1. 24 9月, 2014 1 次提交
    • W
      sched: Fix unreleased llc_shared_mask bit during CPU hotplug · 03bd4e1f
      Wanpeng Li 提交于
      The following bug can be triggered by hot adding and removing a large number of
      xen domain0's vcpus repeatedly:
      
      	BUG: unable to handle kernel NULL pointer dereference at 0000000000000004 IP: [..] find_busiest_group
      	PGD 5a9d5067 PUD 13067 PMD 0
      	Oops: 0000 [#3] SMP
      	[...]
      	Call Trace:
      	load_balance
      	? _raw_spin_unlock_irqrestore
      	idle_balance
      	__schedule
      	schedule
      	schedule_timeout
      	? lock_timer_base
      	schedule_timeout_uninterruptible
      	msleep
      	lock_device_hotplug_sysfs
      	online_store
      	dev_attr_store
      	sysfs_write_file
      	vfs_write
      	SyS_write
      	system_call_fastpath
      
      Last level cache shared mask is built during CPU up and the
      build_sched_domain() routine takes advantage of it to setup
      the sched domain CPU topology.
      
      However, llc_shared_mask is not released during CPU disable,
      which leads to an invalid sched domainCPU topology.
      
      This patch fix it by releasing the llc_shared_mask correctly
      during CPU disable.
      
      Yasuaki also reported that this can happen on real hardware:
      
        https://lkml.org/lkml/2014/7/22/1018
      
      His case is here:
      
      	==
      	Here is an example on my system.
      	My system has 4 sockets and each socket has 15 cores and HT is
      	enabled. In this case, each core of sockes is numbered as
      	follows:
      
      		 | CPU#
      	Socket#0 | 0-14 , 60-74
      	Socket#1 | 15-29, 75-89
      	Socket#2 | 30-44, 90-104
      	Socket#3 | 45-59, 105-119
      
      	Then llc_shared_mask of CPU#30 has 0x3fff80000001fffc0000000.
      
      	It means that last level cache of Socket#2 is shared with
      	CPU#30-44 and 90-104.
      
      	When hot-removing socket#2 and #3, each core of sockets is
      	numbered as follows:
      
      		 | CPU#
      	Socket#0 | 0-14 , 60-74
      	Socket#1 | 15-29, 75-89
      
      	But llc_shared_mask is not cleared. So llc_shared_mask of CPU#30
      	remains having 0x3fff80000001fffc0000000.
      
      	After that, when hot-adding socket#2 and #3, each core of
      	sockets is numbered as follows:
      
      		 | CPU#
      	Socket#0 | 0-14 , 60-74
      	Socket#1 | 15-29, 75-89
      	Socket#2 | 30-59
      	Socket#3 | 90-119
      
      	Then llc_shared_mask of CPU#30 becomes
      	0x3fff8000fffffffc0000000. It means that last level cache of
      	Socket#2 is shared with CPU#30-59 and 90-104. So the mask has
      	the wrong value.
      Signed-off-by: NWanpeng Li <wanpeng.li@linux.intel.com>
      Tested-by: NLinn Crosetto <linn@hp.com>
      Reviewed-by: NBorislav Petkov <bp@suse.de>
      Reviewed-by: NToshi Kani <toshi.kani@hp.com>
      Reviewed-by: NYasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
      Cc: <stable@vger.kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Cc: Steven Rostedt <srostedt@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Link: http://lkml.kernel.org/r/1411547885-48165-1-git-send-email-wanpeng.li@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      03bd4e1f
  2. 30 8月, 2014 1 次提交
    • V
      kexec: create a new config option CONFIG_KEXEC_FILE for new syscall · 74ca317c
      Vivek Goyal 提交于
      Currently new system call kexec_file_load() and all the associated code
      compiles if CONFIG_KEXEC=y.  But new syscall also compiles purgatory
      code which currently uses gcc option -mcmodel=large.  This option seems
      to be available only gcc 4.4 onwards.
      
      Hiding new functionality behind a new config option will not break
      existing users of old gcc.  Those who wish to enable new functionality
      will require new gcc.  Having said that, I am trying to figure out how
      can I move away from using -mcmodel=large but that can take a while.
      
      I think there are other advantages of introducing this new config
      option.  As this option will be enabled only on x86_64, other arches
      don't have to compile generic kexec code which will never be used.  This
      new code selects CRYPTO=y and CRYPTO_SHA256=y.  And all other arches had
      to do this for CONFIG_KEXEC.  Now with introduction of new config
      option, we can remove crypto dependency from other arches.
      
      Now CONFIG_KEXEC_FILE is available only on x86_64.  So whereever I had
      CONFIG_X86_64 defined, I got rid of that.
      
      For CONFIG_KEXEC_FILE, instead of doing select CRYPTO=y, I changed it to
      "depends on CRYPTO=y".  This should be safer as "select" is not
      recursive.
      Signed-off-by: NVivek Goyal <vgoyal@redhat.com>
      Cc: Eric Biederman <ebiederm@xmission.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Tested-by: NShaun Ruffell <sruffell@digium.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      74ca317c
  3. 29 8月, 2014 1 次提交
  4. 28 8月, 2014 1 次提交
  5. 27 8月, 2014 1 次提交
    • J
      x86: irq: Fix bug in setting IOAPIC pin attributes · f395dcae
      Jiang Liu 提交于
      Commit 15a3c7cc "x86, irq: Introduce two helper functions
      to support irqdomain map operation" breaks LPSS ACPI enumerated
      devices.
      
      On startup, IOAPIC driver preallocates IRQ descriptors and programs
      IOAPIC pins with default level and polarity attributes for all legacy
      IRQs. Later legacy IRQ users may fail to set IOAPIC pin attributes
      if the requested attributes conflicts with the default IOAPIC pin
      attributes. So change mp_irqdomain_map() to allow the first legacy IRQ
      user to reprogram IOAPIC pin with different attributes.
      Reported-and-tested-by: NMika Westerberg <mika.westerberg@linux.intel.com>
      Signed-off-by: NJiang Liu <jiang.liu@linux.intel.com>
      Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: Joerg Roedel <joro@8bytes.org>
      Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
      Cc: Bjorn Helgaas <bhelgaas@google.com>
      Cc: Randy Dunlap <rdunlap@infradead.org>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Grant Likely <grant.likely@linaro.org>
      Cc: Prarit Bhargava <prarit@redhat.com>
      Link: http://lkml.kernel.org/r/1409118795-17046-1-git-send-email-jiang.liu@linux.intel.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      f395dcae
  6. 26 8月, 2014 1 次提交
  7. 16 8月, 2014 1 次提交
  8. 13 8月, 2014 1 次提交
  9. 09 8月, 2014 7 次提交
    • V
      kexec: verify the signature of signed PE bzImage · 8e7d8381
      Vivek Goyal 提交于
      This is the final piece of the puzzle of verifying kernel image signature
      during kexec_file_load() syscall.
      
      This patch calls into PE file routines to verify signature of bzImage.  If
      signature are valid, kexec_file_load() succeeds otherwise it fails.
      
      Two new config options have been introduced.  First one is
      CONFIG_KEXEC_VERIFY_SIG.  This option enforces that kernel has to be
      validly signed otherwise kernel load will fail.  If this option is not
      set, no signature verification will be done.  Only exception will be when
      secureboot is enabled.  In that case signature verification should be
      automatically enforced when secureboot is enabled.  But that will happen
      when secureboot patches are merged.
      
      Second config option is CONFIG_KEXEC_BZIMAGE_VERIFY_SIG.  This option
      enables signature verification support on bzImage.  If this option is not
      set and previous one is set, kernel image loading will fail because kernel
      does not have support to verify signature of bzImage.
      
      I tested these patches with both "pesign" and "sbsign" signed bzImages.
      
      I used signing_key.priv key and signing_key.x509 cert for signing as
      generated during kernel build process (if module signing is enabled).
      
      Used following method to sign bzImage.
      
      pesign
      ======
      - Convert DER format cert to PEM format cert
      openssl x509 -in signing_key.x509 -inform DER -out signing_key.x509.PEM -outform
      PEM
      
      - Generate a .p12 file from existing cert and private key file
      openssl pkcs12 -export -out kernel-key.p12 -inkey signing_key.priv -in
      signing_key.x509.PEM
      
      - Import .p12 file into pesign db
      pk12util -i /tmp/kernel-key.p12 -d /etc/pki/pesign
      
      - Sign bzImage
      pesign -i /boot/vmlinuz-3.16.0-rc3+ -o /boot/vmlinuz-3.16.0-rc3+.signed.pesign
      -c "Glacier signing key - Magrathea" -s
      
      sbsign
      ======
      sbsign --key signing_key.priv --cert signing_key.x509.PEM --output
      /boot/vmlinuz-3.16.0-rc3+.signed.sbsign /boot/vmlinuz-3.16.0-rc3+
      
      Patch details:
      
      Well all the hard work is done in previous patches.  Now bzImage loader
      has just call into that code and verify whether bzImage signature are
      valid or not.
      
      Also create two config options.  First one is CONFIG_KEXEC_VERIFY_SIG.
      This option enforces that kernel has to be validly signed otherwise kernel
      load will fail.  If this option is not set, no signature verification will
      be done.  Only exception will be when secureboot is enabled.  In that case
      signature verification should be automatically enforced when secureboot is
      enabled.  But that will happen when secureboot patches are merged.
      
      Second config option is CONFIG_KEXEC_BZIMAGE_VERIFY_SIG.  This option
      enables signature verification support on bzImage.  If this option is not
      set and previous one is set, kernel image loading will fail because kernel
      does not have support to verify signature of bzImage.
      Signed-off-by: NVivek Goyal <vgoyal@redhat.com>
      Cc: Borislav Petkov <bp@suse.de>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Cc: Eric Biederman <ebiederm@xmission.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Matthew Garrett <mjg59@srcf.ucam.org>
      Cc: Greg Kroah-Hartman <greg@kroah.com>
      Cc: Dave Young <dyoung@redhat.com>
      Cc: WANG Chao <chaowang@redhat.com>
      Cc: Baoquan He <bhe@redhat.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Matt Fleming <matt@console-pimps.org>
      Cc: David Howells <dhowells@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      8e7d8381
    • V
      kexec: support kexec/kdump on EFI systems · 6a2c20e7
      Vivek Goyal 提交于
      This patch does two things.  It passes EFI run time mappings to second
      kernel in bootparams efi_info.  Second kernel parse this info and create
      new mappings in second kernel.  That means mappings in first and second
      kernel will be same.  This paves the way to enable EFI in kexec kernel.
      
      This patch also prepares and passes EFI setup data through bootparams.
      This contains bunch of information about various tables and their
      addresses.
      
      These information gathering and passing has been written along the lines
      of what current kexec-tools is doing to make kexec work with UEFI.
      
      [akpm@linux-foundation.org: s/get_efi/efi_get/g, per Matt]
      Signed-off-by: NVivek Goyal <vgoyal@redhat.com>
      Cc: Borislav Petkov <bp@suse.de>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Cc: Eric Biederman <ebiederm@xmission.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Matthew Garrett <mjg59@srcf.ucam.org>
      Cc: Greg Kroah-Hartman <greg@kroah.com>
      Cc: Dave Young <dyoung@redhat.com>
      Cc: WANG Chao <chaowang@redhat.com>
      Cc: Baoquan He <bhe@redhat.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Matt Fleming <matt@console-pimps.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6a2c20e7
    • V
      kexec: support for kexec on panic using new system call · dd5f7260
      Vivek Goyal 提交于
      This patch adds support for loading a kexec on panic (kdump) kernel usning
      new system call.
      
      It prepares ELF headers for memory areas to be dumped and for saved cpu
      registers.  Also prepares the memory map for second kernel and limits its
      boot to reserved areas only.
      Signed-off-by: NVivek Goyal <vgoyal@redhat.com>
      Cc: Borislav Petkov <bp@suse.de>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Cc: Eric Biederman <ebiederm@xmission.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Matthew Garrett <mjg59@srcf.ucam.org>
      Cc: Greg Kroah-Hartman <greg@kroah.com>
      Cc: Dave Young <dyoung@redhat.com>
      Cc: WANG Chao <chaowang@redhat.com>
      Cc: Baoquan He <bhe@redhat.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      dd5f7260
    • V
      kexec-bzImage64: support for loading bzImage using 64bit entry · 27f48d3e
      Vivek Goyal 提交于
      This is loader specific code which can load bzImage and set it up for
      64bit entry.  This does not take care of 32bit entry or real mode entry.
      
      32bit mode entry can be implemented if somebody needs it.
      Signed-off-by: NVivek Goyal <vgoyal@redhat.com>
      Cc: Borislav Petkov <bp@suse.de>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Cc: Eric Biederman <ebiederm@xmission.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Matthew Garrett <mjg59@srcf.ucam.org>
      Cc: Greg Kroah-Hartman <greg@kroah.com>
      Cc: Dave Young <dyoung@redhat.com>
      Cc: WANG Chao <chaowang@redhat.com>
      Cc: Baoquan He <bhe@redhat.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      27f48d3e
    • V
      kexec: load and relocate purgatory at kernel load time · 12db5562
      Vivek Goyal 提交于
      Load purgatory code in RAM and relocate it based on the location.
      Relocation code has been inspired by module relocation code and purgatory
      relocation code in kexec-tools.
      
      Also compute the checksums of loaded kexec segments and store them in
      purgatory.
      
      Arch independent code provides this functionality so that arch dependent
      bootloaders can make use of it.
      
      Helper functions are provided to get/set symbol values in purgatory which
      are used by bootloaders later to set things like stack and entry point of
      second kernel etc.
      Signed-off-by: NVivek Goyal <vgoyal@redhat.com>
      Cc: Borislav Petkov <bp@suse.de>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Cc: Eric Biederman <ebiederm@xmission.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Matthew Garrett <mjg59@srcf.ucam.org>
      Cc: Greg Kroah-Hartman <greg@kroah.com>
      Cc: Dave Young <dyoung@redhat.com>
      Cc: WANG Chao <chaowang@redhat.com>
      Cc: Baoquan He <bhe@redhat.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      12db5562
    • V
      kexec: implementation of new syscall kexec_file_load · cb105258
      Vivek Goyal 提交于
      Previous patch provided the interface definition and this patch prvides
      implementation of new syscall.
      
      Previously segment list was prepared in user space.  Now user space just
      passes kernel fd, initrd fd and command line and kernel will create a
      segment list internally.
      
      This patch contains generic part of the code.  Actual segment preparation
      and loading is done by arch and image specific loader.  Which comes in
      next patch.
      
      [akpm@linux-foundation.org: coding-style fixes]
      Signed-off-by: NVivek Goyal <vgoyal@redhat.com>
      Cc: Borislav Petkov <bp@suse.de>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Cc: Eric Biederman <ebiederm@xmission.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Matthew Garrett <mjg59@srcf.ucam.org>
      Cc: Greg Kroah-Hartman <greg@kroah.com>
      Cc: Dave Young <dyoung@redhat.com>
      Cc: WANG Chao <chaowang@redhat.com>
      Cc: Baoquan He <bhe@redhat.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      cb105258
    • D
      arch/x86: replace strict_strto calls · 164109e3
      Daniel Walter 提交于
      Replace obsolete strict_strto calls with appropriate kstrto calls
      Signed-off-by: NDaniel Walter <dwalter@google.com>
      Acked-by: NBorislav Petkov <bp@suse.de>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      164109e3
  10. 06 8月, 2014 1 次提交
    • T
      x86: MCE: Add raw_lock conversion again · ed5c41d3
      Thomas Gleixner 提交于
      Commit ea431643 ("x86/mce: Fix CMCI preemption bugs") breaks RT by
      the completely unrelated conversion of the cmci_discover_lock to a
      regular (non raw) spinlock.  This lock was annotated in commit
      59d958d2 ("locking, x86: mce: Annotate cmci_discover_lock as raw")
      with a proper explanation why.
      
      The argument for converting the lock back to a regular spinlock was:
      
       - it does percpu ops without disabling preemption. Preemption is not
         disabled due to the mistaken use of a raw spinlock.
      
      Which is complete nonsense.  The raw_spinlock is disabling preemption in
      the same way as a regular spinlock.  In mainline spinlock maps to
      raw_spinlock, in RT spinlock becomes a "sleeping" lock.
      
      raw_spinlock has on RT exactly the same semantics as in mainline.  And
      because this lock is taken in non preemptible context it must be raw on
      RT.
      
      Undo the locking brainfart.
      Reported-by: NClark Williams <williams@redhat.com>
      Reported-by: NSteven Rostedt <rostedt@goodmis.org>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: stable@vger.kernel.org
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ed5c41d3
  11. 03 8月, 2014 1 次提交
  12. 02 8月, 2014 1 次提交
  13. 31 7月, 2014 10 次提交
  14. 29 7月, 2014 1 次提交
  15. 26 7月, 2014 4 次提交
  16. 24 7月, 2014 3 次提交
  17. 23 7月, 2014 3 次提交
  18. 22 7月, 2014 1 次提交
    • S
      x86_32, entry: Store badsys error code in %eax · 8142b215
      Sven Wegener 提交于
      Commit 554086d8 ("x86_32, entry: Do syscall exit work on badsys
      (CVE-2014-4508)") introduced a regression in the x86_32 syscall entry
      code, resulting in syscall() not returning proper errors for undefined
      syscalls on CPUs supporting the sysenter feature.
      
      The following code:
      
      > int result = syscall(666);
      > printf("result=%d errno=%d error=%s\n", result, errno, strerror(errno));
      
      results in:
      
      > result=666 errno=0 error=Success
      
      Obviously, the syscall return value is the called syscall number, but it
      should have been an ENOSYS error. When run under ptrace it behaves
      correctly, which makes it hard to debug in the wild:
      
      > result=-1 errno=38 error=Function not implemented
      
      The %eax register is the return value register. For debugging via ptrace
      the syscall entry code stores the complete register context on the
      stack. The badsys handlers only store the ENOSYS error code in the
      ptrace register set and do not set %eax like a regular syscall handler
      would. The old resume_userspace call chain contains code that clobbers
      %eax and it restores %eax from the ptrace registers afterwards. The same
      goes for the ptrace-enabled call chain. When ptrace is not used, the
      syscall return value is the passed-in syscall number from the untouched
      %eax register.
      
      Use %eax as the return value register in syscall_badsys and
      sysenter_badsys, like a real syscall handler does, and have the caller
      push the value onto the stack for ptrace access.
      Signed-off-by: NSven Wegener <sven.wegener@stealer.net>
      Link: http://lkml.kernel.org/r/alpine.LNX.2.11.1407221022380.31021@titan.int.lan.stealer.netReviewed-and-tested-by: NAndy Lutomirski <luto@amacapital.net>
      Cc: <stable@vger.kernel.org> # If 554086d8 is backported
      Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
      8142b215