1. 01 11月, 2011 2 次提交
    • H
      mm/huge_memory.c: quiet sparse noise · 2f1da642
      H Hartley Sweeten 提交于
      Quiet the sparse noise:
      
      warning: symbol 'khugepaged_scan' was not declared. Should it be static?
      warning: context imbalance in 'khugepaged_scan_mm_slot' - unexpected unlock
      Signed-off-by: NH Hartley Sweeten <hsweeten@visionengravers.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Johannes Weiner <jweiner@redhat.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2f1da642
    • A
      thp: mremap support and TLB optimization · 37a1c49a
      Andrea Arcangeli 提交于
      This adds THP support to mremap (decreases the number of split_huge_page()
      calls).
      
      Here are also some benchmarks with a proggy like this:
      
      ===
      #define _GNU_SOURCE
      #include <sys/mman.h>
      #include <stdlib.h>
      #include <stdio.h>
      #include <string.h>
      #include <sys/time.h>
      
      #define SIZE (5UL*1024*1024*1024)
      
      int main()
      {
              static struct timeval oldstamp, newstamp;
      	long diffsec;
      	char *p, *p2, *p3, *p4;
      	if (posix_memalign((void **)&p, 2*1024*1024, SIZE))
      		perror("memalign"), exit(1);
      	if (posix_memalign((void **)&p2, 2*1024*1024, SIZE))
      		perror("memalign"), exit(1);
      	if (posix_memalign((void **)&p3, 2*1024*1024, 4096))
      		perror("memalign"), exit(1);
      
      	memset(p, 0xff, SIZE);
      	memset(p2, 0xff, SIZE);
      	memset(p3, 0x77, 4096);
      	gettimeofday(&oldstamp, NULL);
      	p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3);
      	gettimeofday(&newstamp, NULL);
      	diffsec = newstamp.tv_sec - oldstamp.tv_sec;
      	diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec;
      	printf("usec %ld\n", diffsec);
      	if (p == MAP_FAILED || p4 != p3)
      	//if (p == MAP_FAILED)
      		perror("mremap"), exit(1);
      	if (memcmp(p4, p2, SIZE))
      		printf("mremap bug\n"), exit(1);
      	printf("ok\n");
      
      	return 0;
      }
      ===
      
      THP on
      
       Performance counter stats for './largepage13' (3 runs):
      
                69195836 dTLB-loads                 ( +-   3.546% )  (scaled from 50.30%)
                   60708 dTLB-load-misses           ( +-  11.776% )  (scaled from 52.62%)
               676266476 dTLB-stores                ( +-   5.654% )  (scaled from 69.54%)
                   29856 dTLB-store-misses          ( +-   4.081% )  (scaled from 89.22%)
              1055848782 iTLB-loads                 ( +-   4.526% )  (scaled from 80.18%)
                    8689 iTLB-load-misses           ( +-   2.987% )  (scaled from 58.20%)
      
              7.314454164  seconds time elapsed   ( +-   0.023% )
      
      THP off
      
       Performance counter stats for './largepage13' (3 runs):
      
              1967379311 dTLB-loads                 ( +-   0.506% )  (scaled from 60.59%)
                 9238687 dTLB-load-misses           ( +-  22.547% )  (scaled from 61.87%)
              2014239444 dTLB-stores                ( +-   0.692% )  (scaled from 60.40%)
                 3312335 dTLB-store-misses          ( +-   7.304% )  (scaled from 67.60%)
              6764372065 iTLB-loads                 ( +-   0.925% )  (scaled from 79.00%)
                    8202 iTLB-load-misses           ( +-   0.475% )  (scaled from 70.55%)
      
              9.693655243  seconds time elapsed   ( +-   0.069% )
      
      grep thp /proc/vmstat
      thp_fault_alloc 35849
      thp_fault_fallback 0
      thp_collapse_alloc 3
      thp_collapse_alloc_failed 0
      thp_split 0
      
      thp_split 0 confirms no thp split despite plenty of hugepages allocated.
      
      The measurement of only the mremap time (so excluding the 3 long
      memset and final long 10GB memory accessing memcmp):
      
      THP on
      
      usec 14824
      usec 14862
      usec 14859
      
      THP off
      
      usec 256416
      usec 255981
      usec 255847
      
      With an older kernel without the mremap optimizations (the below patch
      optimizes the non THP version too).
      
      THP on
      
      usec 392107
      usec 390237
      usec 404124
      
      THP off
      
      usec 444294
      usec 445237
      usec 445820
      
      I guess with a threaded program that sends more IPI on large SMP it'd
      create an even larger difference.
      
      All debug options are off except DEBUG_VM to avoid skewing the
      results.
      
      The only problem for native 2M mremap like it happens above both the
      source and destination address must be 2M aligned or the hugepmd can't be
      moved without a split but that is an hardware limitation.
      
      [akpm@linux-foundation.org: coding-style nitpicking]
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Acked-by: NJohannes Weiner <jweiner@redhat.com>
      Acked-by: NMel Gorman <mgorman@suse.de>
      Acked-by: NRik van Riel <riel@redhat.com>
      Cc: Hugh Dickins <hughd@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      37a1c49a
  2. 26 7月, 2011 1 次提交
  3. 16 6月, 2011 1 次提交
  4. 25 5月, 2011 2 次提交
  5. 29 4月, 2011 1 次提交
    • A
      mm: thp: fix /dev/zero MAP_PRIVATE and vm_flags cleanups · 78f11a25
      Andrea Arcangeli 提交于
      The huge_memory.c THP page fault was allowed to run if vm_ops was null
      (which would succeed for /dev/zero MAP_PRIVATE, as the f_op->mmap wouldn't
      setup a special vma->vm_ops and it would fallback to regular anonymous
      memory) but other THP logics weren't fully activated for vmas with vm_file
      not NULL (/dev/zero has a not NULL vma->vm_file).
      
      So this removes the vm_file checks so that /dev/zero also can safely use
      THP (the other albeit safer approach to fix this bug would have been to
      prevent the THP initial page fault to run if vm_file was set).
      
      After removing the vm_file checks, this also makes huge_memory.c stricter
      in khugepaged for the DEBUG_VM=y case.  It doesn't replace the vm_file
      check with a is_pfn_mapping check (but it keeps checking for VM_PFNMAP
      under VM_BUG_ON) because for a is_cow_mapping() mapping VM_PFNMAP should
      only be allowed to exist before the first page fault, and in turn when
      vma->anon_vma is null (so preventing khugepaged registration).  So I tend
      to think the previous comment saying if vm_file was set, VM_PFNMAP might
      have been set and we could still be registered in khugepaged (despite
      anon_vma was not NULL to be registered in khugepaged) was too paranoid.
      The is_linear_pfn_mapping check is also I think superfluous (as described
      by comment) but under DEBUG_VM it is safe to stay.
      
      Addresses https://bugzilla.kernel.org/show_bug.cgi?id=33682Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Reported-by: NCaspar Zhang <bugs@casparzhang.com>
      Acked-by: NMel Gorman <mel@csn.ul.ie>
      Acked-by: NRik van Riel <riel@redhat.com>
      Cc: <stable@kernel.org>		[2.6.38.x]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      78f11a25
  6. 15 4月, 2011 2 次提交
  7. 23 3月, 2011 1 次提交
  8. 14 3月, 2011 1 次提交
  9. 05 3月, 2011 3 次提交
  10. 16 2月, 2011 1 次提交
  11. 12 2月, 2011 1 次提交
    • K
      memcg: fix leak of accounting at failure path of hugepage collapsing · 678ff896
      KAMEZAWA Hiroyuki 提交于
      mem_cgroup_uncharge_page() should be called in all failure cases after
      mem_cgroup_charge_newpage() is called in huge_memory.c::collapse_huge_page()
      
       [ 4209.076861] BUG: Bad page state in process khugepaged  pfn:1e9800
       [ 4209.077601] page:ffffea0006b14000 count:0 mapcount:0 mapping:          (null) index:0x2800
       [ 4209.078674] page flags: 0x40000000004000(head)
       [ 4209.079294] pc:ffff880214a30000 pc->flags:2146246697418756 pc->mem_cgroup:ffffc9000177a000
       [ 4209.082177] (/A)
       [ 4209.082500] Pid: 31, comm: khugepaged Not tainted 2.6.38-rc3-mm1 #1
       [ 4209.083412] Call Trace:
       [ 4209.083678]  [<ffffffff810f4454>] ? bad_page+0xe4/0x140
       [ 4209.084240]  [<ffffffff810f53e6>] ? free_pages_prepare+0xd6/0x120
       [ 4209.084837]  [<ffffffff8155621d>] ? rwsem_down_failed_common+0xbd/0x150
       [ 4209.085509]  [<ffffffff810f5462>] ? __free_pages_ok+0x32/0xe0
       [ 4209.086110]  [<ffffffff810f552b>] ? free_compound_page+0x1b/0x20
       [ 4209.086699]  [<ffffffff810fad6c>] ? __put_compound_page+0x1c/0x30
       [ 4209.087333]  [<ffffffff810fae1d>] ? put_compound_page+0x4d/0x200
       [ 4209.087935]  [<ffffffff810fb015>] ? put_page+0x45/0x50
       [ 4209.097361]  [<ffffffff8113f779>] ? khugepaged+0x9e9/0x1430
       [ 4209.098364]  [<ffffffff8107c870>] ? autoremove_wake_function+0x0/0x40
       [ 4209.099121]  [<ffffffff8113ed90>] ? khugepaged+0x0/0x1430
       [ 4209.099780]  [<ffffffff8107c236>] ? kthread+0x96/0xa0
       [ 4209.100452]  [<ffffffff8100dda4>] ? kernel_thread_helper+0x4/0x10
       [ 4209.101214]  [<ffffffff8107c1a0>] ? kthread+0x0/0xa0
       [ 4209.101842]  [<ffffffff8100dda0>] ? kernel_thread_helper+0x0/0x10
      Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Acked-by: NDaisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
      Reviewed-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Reviewed-by: NMinchan Kim <minchan.kim@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      678ff896
  12. 03 2月, 2011 1 次提交
    • J
      thp: fix the wrong reported address of hwpoisoned hugepages · a6d30ddd
      Jin Dongming 提交于
      When the tail page of THP is poisoned, the head page will be poisoned too.
       And the wrong address, address of head page, will be sent with sigbus
      always.
      
      So when the poisoned page is used by Guest OS which is running on KVM,
      after the address changing(hva->gpa) by qemu, the unexpected process on
      Guest OS will be killed by sigbus.
      
      What we expected is that the process using the poisoned tail page could be
      killed on Guest OS, but not that the process using the healthy head page
      is killed.
      
      Since it is not good to poison the healthy page, avoid poisoning other
      than the page which is really poisoned.
        (While we poison all pages in a huge page in case of hugetlb,
         we can do this for THP thanks to split_huge_page().)
      
      Here we fix two parts:
        1. Isolate the poisoned page only to make sure
           the reported address is the address of poisoned page.
        2. make the poisoned page work as the poisoned regular page.
      
      [akpm@linux-foundation.org: fix spello in comment]
      Signed-off-by: NJin Dongming <jin.dongming@np.css.fujitsu.com>
      Reviewed-by: NHidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a6d30ddd
  13. 21 1月, 2011 2 次提交
  14. 14 1月, 2011 21 次提交
    • A
      thp: khugepaged: make khugepaged aware about madvise · 60ab3244
      Andrea Arcangeli 提交于
      MADV_HUGEPAGE and MADV_NOHUGEPAGE were fully effective only if run after
      mmap and before touching the memory.  While this is enough for most
      usages, it's little effort to make madvise more dynamic at runtime on an
      existing mapping by making khugepaged aware about madvise.
      
      MADV_HUGEPAGE: register in khugepaged immediately without waiting a page
      fault (that may not ever happen if all pages are already mapped and the
      "enabled" knob was set to madvise during the initial page faults).
      
      MADV_NOHUGEPAGE: skip vmas marked VM_NOHUGEPAGE in khugepaged to stop
      collapsing pages where not needed.
      
      [akpm@linux-foundation.org: tweak comment]
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      60ab3244
    • A
      thp: madvise(MADV_NOHUGEPAGE) · a664b2d8
      Andrea Arcangeli 提交于
      Add madvise MADV_NOHUGEPAGE to mark regions that are not important to be
      hugepage backed.  Return -EINVAL if the vma is not of an anonymous type,
      or the feature isn't built into the kernel.  Never silently return
      success.
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a664b2d8
    • R
      thp: fix anon memory statistics with transparent hugepages · 2c888cfb
      Rik van Riel 提交于
      Count each transparent hugepage as HPAGE_PMD_NR pages in the LRU
      statistics, so the Active(anon) and Inactive(anon) statistics in
      /proc/meminfo are correct.
      Signed-off-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2c888cfb
    • R
      thp: disable transparent hugepages by default on small systems · 97562cd2
      Rik van Riel 提交于
      On small systems, the extra memory used by the anti-fragmentation memory
      reserve and simply because huge pages are smaller than large pages can
      easily outweigh the benefits of less TLB misses.
      
      A less obvious concern is if run on a NUMA machine with asymmetric node
      sizes and one of them is very small.  The reserve could make the node
      unusable.
      
      In case of the crashdump kernel, OOMs have been observed due to the
      anti-fragmentation memory reserve taking up a large fraction of the
      crashdump image.
      
      This patch disables transparent hugepages on systems with less than 1GB of
      RAM, but the hugepage subsystem is fully initialized so administrators can
      enable THP through /sys if desired.
      Signed-off-by: NRik van Riel <riel@redhat.com>
      Acked-by: NAvi Kiviti <avi@redhat.com>
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Acked-by: NMel Gorman <mel@csn.ul.ie>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      97562cd2
    • A
      thp: freeze khugepaged and ksmd · 878aee7d
      Andrea Arcangeli 提交于
      It's unclear why schedule friendly kernel threads can't be taken away by
      the CPU through the scheduler itself.  It's safer to stop them as they can
      trigger memory allocation, if kswapd also freezes itself to avoid
      generating I/O they have too.
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      878aee7d
    • A
      thp: mmu_notifier_test_young · 8ee53820
      Andrea Arcangeli 提交于
      For GRU and EPT, we need gup-fast to set referenced bit too (this is why
      it's correct to return 0 when shadow_access_mask is zero, it requires
      gup-fast to set the referenced bit).  qemu-kvm access already sets the
      young bit in the pte if it isn't zero-copy, if it's zero copy or a shadow
      paging EPT minor fault we relay on gup-fast to signal the page is in
      use...
      
      We also need to check the young bits on the secondary pagetables for NPT
      and not nested shadow mmu as the data may never get accessed again by the
      primary pte.
      
      Without this closer accuracy, we'd have to remove the heuristic that
      avoids collapsing hugepages in hugepage virtual regions that have not even
      a single subpage in use.
      
      ->test_young is full backwards compatible with GRU and other usages that
      don't have young bits in pagetables set by the hardware and that should
      nuke the secondary mmu mappings when ->clear_flush_young runs just like
      EPT does.
      
      Removing the heuristic that checks the young bit in
      khugepaged/collapse_huge_page completely isn't so bad either probably but
      I thought it was worth it and this makes it reliable.
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      8ee53820
    • A
      thp: don't allow transparent hugepage support without PSE · 4b7167b9
      Andrea Arcangeli 提交于
      Archs implementing Transparent Hugepage Support must implement a function
      called has_transparent_hugepage to be sure the virtual or physical CPU
      supports Transparent Hugepages.
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4b7167b9
    • A
      thp: avoid breaking huge pmd invariants in case of vma_adjust failures · 94fcc585
      Andrea Arcangeli 提交于
      An huge pmd can only be mapped if the corresponding 2M virtual range is
      fully contained in the vma.  At times the VM calls split_vma twice, if the
      first split_vma succeeds and the second fail, the first split_vma remains
      in effect and it's not rolled back.  For split_vma or vma_adjust to fail
      an allocation failure is needed so it's a very unlikely event (the out of
      memory killer would normally fire before any allocation failure is visible
      to kernel and userland and if an out of memory condition happens it's
      unlikely to happen exactly here).  Nevertheless it's safer to ensure that
      no huge pmd can be left around if the vma is adjusted in a way that can't
      fit hugepages anymore at the new vm_start/vm_end address.
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      94fcc585
    • A
      thp: transparent hugepage config choice · 13ece886
      Andrea Arcangeli 提交于
      Allow to choose between the always|madvise default for page faults and
      khugepaged at config time.  madvise guarantees zero risk of higher memory
      footprint for applications (applications using madvise(MADV_HUGEPAGE)
      won't risk to use any more memory by backing their virtual regions with
      hugepages).
      
      Initially set the default to N and don't depend on EMBEDDED.
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      13ece886
    • A
      thp: allocate memory in khugepaged outside of mmap_sem write mode · ce83d217
      Andrea Arcangeli 提交于
      This tries to be more friendly to filesystem in userland, with userland
      backends that allocate memory in the I/O paths and that could deadlock if
      khugepaged holds the mmap_sem write mode of the userland backend while
      allocating memory.  Memory allocation may wait for writeback I/O
      completion from the daemon that may be blocked in the mmap_sem read mode
      if a page fault happens and the daemon wasn't using mlock for the memory
      required for the I/O submission and completion.
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ce83d217
    • A
      thp: add numa awareness to hugepage allocations · 0bbbc0b3
      Andrea Arcangeli 提交于
      It's mostly a matter of replacing alloc_pages with alloc_pages_vma after
      introducing alloc_pages_vma.  khugepaged needs special handling as the
      allocation has to happen inside collapse_huge_page where the vma is known
      and an error has to be returned to the outer loop to sleep
      alloc_sleep_millisecs in case of failure.  But it retains the more
      efficient logic of handling allocation failures in khugepaged in case of
      CONFIG_NUMA=n.
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0bbbc0b3
    • A
      thp: enable direct defrag · d39d33c3
      Andrea Arcangeli 提交于
      With memory compaction in, and lumpy-reclaim disabled, it seems safe
      enough to defrag memory during the (synchronous) transparent hugepage page
      faults (TRANSPARENT_HUGEPAGE_DEFRAG_FLAG) and not only during khugepaged
      (async) hugepage allocations that was already enabled even before memory
      compaction was in (TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG).
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Acked-by: NMel Gorman <mel@csn.ul.ie>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d39d33c3
    • A
      thp: set recommended min free kbytes · f000565a
      Andrea Arcangeli 提交于
      If transparent hugepage is enabled initialize min_free_kbytes to an
      optimal value by default.  This moves the hugeadm algorithm in kernel.
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      f000565a
    • J
      thp: mprotect: transparent huge page support · cd7548ab
      Johannes Weiner 提交于
      Natively handle huge pmds when changing page tables on behalf of
      mprotect().
      
      I left out update_mmu_cache() because we do not need it on x86 anyway but
      more importantly the interface works on ptes, not pmds.
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Reviewed-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      cd7548ab
    • J
      thp: mincore transparent hugepage support · 0ca1634d
      Johannes Weiner 提交于
      Handle transparent huge page pmd entries natively instead of splitting
      them into subpages.
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Reviewed-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0ca1634d
    • A
      thp: khugepaged · ba76149f
      Andrea Arcangeli 提交于
      Add khugepaged to relocate fragmented pages into hugepages if new
      hugepages become available.  (this is indipendent of the defrag logic that
      will have to make new hugepages available)
      
      The fundamental reason why khugepaged is unavoidable, is that some memory
      can be fragmented and not everything can be relocated.  So when a virtual
      machine quits and releases gigabytes of hugepages, we want to use those
      freely available hugepages to create huge-pmd in the other virtual
      machines that may be running on fragmented memory, to maximize the CPU
      efficiency at all times.  The scan is slow, it takes nearly zero cpu time,
      except when it copies data (in which case it means we definitely want to
      pay for that cpu time) so it seems a good tradeoff.
      
      In addition to the hugepages being released by other process releasing
      memory, we have the strong suspicion that the performance impact of
      potentially defragmenting hugepages during or before each page fault could
      lead to more performance inconsistency than allocating small pages at
      first and having them collapsed into large pages later...  if they prove
      themselfs to be long lived mappings (khugepaged scan is slow so short
      lived mappings have low probability to run into khugepaged if compared to
      long lived mappings).
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Acked-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ba76149f
    • A
      thp: transparent hugepage vmstat · 79134171
      Andrea Arcangeli 提交于
      Add hugepage stat information to /proc/vmstat and /proc/meminfo.
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Acked-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      79134171
    • A
      thp: memcg huge memory · b9bbfbe3
      Andrea Arcangeli 提交于
      Add memcg charge/uncharge to hugepage faults in huge_memory.c.
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Acked-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b9bbfbe3
    • A
      thp: madvise(MADV_HUGEPAGE) · 0af4e98b
      Andrea Arcangeli 提交于
      Add madvise MADV_HUGEPAGE to mark regions that are important to be
      hugepage backed.  Return -EINVAL if the vma is not of an anonymous type,
      or the feature isn't built into the kernel.  Never silently return
      success.
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Acked-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0af4e98b
    • A
      thp: split_huge_page anon_vma ordering dependency · 05759d38
      Andrea Arcangeli 提交于
      This documents how split_huge_page is safe vs new vma inserctions into the
      anon_vma that may have already released the anon_vma->lock but not
      established pmds yet when split_huge_page starts.
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Acked-by: NMel Gorman <mel@csn.ul.ie>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      05759d38
    • A
      thp: transparent hugepage core · 71e3aac0
      Andrea Arcangeli 提交于
      Lately I've been working to make KVM use hugepages transparently without
      the usual restrictions of hugetlbfs.  Some of the restrictions I'd like to
      see removed:
      
      1) hugepages have to be swappable or the guest physical memory remains
         locked in RAM and can't be paged out to swap
      
      2) if a hugepage allocation fails, regular pages should be allocated
         instead and mixed in the same vma without any failure and without
         userland noticing
      
      3) if some task quits and more hugepages become available in the
         buddy, guest physical memory backed by regular pages should be
         relocated on hugepages automatically in regions under
         madvise(MADV_HUGEPAGE) (ideally event driven by waking up the
         kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes
         not null)
      
      4) avoidance of reservation and maximization of use of hugepages whenever
         possible. Reservation (needed to avoid runtime fatal faliures) may be ok for
         1 machine with 1 database with 1 database cache with 1 database cache size
         known at boot time. It's definitely not feasible with a virtualization
         hypervisor usage like RHEV-H that runs an unknown number of virtual machines
         with an unknown size of each virtual machine with an unknown amount of
         pagecache that could be potentially useful in the host for guest not using
         O_DIRECT (aka cache=off).
      
      hugepages in the virtualization hypervisor (and also in the guest!) are
      much more important than in a regular host not using virtualization,
      becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24
      to 19 in case only the hypervisor uses transparent hugepages, and they
      decrease the tlb-miss cacheline accesses from 19 to 15 in case both the
      linux hypervisor and the linux guest both uses this patch (though the
      guest will limit the addition speedup to anonymous regions only for
      now...).  Even more important is that the tlb miss handler is much slower
      on a NPT/EPT guest than for a regular shadow paging or no-virtualization
      scenario.  So maximizing the amount of virtual memory cached by the TLB
      pays off significantly more with NPT/EPT than without (even if there would
      be no significant speedup in the tlb-miss runtime).
      
      The first (and more tedious) part of this work requires allowing the VM to
      handle anonymous hugepages mixed with regular pages transparently on
      regular anonymous vmas.  This is what this patch tries to achieve in the
      least intrusive possible way.  We want hugepages and hugetlb to be used in
      a way so that all applications can benefit without changes (as usual we
      leverage the KVM virtualization design: by improving the Linux VM at
      large, KVM gets the performance boost too).
      
      The most important design choice is: always fallback to 4k allocation if
      the hugepage allocation fails!  This is the _very_ opposite of some large
      pagecache patches that failed with -EIO back then if a 64k (or similar)
      allocation failed...
      
      Second important decision (to reduce the impact of the feature on the
      existing pagetable handling code) is that at any time we can split an
      hugepage into 512 regular pages and it has to be done with an operation
      that can't fail.  This way the reliability of the swapping isn't decreased
      (no need to allocate memory when we are short on memory to swap) and it's
      trivial to plug a split_huge_page* one-liner where needed without
      polluting the VM.  Over time we can teach mprotect, mremap and friends to
      handle pmd_trans_huge natively without calling split_huge_page*.  The fact
      it can't fail isn't just for swap: if split_huge_page would return -ENOMEM
      (instead of the current void) we'd need to rollback the mprotect from the
      middle of it (ideally including undoing the split_vma) which would be a
      big change and in the very wrong direction (it'd likely be simpler not to
      call split_huge_page at all and to teach mprotect and friends to handle
      hugepages instead of rolling them back from the middle).  In short the
      very value of split_huge_page is that it can't fail.
      
      The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and
      incremental and it'll just be an "harmless" addition later if this initial
      part is agreed upon.  It also should be noted that locking-wise replacing
      regular pages with hugepages is going to be very easy if compared to what
      I'm doing below in split_huge_page, as it will only happen when
      page_count(page) matches page_mapcount(page) if we can take the PG_lock
      and mmap_sem in write mode.  collapse_huge_page will be a "best effort"
      that (unlike split_huge_page) can fail at the minimal sign of trouble and
      we can try again later.  collapse_huge_page will be similar to how KSM
      works and the madvise(MADV_HUGEPAGE) will work similar to
      madvise(MADV_MERGEABLE).
      
      The default I like is that transparent hugepages are used at page fault
      time.  This can be changed with
      /sys/kernel/mm/transparent_hugepage/enabled.  The control knob can be set
      to three values "always", "madvise", "never" which mean respectively that
      hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions,
      or never used.  /sys/kernel/mm/transparent_hugepage/defrag instead
      controls if the hugepage allocation should defrag memory aggressively
      "always", only inside "madvise" regions, or "never".
      
      The pmd_trans_splitting/pmd_trans_huge locking is very solid.  The
      put_page (from get_user_page users that can't use mmu notifier like
      O_DIRECT) that runs against a __split_huge_page_refcount instead was a
      pain to serialize in a way that would result always in a coherent page
      count for both tail and head.  I think my locking solution with a
      compound_lock taken only after the page_first is valid and is still a
      PageHead should be safe but it surely needs review from SMP race point of
      view.  In short there is no current existing way to serialize the O_DIRECT
      final put_page against split_huge_page_refcount so I had to invent a new
      one (O_DIRECT loses knowledge on the mapping status by the time gup_fast
      returns so...).  And I didn't want to impact all gup/gup_fast users for
      now, maybe if we change the gup interface substantially we can avoid this
      locking, I admit I didn't think too much about it because changing the gup
      unpinning interface would be invasive.
      
      If we ignored O_DIRECT we could stick to the existing compound refcounting
      code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM
      (and any other mmu notifier user) would call it without FOLL_GET (and if
      FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the
      current task mmu notifier list yet).  But O_DIRECT is fundamental for
      decent performance of virtualized I/O on fast storage so we can't avoid it
      to solve the race of put_page against split_huge_page_refcount to achieve
      a complete hugepage feature for KVM.
      
      Swap and oom works fine (well just like with regular pages ;).  MMU
      notifier is handled transparently too, with the exception of the young bit
      on the pmd, that didn't have a range check but I think KVM will be fine
      because the whole point of hugepages is that EPT/NPT will also use a huge
      pmd when they notice gup returns pages with PageCompound set, so they
      won't care of a range and there's just the pmd young bit to check in that
      case.
      
      NOTE: in some cases if the L2 cache is small, this may slowdown and waste
      memory during COWs because 4M of memory are accessed in a single fault
      instead of 8k (the payoff is that after COW the program can run faster).
      So we might want to switch the copy_huge_page (and clear_huge_page too) to
      not temporal stores.  I also extensively researched ways to avoid this
      cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k
      up to 1M (I can send those patches that fully implemented prefault) but I
      concluded they're not worth it and they add an huge additional complexity
      and they remove all tlb benefits until the full hugepage has been faulted
      in, to save a little bit of memory and some cache during app startup, but
      they still don't improve substantially the cache-trashing during startup
      if the prefault happens in >4k chunks.  One reason is that those 4k pte
      entries copied are still mapped on a perfectly cache-colored hugepage, so
      the trashing is the worst one can generate in those copies (cow of 4k page
      copies aren't so well colored so they trashes less, but again this results
      in software running faster after the page fault).  Those prefault patches
      allowed things like a pte where post-cow pages were local 4k regular anon
      pages and the not-yet-cowed pte entries were pointing in the middle of
      some hugepage mapped read-only.  If it doesn't payoff substantially with
      todays hardware it will payoff even less in the future with larger l2
      caches, and the prefault logic would blot the VM a lot.  If one is
      emebdded transparent_hugepage can be disabled during boot with sysfs or
      with the boot commandline parameter transparent_hugepage=0 (or
      transparent_hugepage=2 to restrict hugepages inside madvise regions) that
      will ensure not a single hugepage is allocated at boot time.  It is simple
      enough to just disable transparent hugepage globally and let transparent
      hugepages be allocated selectively by applications in the MADV_HUGEPAGE
      region (both at page fault time, and if enabled with the
      collapse_huge_page too through the kernel daemon).
      
      This patch supports only hugepages mapped in the pmd, archs that have
      smaller hugepages will not fit in this patch alone.  Also some archs like
      power have certain tlb limits that prevents mixing different page size in
      the same regions so they will not fit in this framework that requires
      "graceful fallback" to basic PAGE_SIZE in case of physical memory
      fragmentation.  hugetlbfs remains a perfect fit for those because its
      software limits happen to match the hardware limits.  hugetlbfs also
      remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped
      to be found not fragmented after a certain system uptime and that would be
      very expensive to defragment with relocation, so requiring reservation.
      hugetlbfs is the "reservation way", the point of transparent hugepages is
      not to have any reservation at all and maximizing the use of cache and
      hugepages at all times automatically.
      
      Some performance result:
      
      vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep
      ages3
      memset page fault 1566023
      memset tlb miss 453854
      memset second tlb miss 453321
      random access tlb miss 41635
      random access second tlb miss 41658
      vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3
      memset page fault 1566471
      memset tlb miss 453375
      memset second tlb miss 453320
      random access tlb miss 41636
      random access second tlb miss 41637
      vmx andrea # ./largepages3
      memset page fault 1566642
      memset tlb miss 453417
      memset second tlb miss 453313
      random access tlb miss 41630
      random access second tlb miss 41647
      vmx andrea # ./largepages3
      memset page fault 1566872
      memset tlb miss 453418
      memset second tlb miss 453315
      random access tlb miss 41618
      random access second tlb miss 41659
      vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage
      vmx andrea # ./largepages3
      memset page fault 2182476
      memset tlb miss 460305
      memset second tlb miss 460179
      random access tlb miss 44483
      random access second tlb miss 44186
      vmx andrea # ./largepages3
      memset page fault 2182791
      memset tlb miss 460742
      memset second tlb miss 459962
      random access tlb miss 43981
      random access second tlb miss 43988
      
      ============
      #include <stdio.h>
      #include <stdlib.h>
      #include <string.h>
      #include <sys/time.h>
      
      #define SIZE (3UL*1024*1024*1024)
      
      int main()
      {
      	char *p = malloc(SIZE), *p2;
      	struct timeval before, after;
      
      	gettimeofday(&before, NULL);
      	memset(p, 0, SIZE);
      	gettimeofday(&after, NULL);
      	printf("memset page fault %Lu\n",
      	       (after.tv_sec-before.tv_sec)*1000000UL +
      	       after.tv_usec-before.tv_usec);
      
      	gettimeofday(&before, NULL);
      	memset(p, 0, SIZE);
      	gettimeofday(&after, NULL);
      	printf("memset tlb miss %Lu\n",
      	       (after.tv_sec-before.tv_sec)*1000000UL +
      	       after.tv_usec-before.tv_usec);
      
      	gettimeofday(&before, NULL);
      	memset(p, 0, SIZE);
      	gettimeofday(&after, NULL);
      	printf("memset second tlb miss %Lu\n",
      	       (after.tv_sec-before.tv_sec)*1000000UL +
      	       after.tv_usec-before.tv_usec);
      
      	gettimeofday(&before, NULL);
      	for (p2 = p; p2 < p+SIZE; p2 += 4096)
      		*p2 = 0;
      	gettimeofday(&after, NULL);
      	printf("random access tlb miss %Lu\n",
      	       (after.tv_sec-before.tv_sec)*1000000UL +
      	       after.tv_usec-before.tv_usec);
      
      	gettimeofday(&before, NULL);
      	for (p2 = p; p2 < p+SIZE; p2 += 4096)
      		*p2 = 0;
      	gettimeofday(&after, NULL);
      	printf("random access second tlb miss %Lu\n",
      	       (after.tv_sec-before.tv_sec)*1000000UL +
      	       after.tv_usec-before.tv_usec);
      
      	return 0;
      }
      ============
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Acked-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      71e3aac0