroup() if (PageDirty(page)) new_memcg->nr_dirty++ pc->mem_cgroup = new_memcg; move_unlock_mem_cgroup() move_lock_mem_cgroup() memcg = pc->mem_cgroup new_memcg->nr_dirty++ accounting information may be double-counted. This was original reason to have PCG_xxx flags but it seems PCG_xxx has another problem. I think we need a bigger lock as move_lock_mem_cgroup(page) TestSetPageDirty(page) update page stats (without any checks) move_unlock_mem_cgroup(page) This fixes both of problems and we don't have to duplicate page flag into page_cgroup. Please note: move_lock_mem_cgroup() is held only when there are possibility of "account move" under the system. So, in most path, status update will go without atomic locks. This patch introduces mem_cgroup_begin_update_page_stat() and mem_cgroup_end_update_page_stat() both should be called at modifying 'struct page' information if memcg takes care of it. as mem_cgroup_begin_update_page_stat() modify page information mem_cgroup_update_page_stat() => never check any 'struct page' info, just update counters. mem_cgroup_end_update_page_stat(). This patch is slow because we need to call begin_update_page_stat()/ end_update_page_stat() regardless of accounted will be changed or not. A following patch adds an easy optimization and reduces the cost. [akpm@linux-foundation.org: s/lock/locked/] [hughd@google.com: fix deadlock by avoiding stat lock when anon] Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Greg Thelen <gthelen@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: NHugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Konstantin Khlebnikov 提交于
This code was removed in 25edde03 ("vmscan: kill prev_priority completely") Signed-off-by: NKonstantin Khlebnikov <khlebnikov@openvz.org> Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
Correct an #endif comment in memcontrol.h from MEM_CONT to MEM_RES_CTLR. Signed-off-by: NHugh Dickins <hughd@google.com> Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: NKirill A. Shutemov <kirill@shutemov.name> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Rientjes 提交于
The oom killer typically displays the allocation order at the time of oom as a part of its diangostic messages (for global, cpuset, and mempolicy ooms). The memory controller may also pass the charge order to the oom killer so it can emit the same information. This is useful in determining how large the memory allocation is that triggered the oom killer. Signed-off-by: NDavid Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 3月, 2012 1 次提交
-
-
由 Hugh Dickins 提交于
When moving tasks from old memcg (with move_charge_at_immigrate on new memcg), followed by removal of old memcg, hit General Protection Fault in mem_cgroup_lru_del_list() (called from release_pages called from free_pages_and_swap_cache from tlb_flush_mmu from tlb_finish_mmu from exit_mmap from mmput from exit_mm from do_exit). Somewhat reproducible, takes a few hours: the old struct mem_cgroup has been freed and poisoned by SLAB_DEBUG, but mem_cgroup_lru_del_list() is still trying to update its stats, and take page off lru before freeing. A task, or a charge, or a page on lru: each secures a memcg against removal. In this case, the last task has been moved out of the old memcg, and it is exiting: anonymous pages are uncharged one by one from the memcg, as they are zapped from its pagetables, so the charge gets down to 0; but the pages themselves are queued in an mmu_gather for freeing. Most of those pages will be on lru (and force_empty is careful to lru_add_drain_all, to add pages from pagevec to lru first), but not necessarily all: perhaps some have been isolated for page reclaim, perhaps some isolated for other reasons. So, force_empty may find no task, no charge and no page on lru, and let the removal proceed. There would still be no problem if these pages were immediately freed; but typically (and the put_page_testzero protocol demands it) they have to be added back to lru before they are found freeable, then removed from lru and freed. We don't see the issue when adding, because the mem_cgroup_iter() loops keep their own reference to the memcg being scanned; but when it comes to mem_cgroup_lru_del_list(). I believe this was not an issue in v3.2: there, PageCgroupAcctLRU and PageCgroupUsed flags were used (like a trick with mirrors) to deflect view of pc->mem_cgroup to the stable root_mem_cgroup when neither set. 38c5d72f ("memcg: simplify LRU handling by new rule") mercifully removed those convolutions, but left this General Protection Fault. But it's surprisingly easy to restore the old behaviour: just check PageCgroupUsed in mem_cgroup_lru_add_list() (which decides on which lruvec to add), and reset pc to root_mem_cgroup if page is uncharged. A risky change? just going back to how it worked before; testing, and an audit of uses of pc->mem_cgroup, show no problem. And there's a nice bonus: with mem_cgroup_lru_add_list() itself making sure that an uncharged page goes to root lru, mem_cgroup_reset_owner() no longer has any purpose, and we can safely revert 4e5f01c2 ("memcg: clear pc->mem_cgroup if necessary"). Calling update_page_reclaim_stat() after add_page_to_lru_list() in swap.c is not strictly necessary: the lru_lock there, with RCU before memcg structures are freed, makes mem_cgroup_get_reclaim_stat_from_page safe without that; but it seems cleaner to rely on one dependency less. Signed-off-by: NHugh Dickins <hughd@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 1月, 2012 6 次提交
-
-
由 KAMEZAWA Hiroyuki 提交于
This is a preparation before removing a flag PCG_ACCT_LRU in page_cgroup and reducing atomic ops/complexity in memcg LRU handling. In some cases, pages are added to lru before charge to memcg and pages are not classfied to memory cgroup at lru addtion. Now, the lru where the page should be added is determined a bit in page_cgroup->flags and pc->mem_cgroup. I'd like to remove the check of flag. To handle the case pc->mem_cgroup may contain stale pointers if pages are added to LRU before classification. This patch resets pc->mem_cgroup to root_mem_cgroup before lru additions. [akpm@linux-foundation.org: fix CONFIG_CGROUP_MEM_CONT=n build] [hughd@google.com: fix CONFIG_CGROUP_MEM_RES_CTLR=y CONFIG_CGROUP_MEM_RES_CTLR_SWAP=n build] [akpm@linux-foundation.org: ksm.c needs memcontrol.h, per Michal] [hughd@google.com: stop oops in mem_cgroup_reset_owner()] [hughd@google.com: fix page migration to reset_owner] Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miklos Szeredi <mszeredi@suse.cz> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Ying Han <yinghan@google.com> Signed-off-by: NHugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Signed-off-by: NJohannes Weiner <jweiner@redhat.com> Acked-by: NDavid Rientjes <rientjes@google.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 KAMEZAWA Hiroyuki 提交于
In split_huge_page(), mem_cgroup_split_huge_fixup() is called to handle page_cgroup modifcations. It takes move_lock_page_cgroup() and modifies page_cgroup and LRU accounting jobs and called HPAGE_PMD_SIZE - 1 times. But thinking again, - compound_lock() is held at move_accout...then, it's not necessary to take move_lock_page_cgroup(). - LRU is locked and all tail pages will go into the same LRU as head is now on. - page_cgroup is contiguous in huge page range. This patch fixes mem_cgroup_split_huge_fixup() as to be called once per hugepage and reduce costs for spliting. [akpm@linux-foundation.org: fix typo, per Michal] Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: NMichal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Now that all code that operated on global per-zone LRU lists is converted to operate on per-memory cgroup LRU lists instead, there is no reason to keep the double-LRU scheme around any longer. The pc->lru member is removed and page->lru is linked directly to the per-memory cgroup LRU lists, which removes two pointers from a descriptor that exists for every page frame in the system. Signed-off-by: NJohannes Weiner <jweiner@redhat.com> Signed-off-by: NHugh Dickins <hughd@google.com> Signed-off-by: NYing Han <yinghan@google.com> Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: NMichal Hocko <mhocko@suse.cz> Reviewed-by: NKirill A. Shutemov <kirill@shutemov.name> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Memory cgroup limit reclaim and traditional global pressure reclaim will soon share the same code to reclaim from a hierarchical tree of memory cgroups. In preparation of this, move the two right next to each other in shrink_zone(). The mem_cgroup_hierarchical_reclaim() polymath is split into a soft limit reclaim function, which still does hierarchy walking on its own, and a limit (shrinking) reclaim function, which relies on generic reclaim code to walk the hierarchy. Signed-off-by: NJohannes Weiner <jweiner@redhat.com> Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: NMichal Hocko <mhocko@suse.cz> Reviewed-by: NKirill A. Shutemov <kirill@shutemov.name> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ying Han <yinghan@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 KAMEZAWA Hiroyuki 提交于
Commit ef6a3c63 ("mm: add replace_page_cache_page() function") added a function replace_page_cache_page(). This function replaces a page in the radix-tree with a new page. WHen doing this, memory cgroup needs to fix up the accounting information. memcg need to check PCG_USED bit etc. In some(many?) cases, 'newpage' is on LRU before calling replace_page_cache(). So, memcg's LRU accounting information should be fixed, too. This patch adds mem_cgroup_replace_page_cache() and removes the old hooks. In that function, old pages will be unaccounted without touching res_counter and new page will be accounted to the memcg (of old page). WHen overwriting pc->mem_cgroup of newpage, take zone->lru_lock and avoid races with LRU handling. Background: replace_page_cache_page() is called by FUSE code in its splice() handling. Here, 'newpage' is replacing oldpage but this newpage is not a newly allocated page and may be on LRU. LRU mis-accounting will be critical for memory cgroup because rmdir() checks the whole LRU is empty and there is no account leak. If a page is on the other LRU than it should be, rmdir() will fail. This bug was added in March 2011, but no bug report yet. I guess there are not many people who use memcg and FUSE at the same time with upstream kernels. The result of this bug is that admin cannot destroy a memcg because of account leak. So, no panic, no deadlock. And, even if an active cgroup exist, umount can succseed. So no problem at shutdown. Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Miklos Szeredi <mszeredi@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 10 1月, 2012 1 次提交
-
-
由 David S. Miller 提交于
> net/core/sock.c: In function 'sk_update_clone': > net/core/sock.c:1278:3: error: implicit declaration of function 'sock_update_memcg' Reported-by: NRandy Dunlap <rdunlap@xenotime.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 12月, 2011 1 次提交
-
-
由 Glauber Costa 提交于
They need to be available for other protocols as well, since they are used in sock.c openly Signed-off-by: NGlauber Costa <glommer@parallels.com> CC: Hiroyouki Kamezawa <kamezawa.hiroyu@jp.fujitsu.com> CC: David S. Miller <davem@davemloft.net> CC: Eric Dumazet <eric.dumazet@gmail.com> CC: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 12月, 2011 2 次提交
-
-
由 Glauber Costa 提交于
This patch introduces memory pressure controls for the tcp protocol. It uses the generic socket memory pressure code introduced in earlier patches, and fills in the necessary data in cg_proto struct. Signed-off-by: NGlauber Costa <glommer@parallels.com> Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujtisu.com> CC: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Glauber Costa 提交于
The goal of this work is to move the memory pressure tcp controls to a cgroup, instead of just relying on global conditions. To avoid excessive overhead in the network fast paths, the code that accounts allocated memory to a cgroup is hidden inside a static_branch(). This branch is patched out until the first non-root cgroup is created. So when nobody is using cgroups, even if it is mounted, no significant performance penalty should be seen. This patch handles the generic part of the code, and has nothing tcp-specific. Signed-off-by: NGlauber Costa <glommer@parallels.com> Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujtsu.com> CC: Kirill A. Shutemov <kirill@shutemov.name> CC: David S. Miller <davem@davemloft.net> CC: Eric W. Biederman <ebiederm@xmission.com> CC: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 03 11月, 2011 2 次提交
-
-
由 Johannes Weiner 提交于
Reclaim decides to skip scanning an active list when the corresponding inactive list is above a certain size in comparison to leave the assumed working set alone while there are still enough reclaim candidates around. The memcg implementation of comparing those lists instead reports whether the whole memcg is low on the requested type of inactive pages, considering all nodes and zones. This can lead to an oversized active list not being scanned because of the state of the other lists in the memcg, as well as an active list being scanned while its corresponding inactive list has enough pages. Not only is this wrong, it's also a scalability hazard, because the global memory state over all nodes and zones has to be gathered for each memcg and zone scanned. Make these calculations purely based on the size of the two LRU lists that are actually affected by the outcome of the decision. Signed-off-by: NJohannes Weiner <jweiner@redhat.com> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Reviewed-by: NMinchan Kim <minchan.kim@gmail.com> Reviewed-by: NYing Han <yinghan@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Raghavendra K T 提交于
The memcg code sometimes uses "struct mem_cgroup *mem" and sometimes uses "struct mem_cgroup *memcg". Rename all mem variables to memcg in source file. Signed-off-by: NRaghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 11月, 2011 1 次提交
-
-
由 Minchan Kim 提交于
Change ISOLATE_XXX macro with bitwise isolate_mode_t type. Normally, macro isn't recommended as it's type-unsafe and making debugging harder as symbol cannot be passed throught to the debugger. Quote from Johannes " Hmm, it would probably be cleaner to fully convert the isolation mode into independent flags. INACTIVE, ACTIVE, BOTH is currently a tri-state among flags, which is a bit ugly." This patch moves isolate mode from swap.h to mmzone.h by memcontrol.h Signed-off-by: NMinchan Kim <minchan.kim@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 9月, 2011 1 次提交
-
-
由 Johannes Weiner 提交于
Revert the post-3.0 commit 82f9d486 ("memcg: add memory.vmscan_stat"). The implementation of per-memcg reclaim statistics violates how memcg hierarchies usually behave: hierarchically. The reclaim statistics are accounted to child memcgs and the parent hitting the limit, but not to hierarchy levels in between. Usually, hierarchical statistics are perfectly recursive, with each level representing the sum of itself and all its children. Since this exports statistics to userspace, this may lead to confusion and problems with changing things after the release, so revert it now, we can try again later. Signed-off-by: NJohannes Weiner <jweiner@redhat.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Michal Hocko <mhocko@suse.cz> Cc: Ying Han <yinghan@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 04 8月, 2011 1 次提交
-
-
由 Hugh Dickins 提交于
Remove mem_cgroup_shmem_charge_fallback(): it was only required when we had to move swappage to filecache with GFP_NOWAIT. Remove the GFP_NOWAIT special case from mem_cgroup_cache_charge(), by moving its call out from shmem_add_to_page_cache() to two of thats three callers. But leave it doing mem_cgroup_uncharge_cache_page() on error: although asymmetrical, it's easier for all 3 callers to handle. These two changes would also be appropriate if anyone were to start using shmem_read_mapping_page_gfp() with GFP_NOWAIT. Remove mem_cgroup_get_shmem_target(): mc_handle_file_pte() can test radix_tree_exceptional_entry() to get what it needs for itself. Signed-off-by: NHugh Dickins <hughd@google.com> Acked-by: NRik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 27 7月, 2011 2 次提交
-
-
由 KAMEZAWA Hiroyuki 提交于
The commit log of 0ae5e89c ("memcg: count the soft_limit reclaim in...") says it adds scanning stats to memory.stat file. But it doesn't because we considered we needed to make a concensus for such new APIs. This patch is a trial to add memory.scan_stat. This shows - the number of scanned pages(total, anon, file) - the number of rotated pages(total, anon, file) - the number of freed pages(total, anon, file) - the number of elaplsed time (including sleep/pause time) for both of direct/soft reclaim. The biggest difference with oringinal Ying's one is that this file can be reset by some write, as # echo 0 ...../memory.scan_stat Example of output is here. This is a result after make -j 6 kernel under 300M limit. [kamezawa@bluextal ~]$ cat /cgroup/memory/A/memory.scan_stat [kamezawa@bluextal ~]$ cat /cgroup/memory/A/memory.vmscan_stat scanned_pages_by_limit 9471864 scanned_anon_pages_by_limit 6640629 scanned_file_pages_by_limit 2831235 rotated_pages_by_limit 4243974 rotated_anon_pages_by_limit 3971968 rotated_file_pages_by_limit 272006 freed_pages_by_limit 2318492 freed_anon_pages_by_limit 962052 freed_file_pages_by_limit 1356440 elapsed_ns_by_limit 351386416101 scanned_pages_by_system 0 scanned_anon_pages_by_system 0 scanned_file_pages_by_system 0 rotated_pages_by_system 0 rotated_anon_pages_by_system 0 rotated_file_pages_by_system 0 freed_pages_by_system 0 freed_anon_pages_by_system 0 freed_file_pages_by_system 0 elapsed_ns_by_system 0 scanned_pages_by_limit_under_hierarchy 9471864 scanned_anon_pages_by_limit_under_hierarchy 6640629 scanned_file_pages_by_limit_under_hierarchy 2831235 rotated_pages_by_limit_under_hierarchy 4243974 rotated_anon_pages_by_limit_under_hierarchy 3971968 rotated_file_pages_by_limit_under_hierarchy 272006 freed_pages_by_limit_under_hierarchy 2318492 freed_anon_pages_by_limit_under_hierarchy 962052 freed_file_pages_by_limit_under_hierarchy 1356440 elapsed_ns_by_limit_under_hierarchy 351386416101 scanned_pages_by_system_under_hierarchy 0 scanned_anon_pages_by_system_under_hierarchy 0 scanned_file_pages_by_system_under_hierarchy 0 rotated_pages_by_system_under_hierarchy 0 rotated_anon_pages_by_system_under_hierarchy 0 rotated_file_pages_by_system_under_hierarchy 0 freed_pages_by_system_under_hierarchy 0 freed_anon_pages_by_system_under_hierarchy 0 freed_file_pages_by_system_under_hierarchy 0 elapsed_ns_by_system_under_hierarchy 0 total_xxxx is for hierarchy management. This will be useful for further memcg developments and need to be developped before we do some complicated rework on LRU/softlimit management. This patch adds a new struct memcg_scanrecord into scan_control struct. sc->nr_scanned at el is not designed for exporting information. For example, nr_scanned is reset frequentrly and incremented +2 at scanning mapped pages. To avoid complexity, I added a new param in scan_control which is for exporting scanning score. Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Michal Hocko <mhocko@suse.cz> Cc: Ying Han <yinghan@google.com> Cc: Andrew Bresticker <abrestic@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 KAMEZAWA Hiroyuki 提交于
In mm/memcontrol.c, there are many lru stat functions as.. mem_cgroup_zone_nr_lru_pages mem_cgroup_node_nr_file_lru_pages mem_cgroup_nr_file_lru_pages mem_cgroup_node_nr_anon_lru_pages mem_cgroup_nr_anon_lru_pages mem_cgroup_node_nr_unevictable_lru_pages mem_cgroup_nr_unevictable_lru_pages mem_cgroup_node_nr_lru_pages mem_cgroup_nr_lru_pages mem_cgroup_get_local_zonestat Some of them are under #ifdef MAX_NUMNODES >1 and others are not. This seems bad. This patch consolidates all functions into mem_cgroup_zone_nr_lru_pages() mem_cgroup_node_nr_lru_pages() mem_cgroup_nr_lru_pages() For these functions, "which LRU?" information is passed by a mask. example: mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON)) And I added some macro as ALL_LRU, ALL_LRU_FILE, ALL_LRU_ANON. example: mem_cgroup_nr_lru_pages(mem, ALL_LRU) BTW, considering layout of NUMA memory placement of counters, this patch seems to be better. Now, when we gather all LRU information, we scan in following orer for_each_lru -> for_each_node -> for_each_zone. This means we'll touch cache lines in different node in turn. After patch, we'll scan for_each_node -> for_each_zone -> for_each_lru(mask) Then, we'll gather information in the same cacheline at once. [akpm@linux-foundation.org: fix warnigns, build error] Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Ying Han <yinghan@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 6月, 2011 1 次提交
-
-
由 KOSAKI Motohiro 提交于
Currently, memcg reclaim can disable swap token even if the swap token mm doesn't belong in its memory cgroup. It's slightly risky. If an admin creates very small mem-cgroup and silly guy runs contentious heavy memory pressure workload, every tasks are going to lose swap token and then system may become unresponsive. That's bad. This patch adds 'memcg' parameter into disable_swap_token(). and if the parameter doesn't match swap token, VM doesn't disable it. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Rik van Riel<riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 27 5月, 2011 4 次提交
-
-
由 Ying Han 提交于
Two new stats in per-memcg memory.stat which tracks the number of page faults and number of major page faults. "pgfault" "pgmajfault" They are different from "pgpgin"/"pgpgout" stat which count number of pages charged/discharged to the cgroup and have no meaning of reading/ writing page to disk. It is valuable to track the two stats for both measuring application's performance as well as the efficiency of the kernel page reclaim path. Counting pagefaults per process is useful, but we also need the aggregated value since processes are monitored and controlled in cgroup basis in memcg. Functional test: check the total number of pgfault/pgmajfault of all memcgs and compare with global vmstat value: $ cat /proc/vmstat | grep fault pgfault 1070751 pgmajfault 553 $ cat /dev/cgroup/memory.stat | grep fault pgfault 1071138 pgmajfault 553 total_pgfault 1071142 total_pgmajfault 553 $ cat /dev/cgroup/A/memory.stat | grep fault pgfault 199 pgmajfault 0 total_pgfault 199 total_pgmajfault 0 Performance test: run page fault test(pft) wit 16 thread on faulting in 15G anon pages in 16G container. There is no regression noticed on the "flt/cpu/s" Sample output from pft: TAG pft:anon-sys-default: Gb Thr CLine User System Wall flt/cpu/s fault/wsec 15 16 1 0.67s 233.41s 14.76s 16798.546 266356.260 +-------------------------------------------------------------------------+ N Min Max Median Avg Stddev x 10 16682.962 17344.027 16913.524 16928.812 166.5362 + 10 16695.568 16923.896 16820.604 16824.652 84.816568 No difference proven at 95.0% confidence [akpm@linux-foundation.org: fix build] [hughd@google.com: shmem fix] Signed-off-by: NYing Han <yinghan@google.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: NMinchan Kim <minchan.kim@gmail.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Acked-by: NBalbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: NHugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ying Han 提交于
The caller of the function has been renamed to zone_nr_lru_pages(), and this is just fixing up in the memcg code. The current name is easily to be mis-read as zone's total number of pages. Signed-off-by: NYing Han <yinghan@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: NMinchan Kim <minchan.kim@gmail.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ying Han 提交于
Presently, memory cgroup's direct reclaim frees memory from the current node. But this has some troubles. Usually when a set of threads works in a cooperative way, they tend to operate on the same node. So if they hit limits under memcg they will reclaim memory from themselves, damaging the active working set. For example, assume 2 node system which has Node 0 and Node 1 and a memcg which has 1G limit. After some work, file cache remains and the usages are Node 0: 1M Node 1: 998M. and run an application on Node 0, it will eat its foot before freeing unnecessary file caches. This patch adds round-robin for NUMA and adds equal pressure to each node. When using cpuset's spread memory feature, this will work very well. But yes, a better algorithm is needed. [akpm@linux-foundation.org: comment editing] [kamezawa.hiroyu@jp.fujitsu.com: fix time comparisons] Signed-off-by: NYing Han <yinghan@google.com> Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ying Han 提交于
The global kswapd scans per-zone LRU and reclaims pages regardless of the cgroup. It breaks memory isolation since one cgroup can end up reclaiming pages from another cgroup. Instead we should rely on memcg-aware target reclaim including per-memcg kswapd and soft_limit hierarchical reclaim under memory pressure. In the global background reclaim, we do soft reclaim before scanning the per-zone LRU. However, the return value is ignored. This patch is the first step to skip shrink_zone() if soft_limit reclaim does enough work. This is part of the effort which tries to reduce reclaiming pages in global LRU in memcg. The per-memcg background reclaim patchset further enhances the per-cgroup targetting reclaim, which I should have V4 posted shortly. Try running multiple memory intensive workloads within seperate memcgs. Watch the counters of soft_steal in memory.stat. $ cat /dev/cgroup/A/memory.stat | grep 'soft' soft_steal 240000 soft_scan 240000 total_soft_steal 240000 total_soft_scan 240000 This patch: In the global background reclaim, we do soft reclaim before scanning the per-zone LRU. However, the return value is ignored. We would like to skip shrink_zone() if soft_limit reclaim does enough work. Also, we need to make the memory pressure balanced across per-memcg zones, like the logic vm-core. This patch is the first step where we start with counting the nr_scanned and nr_reclaimed from soft_limit reclaim into the global scan_control. Signed-off-by: NYing Han <yinghan@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Acked-by: NDaisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 4月, 2011 1 次提交
-
-
由 Eric Dumazet 提交于
commit 3f58a829 ("move memcg reclaimable page into tail of inactive list") added inline keyword twice in its prototype. CC arch/x86/kernel/asm-offsets.s In file included from include/linux/swap.h:8, from include/linux/suspend.h:4, from arch/x86/kernel/asm-offsets.c:12: include/linux/memcontrol.h:220: error: duplicate `inline' Signed-off-by: NEric Dumazet <eric.dumazet@gmail.com> Reviewed-by: NMinchan Kim <minchan.kim@gmail.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 24 3月, 2011 1 次提交
-
-
由 Daisuke Nishimura 提交于
Add checks at allocating or freeing a page whether the page is used (iow, charged) from the view point of memcg. This check may be useful in debugging a problem and we did similar checks before the commit 52d4b9ac(memcg: allocate all page_cgroup at boot). This patch adds some overheads at allocating or freeing memory, so it's enabled only when CONFIG_DEBUG_VM is enabled. Signed-off-by: NDaisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 3月, 2011 2 次提交
-
-
由 Minchan Kim 提交于
The rotate_reclaimable_page function moves just written out pages, which the VM wanted to reclaim, to the end of the inactive list. That way the VM will find those pages first next time it needs to free memory. This patch applies the rule in memcg. It can help to prevent unnecessary working page eviction of memcg. Signed-off-by: NMinchan Kim <minchan.kim@gmail.com> Acked-by: NBalbir Singh <balbir@linux.vnet.ibm.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Miklos Szeredi 提交于
This function basically does: remove_from_page_cache(old); page_cache_release(old); add_to_page_cache_locked(new); Except it does this atomically, so there's no possibility for the "add" to fail because of a race. If memory cgroups are enabled, then the memory cgroup charge is also moved from the old page to the new. This function is currently used by fuse to move pages into the page cache on read, instead of copying the page contents. [minchan.kim@gmail.com: add freepage() hook to replace_page_cache_page()] Signed-off-by: NMiklos Szeredi <mszeredi@suse.cz> Acked-by: NRik van Riel <riel@redhat.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: NMinchan Kim <minchan.kim@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 21 1月, 2011 1 次提交
-
-
由 KAMEZAWA Hiroyuki 提交于
Now, under THP: at charge: - PageCgroupUsed bit is set to all page_cgroup on a hugepage. ....set to 512 pages. at uncharge - PageCgroupUsed bit is unset on the head page. So, some pages will remain with "Used" bit. This patch fixes that Used bit is set only to the head page. Used bits for tail pages will be set at splitting if necessary. This patch adds this lock order: compound_lock() -> page_cgroup_move_lock(). [akpm@linux-foundation.org: fix warning] Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 1月, 2011 2 次提交
-
-
由 Daisuke Nishimura 提交于
In the current implementation mem_cgroup_end_migration() decides whether the page migration has succeeded or not by checking "oldpage->mapping". But if we are tring to migrate a shmem swapcache, the page->mapping of it is NULL from the begining, so the check would be invalid. As a result, mem_cgroup_end_migration() assumes the migration has succeeded even if it's not, so "newpage" would be freed while it's not uncharged. This patch fixes it by passing mem_cgroup_end_migration() the result of the page migration. Signed-off-by: NDaisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reviewed-by: NMinchan Kim <minchan.kim@gmail.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NBalbir Singh <balbir@linux.vnet.ibm.com> Cc: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Greg Thelen 提交于
Replace usage of the mem_cgroup_update_file_mapped() memcg statistic update routine with two new routines: * mem_cgroup_inc_page_stat() * mem_cgroup_dec_page_stat() As before, only the file_mapped statistic is managed. However, these more general interfaces allow for new statistics to be more easily added. New statistics are added with memcg dirty page accounting. Signed-off-by: NGreg Thelen <gthelen@google.com> Signed-off-by: NAndrea Righi <arighi@develer.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NDaisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 8月, 2010 1 次提交
-
-
由 KOSAKI Motohiro 提交于
mem_cgroup_soft_limit_reclaim() has zone, nid and zid argument. but nid and zid can be calculated from zone. So remove it. Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NMel Gorman <mel@csn.ul.ie> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Nishimura Daisuke <d-nishimura@mtf.biglobe.ne.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 10 8月, 2010 2 次提交
-
-
由 David Rientjes 提交于
This a complete rewrite of the oom killer's badness() heuristic which is used to determine which task to kill in oom conditions. The goal is to make it as simple and predictable as possible so the results are better understood and we end up killing the task which will lead to the most memory freeing while still respecting the fine-tuning from userspace. Instead of basing the heuristic on mm->total_vm for each task, the task's rss and swap space is used instead. This is a better indication of the amount of memory that will be freeable if the oom killed task is chosen and subsequently exits. This helps specifically in cases where KDE or GNOME is chosen for oom kill on desktop systems instead of a memory hogging task. The baseline for the heuristic is a proportion of memory that each task is currently using in memory plus swap compared to the amount of "allowable" memory. "Allowable," in this sense, means the system-wide resources for unconstrained oom conditions, the set of mempolicy nodes, the mems attached to current's cpuset, or a memory controller's limit. The proportion is given on a scale of 0 (never kill) to 1000 (always kill), roughly meaning that if a task has a badness() score of 500 that the task consumes approximately 50% of allowable memory resident in RAM or in swap space. The proportion is always relative to the amount of "allowable" memory and not the total amount of RAM systemwide so that mempolicies and cpusets may operate in isolation; they shall not need to know the true size of the machine on which they are running if they are bound to a specific set of nodes or mems, respectively. Root tasks are given 3% extra memory just like __vm_enough_memory() provides in LSMs. In the event of two tasks consuming similar amounts of memory, it is generally better to save root's task. Because of the change in the badness() heuristic's baseline, it is also necessary to introduce a new user interface to tune it. It's not possible to redefine the meaning of /proc/pid/oom_adj with a new scale since the ABI cannot be changed for backward compatability. Instead, a new tunable, /proc/pid/oom_score_adj, is added that ranges from -1000 to +1000. It may be used to polarize the heuristic such that certain tasks are never considered for oom kill while others may always be considered. The value is added directly into the badness() score so a value of -500, for example, means to discount 50% of its memory consumption in comparison to other tasks either on the system, bound to the mempolicy, in the cpuset, or sharing the same memory controller. /proc/pid/oom_adj is changed so that its meaning is rescaled into the units used by /proc/pid/oom_score_adj, and vice versa. Changing one of these per-task tunables will rescale the value of the other to an equivalent meaning. Although /proc/pid/oom_adj was originally defined as a bitshift on the badness score, it now shares the same linear growth as /proc/pid/oom_score_adj but with different granularity. This is required so the ABI is not broken with userspace applications and allows oom_adj to be deprecated for future removal. Signed-off-by: NDavid Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Balbir Singh <balbir@in.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 KOSAKI Motohiro 提交于
Since 2.6.28 zone->prev_priority is unused. Then it can be removed safely. It reduce stack usage slightly. Now I have to say that I'm sorry. 2 years ago, I thought prev_priority can be integrate again, it's useful. but four (or more) times trying haven't got good performance number. Thus I give up such approach. The rest of this changelog is notes on prev_priority and why it existed in the first place and why it might be not necessary any more. This information is based heavily on discussions between Andrew Morton, Rik van Riel and Kosaki Motohiro who is heavily quotes from. Historically prev_priority was important because it determined when the VM would start unmapping PTE pages. i.e. there are no balances of note within the VM, Anon vs File and Mapped vs Unmapped. Without prev_priority, there is a potential risk of unnecessarily increasing minor faults as a large amount of read activity of use-once pages could push mapped pages to the end of the LRU and get unmapped. There is no proof this is still a problem but currently it is not considered to be. Active files are not deactivated if the active file list is smaller than the inactive list reducing the liklihood that file-mapped pages are being pushed off the LRU and referenced executable pages are kept on the active list to avoid them getting pushed out by read activity. Even if it is a problem, prev_priority prev_priority wouldn't works nowadays. First of all, current vmscan still a lot of UP centric code. it expose some weakness on some dozens CPUs machine. I think we need more and more improvement. The problem is, current vmscan mix up per-system-pressure, per-zone-pressure and per-task-pressure a bit. example, prev_priority try to boost priority to other concurrent priority. but if the another task have mempolicy restriction, it is unnecessary, but also makes wrong big latency and exceeding reclaim. per-task based priority + prev_priority adjustment make the emulation of per-system pressure. but it have two issue 1) too rough and brutal emulation 2) we need per-zone pressure, not per-system. Another example, currently DEF_PRIORITY is 12. it mean the lru rotate about 2 cycle (1/4096 + 1/2048 + 1/1024 + .. + 1) before invoking OOM-Killer. but if 10,0000 thrreads enter DEF_PRIORITY reclaim at the same time, the system have higher memory pressure than priority==0 (1/4096*10,000 > 2). prev_priority can't solve such multithreads workload issue. In other word, prev_priority concept assume the sysmtem don't have lots threads." Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NMel Gorman <mel@csn.ul.ie> Reviewed-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Chris Mason <chris.mason@oracle.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michael Rubin <mrubin@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 28 5月, 2010 1 次提交
-
-
FILE_MAPPED per memcg of migrated file cache is not properly updated, because our hook in page_add_file_rmap() can't know to which memcg FILE_MAPPED should be counted. Basically, this patch is for fixing the bug but includes some big changes to fix up other messes. Now, at migrating mapped file, events happen in following sequence. 1. allocate a new page. 2. get memcg of an old page. 3. charge ageinst a new page before migration. But at this point, no changes to new page's page_cgroup, no commit for the charge. (IOW, PCG_USED bit is not set.) 4. page migration replaces radix-tree, old-page and new-page. 5. page migration remaps the new page if the old page was mapped. 6. Here, the new page is unlocked. 7. memcg commits the charge for newpage, Mark the new page's page_cgroup as PCG_USED. Because "commit" happens after page-remap, we can count FILE_MAPPED at "5", because we should avoid to trust page_cgroup->mem_cgroup. if PCG_USED bit is unset. (Note: memcg's LRU removal code does that but LRU-isolation logic is used for helping it. When we overwrite page_cgroup->mem_cgroup, page_cgroup is not on LRU or page_cgroup->mem_cgroup is NULL.) We can lose file_mapped accounting information at 5 because FILE_MAPPED is updated only when mapcount changes 0->1. So we should catch it. BTW, historically, above implemntation comes from migration-failure of anonymous page. Because we charge both of old page and new page with mapcount=0, we can't catch - the page is really freed before remap. - migration fails but it's freed before remap or .....corner cases. New migration sequence with memcg is: 1. allocate a new page. 2. mark PageCgroupMigration to the old page. 3. charge against a new page onto the old page's memcg. (here, new page's pc is marked as PageCgroupUsed.) 4. page migration replaces radix-tree, page table, etc... 5. At remapping, new page's page_cgroup is now makrked as "USED" We can catch 0->1 event and FILE_MAPPED will be properly updated. And we can catch SWAPOUT event after unlock this and freeing this page by unmap() can be caught. 7. Clear PageCgroupMigration of the old page. So, FILE_MAPPED will be correctly updated. Then, for what MIGRATION flag is ? Without it, at migration failure, we may have to charge old page again because it may be fully unmapped. "charge" means that we have to dive into memory reclaim or something complated. So, it's better to avoid charge it again. Before this patch, __commit_charge() was working for both of the old/new page and fixed up all. But this technique has some racy condtion around FILE_MAPPED and SWAPOUT etc... Now, the kernel use MIGRATION flag and don't uncharge old page until the end of migration. I hope this change will make memcg's page migration much simpler. This page migration has caused several troubles. Worth to add a flag for simplification. Reviewed-by: NDaisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Tested-by: NDaisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reported-by: NDaisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 25 5月, 2010 1 次提交
-
-
由 Johannes Weiner 提交于
For now, we have global isolation vs. memory control group isolation, do not allow the reclaim entry function to set an arbitrary page isolation callback, we do not need that flexibility. And since we already pass around the group descriptor for the memory control group isolation case, just use it to decide which one of the two isolator functions to use. The decisions can be merged into nearby branches, so no extra cost there. In fact, we save the indirect calls. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 3月, 2010 1 次提交
-
-
由 KAMEZAWA Hiroyuki 提交于
In current page-fault code, handle_mm_fault() -> ... -> mem_cgroup_charge() -> map page or handle error. -> check return code. If page fault's return code is VM_FAULT_OOM, page_fault_out_of_memory() is called. But if it's caused by memcg, OOM should have been already invoked. Then, I added a patch: a636b327. That patch records last_oom_jiffies for memcg's sub-hierarchy and prevents page_fault_out_of_memory from being invoked in near future. But Nishimura-san reported that check by jiffies is not enough when the system is terribly heavy. This patch changes memcg's oom logic as. * If memcg causes OOM-kill, continue to retry. * remove jiffies check which is used now. * add memcg-oom-lock which works like perzone oom lock. * If current is killed(as a process), bypass charge. Something more sophisticated can be added but this pactch does fundamental things. TODO: - add oom notifier - add permemcg disable-oom-kill flag and freezer at oom. - more chances for wake up oom waiter (when changing memory limit etc..) Reviewed-by: NDaisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Tested-by: NDaisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NDaisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-