1. 08 2月, 2006 1 次提交
  2. 23 1月, 2006 1 次提交
  3. 19 1月, 2006 1 次提交
  4. 13 1月, 2006 2 次提交
  5. 12 1月, 2006 1 次提交
  6. 11 1月, 2006 1 次提交
  7. 09 1月, 2006 1 次提交
  8. 29 12月, 2005 1 次提交
  9. 23 12月, 2005 1 次提交
  10. 16 12月, 2005 4 次提交
  11. 23 11月, 2005 1 次提交
    • H
      [PATCH] unpaged: fix sound Bad page states · f3d48f03
      Hugh Dickins 提交于
      Earlier I unifdefed PageCompound, so that snd_pcm_mmap_control_nopage and
      others can give out a 0-order component of a higher-order page, which won't
      be mistakenly freed when zap_pte_range unmaps it.  But many Bad page states
      reported a PG_reserved was freed after all: I had missed that we need to
      say __GFP_COMP to get compound page behaviour.
      
      Some of these higher-order pages are allocated by snd_malloc_pages, some by
      snd_malloc_dev_pages; or if SBUS, by sbus_alloc_consistent - but that has
      no gfp arg, so add __GFP_COMP into its sparc32/64 implementations.
      
      I'm still rather puzzled that DRM seems not to need a similar change.
      Signed-off-by: NHugh Dickins <hugh@veritas.com>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      f3d48f03
  12. 10 11月, 2005 1 次提交
  13. 09 11月, 2005 2 次提交
    • N
      [PATCH] sched: resched and cpu_idle rework · 64c7c8f8
      Nick Piggin 提交于
      Make some changes to the NEED_RESCHED and POLLING_NRFLAG to reduce
      confusion, and make their semantics rigid.  Improves efficiency of
      resched_task and some cpu_idle routines.
      
      * In resched_task:
      - TIF_NEED_RESCHED is only cleared with the task's runqueue lock held,
        and as we hold it during resched_task, then there is no need for an
        atomic test and set there. The only other time this should be set is
        when the task's quantum expires, in the timer interrupt - this is
        protected against because the rq lock is irq-safe.
      
      - If TIF_NEED_RESCHED is set, then we don't need to do anything. It
        won't get unset until the task get's schedule()d off.
      
      - If we are running on the same CPU as the task we resched, then set
        TIF_NEED_RESCHED and no further action is required.
      
      - If we are running on another CPU, and TIF_POLLING_NRFLAG is *not* set
        after TIF_NEED_RESCHED has been set, then we need to send an IPI.
      
      Using these rules, we are able to remove the test and set operation in
      resched_task, and make clear the previously vague semantics of
      POLLING_NRFLAG.
      
      * In idle routines:
      - Enter cpu_idle with preempt disabled. When the need_resched() condition
        becomes true, explicitly call schedule(). This makes things a bit clearer
        (IMO), but haven't updated all architectures yet.
      
      - Many do a test and clear of TIF_NEED_RESCHED for some reason. According
        to the resched_task rules, this isn't needed (and actually breaks the
        assumption that TIF_NEED_RESCHED is only cleared with the runqueue lock
        held). So remove that. Generally one less locked memory op when switching
        to the idle thread.
      
      - Many idle routines clear TIF_POLLING_NRFLAG, and only set it in the inner
        most polling idle loops. The above resched_task semantics allow it to be
        set until before the last time need_resched() is checked before going into
        a halt requiring interrupt wakeup.
      
        Many idle routines simply never enter such a halt, and so POLLING_NRFLAG
        can be always left set, completely eliminating resched IPIs when rescheduling
        the idle task.
      
        POLLING_NRFLAG width can be increased, to reduce the chance of resched IPIs.
      Signed-off-by: NNick Piggin <npiggin@suse.de>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Con Kolivas <kernel@kolivas.org>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      64c7c8f8
    • N
      [PATCH] sched: disable preempt in idle tasks · 5bfb5d69
      Nick Piggin 提交于
      Run idle threads with preempt disabled.
      
      Also corrected a bugs in arm26's cpu_idle (make it actually call schedule()).
      How did it ever work before?
      
      Might fix the CPU hotplugging hang which Nigel Cunningham noted.
      
      We think the bug hits if the idle thread is preempted after checking
      need_resched() and before going to sleep, then the CPU offlined.
      
      After calling stop_machine_run, the CPU eventually returns from preemption and
      into the idle thread and goes to sleep.  The CPU will continue executing
      previous idle and have no chance to call play_dead.
      
      By disabling preemption until we are ready to explicitly schedule, this bug is
      fixed and the idle threads generally become more robust.
      
      From: alexs <ashepard@u.washington.edu>
      
        PPC build fix
      
      From: Yoichi Yuasa <yuasa@hh.iij4u.or.jp>
      
        MIPS build fix
      Signed-off-by: NNick Piggin <npiggin@suse.de>
      Signed-off-by: NYoichi Yuasa <yuasa@hh.iij4u.or.jp>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      5bfb5d69
  14. 08 11月, 2005 2 次提交
  15. 31 10月, 2005 2 次提交
  16. 04 10月, 2005 1 次提交
  17. 29 9月, 2005 1 次提交
  18. 12 9月, 2005 1 次提交
  19. 11 9月, 2005 1 次提交
    • I
      [PATCH] spinlock consolidation · fb1c8f93
      Ingo Molnar 提交于
      This patch (written by me and also containing many suggestions of Arjan van
      de Ven) does a major cleanup of the spinlock code.  It does the following
      things:
      
       - consolidates and enhances the spinlock/rwlock debugging code
      
       - simplifies the asm/spinlock.h files
      
       - encapsulates the raw spinlock type and moves generic spinlock
         features (such as ->break_lock) into the generic code.
      
       - cleans up the spinlock code hierarchy to get rid of the spaghetti.
      
      Most notably there's now only a single variant of the debugging code,
      located in lib/spinlock_debug.c.  (previously we had one SMP debugging
      variant per architecture, plus a separate generic one for UP builds)
      
      Also, i've enhanced the rwlock debugging facility, it will now track
      write-owners.  There is new spinlock-owner/CPU-tracking on SMP builds too.
      All locks have lockup detection now, which will work for both soft and hard
      spin/rwlock lockups.
      
      The arch-level include files now only contain the minimally necessary
      subset of the spinlock code - all the rest that can be generalized now
      lives in the generic headers:
      
       include/asm-i386/spinlock_types.h       |   16
       include/asm-x86_64/spinlock_types.h     |   16
      
      I have also split up the various spinlock variants into separate files,
      making it easier to see which does what. The new layout is:
      
         SMP                         |  UP
         ----------------------------|-----------------------------------
         asm/spinlock_types_smp.h    |  linux/spinlock_types_up.h
         linux/spinlock_types.h      |  linux/spinlock_types.h
         asm/spinlock_smp.h          |  linux/spinlock_up.h
         linux/spinlock_api_smp.h    |  linux/spinlock_api_up.h
         linux/spinlock.h            |  linux/spinlock.h
      
      /*
       * here's the role of the various spinlock/rwlock related include files:
       *
       * on SMP builds:
       *
       *  asm/spinlock_types.h: contains the raw_spinlock_t/raw_rwlock_t and the
       *                        initializers
       *
       *  linux/spinlock_types.h:
       *                        defines the generic type and initializers
       *
       *  asm/spinlock.h:       contains the __raw_spin_*()/etc. lowlevel
       *                        implementations, mostly inline assembly code
       *
       *   (also included on UP-debug builds:)
       *
       *  linux/spinlock_api_smp.h:
       *                        contains the prototypes for the _spin_*() APIs.
       *
       *  linux/spinlock.h:     builds the final spin_*() APIs.
       *
       * on UP builds:
       *
       *  linux/spinlock_type_up.h:
       *                        contains the generic, simplified UP spinlock type.
       *                        (which is an empty structure on non-debug builds)
       *
       *  linux/spinlock_types.h:
       *                        defines the generic type and initializers
       *
       *  linux/spinlock_up.h:
       *                        contains the __raw_spin_*()/etc. version of UP
       *                        builds. (which are NOPs on non-debug, non-preempt
       *                        builds)
       *
       *   (included on UP-non-debug builds:)
       *
       *  linux/spinlock_api_up.h:
       *                        builds the _spin_*() APIs.
       *
       *  linux/spinlock.h:     builds the final spin_*() APIs.
       */
      
      All SMP and UP architectures are converted by this patch.
      
      arm, i386, ia64, ppc, ppc64, s390/s390x, x64 was build-tested via
      crosscompilers.  m32r, mips, sh, sparc, have not been tested yet, but should
      be mostly fine.
      
      From: Grant Grundler <grundler@parisc-linux.org>
      
        Booted and lightly tested on a500-44 (64-bit, SMP kernel, dual CPU).
        Builds 32-bit SMP kernel (not booted or tested).  I did not try to build
        non-SMP kernels.  That should be trivial to fix up later if necessary.
      
        I converted bit ops atomic_hash lock to raw_spinlock_t.  Doing so avoids
        some ugly nesting of linux/*.h and asm/*.h files.  Those particular locks
        are well tested and contained entirely inside arch specific code.  I do NOT
        expect any new issues to arise with them.
      
       If someone does ever need to use debug/metrics with them, then they will
        need to unravel this hairball between spinlocks, atomic ops, and bit ops
        that exist only because parisc has exactly one atomic instruction: LDCW
        (load and clear word).
      
      From: "Luck, Tony" <tony.luck@intel.com>
      
         ia64 fix
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      Signed-off-by: NArjan van de Ven <arjanv@infradead.org>
      Signed-off-by: NGrant Grundler <grundler@parisc-linux.org>
      Cc: Matthew Wilcox <willy@debian.org>
      Signed-off-by: NHirokazu Takata <takata@linux-m32r.org>
      Signed-off-by: NMikael Pettersson <mikpe@csd.uu.se>
      Signed-off-by: NBenoit Boissinot <benoit.boissinot@ens-lyon.org>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      fb1c8f93
  20. 10 9月, 2005 1 次提交
  21. 08 9月, 2005 1 次提交
  22. 02 9月, 2005 1 次提交
  23. 30 8月, 2005 2 次提交
    • K
      [SPARC]: remove use of asm/segment.h · ca7c8d2c
      Kumar Gala 提交于
      Removed sparc architecture specific users of asm/segment.h and
      asm-sparc/segment.h itself
      Signed-off-by: NKumar Gala <kumar.gala@freescale.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      ca7c8d2c
    • S
      [PATCH] convert signal handling of NODEFER to act like other Unix boxes. · 69be8f18
      Steven Rostedt 提交于
      It has been reported that the way Linux handles NODEFER for signals is
      not consistent with the way other Unix boxes handle it.  I've written a
      program to test the behavior of how this flag affects signals and had
      several reports from people who ran this on various Unix boxes,
      confirming that Linux seems to be unique on the way this is handled.
      
      The way NODEFER affects signals on other Unix boxes is as follows:
      
      1) If NODEFER is set, other signals in sa_mask are still blocked.
      
      2) If NODEFER is set and the signal is in sa_mask, then the signal is
      still blocked. (Note: this is the behavior of all tested but Linux _and_
      NetBSD 2.0 *).
      
      The way NODEFER affects signals on Linux:
      
      1) If NODEFER is set, other signals are _not_ blocked regardless of
      sa_mask (Even NetBSD doesn't do this).
      
      2) If NODEFER is set and the signal is in sa_mask, then the signal being
      handled is not blocked.
      
      The patch converts signal handling in all current Linux architectures to
      the way most Unix boxes work.
      
      Unix boxes that were tested:  DU4, AIX 5.2, Irix 6.5, NetBSD 2.0, SFU
      3.5 on WinXP, AIX 5.3, Mac OSX, and of course Linux 2.6.13-rcX.
      
      * NetBSD was the only other Unix to behave like Linux on point #2. The
      main concern was brought up by point #1 which even NetBSD isn't like
      Linux.  So with this patch, we leave NetBSD as the lonely one that
      behaves differently here with #2.
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      69be8f18
  24. 20 8月, 2005 1 次提交
    • A
      [SPARC]: Fix weak aliases · 83c4e437
      Al Viro 提交于
      sparc_ksyms.c used to declare weak alias to several gcc intrinsics.  It
      doesn't work with gcc4 anymore - it wants a declaration for the thing
      we are aliasing to and that's not going to happen for something like
      .mul, etc.  Replaced with direct injection of weak alias on the assembler
      level - .weak <alias> followed by <alias> = <aliased>; that works on all
      gcc versions.
      Signed-off-by: NAl Viro <viro@parcelfarce.linux.theplanet.co.uk>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      83c4e437
  25. 28 7月, 2005 1 次提交
  26. 27 7月, 2005 1 次提交
  27. 11 7月, 2005 1 次提交
  28. 06 5月, 2005 1 次提交
  29. 01 5月, 2005 1 次提交
  30. 25 4月, 2005 3 次提交