- 07 5月, 2016 1 次提交
-
-
由 Alexei Starovoitov 提交于
cleanup verifier code and prepare it for addition of "pointer to packet" logic Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 29 4月, 2016 2 次提交
-
-
由 Alexei Starovoitov 提交于
The commit 35578d79 ("bpf: Implement function bpf_perf_event_read() that get the selected hardware PMU conuter") introduced clever way to check bpf_helper<->map_type compatibility. Later on commit a43eec30 ("bpf: introduce bpf_perf_event_output() helper") adjusted the logic and inadvertently broke it. Get rid of the clever bool compare and go back to two-way check from map and from helper perspective. Fixes: a43eec30 ("bpf: introduce bpf_perf_event_output() helper") Reported-by: NJann Horn <jannh@google.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
On a system with >32Gbyte of phyiscal memory and infinite RLIMIT_MEMLOCK, the malicious application may overflow 32-bit bpf program refcnt. It's also possible to overflow map refcnt on 1Tb system. Impose 32k hard limit which means that the same bpf program or map cannot be shared by more than 32k processes. Fixes: 1be7f75d ("bpf: enable non-root eBPF programs") Reported-by: NJann Horn <jannh@google.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 27 4月, 2016 1 次提交
-
-
由 Jann Horn 提交于
When bpf(BPF_PROG_LOAD, ...) was invoked with a BPF program whose bytecode references a non-map file descriptor as a map file descriptor, the error handling code called fdput() twice instead of once (in __bpf_map_get() and in replace_map_fd_with_map_ptr()). If the file descriptor table of the current task is shared, this causes f_count to be decremented too much, allowing the struct file to be freed while it is still in use (use-after-free). This can be exploited to gain root privileges by an unprivileged user. This bug was introduced in commit 0246e64d ("bpf: handle pseudo BPF_LD_IMM64 insn"), but is only exploitable since commit 1be7f75d ("bpf: enable non-root eBPF programs") because previously, CAP_SYS_ADMIN was required to reach the vulnerable code. (posted publicly according to request by maintainer) Signed-off-by: NJann Horn <jannh@google.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Acked-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 4月, 2016 1 次提交
-
-
由 Daniel Borkmann 提交于
This patch adds a new helper for cls/act programs that can push events to user space applications. For networking, this can be f.e. for sampling, debugging, logging purposes or pushing of arbitrary wake-up events. The idea is similar to a43eec30 ("bpf: introduce bpf_perf_event_output() helper") and 39111695 ("samples: bpf: add bpf_perf_event_output example"). The eBPF program utilizes a perf event array map that user space populates with fds from perf_event_open(), the eBPF program calls into the helper f.e. as skb_event_output(skb, &my_map, BPF_F_CURRENT_CPU, raw, sizeof(raw)) so that the raw data is pushed into the fd f.e. at the map index of the current CPU. User space can poll/mmap/etc on this and has a data channel for receiving events that can be post-processed. The nice thing is that since the eBPF program and user space application making use of it are tightly coupled, they can define their own arbitrary raw data format and what/when they want to push. While f.e. packet headers could be one part of the meta data that is being pushed, this is not a substitute for things like packet sockets as whole packet is not being pushed and push is only done in a single direction. Intention is more of a generically usable, efficient event pipe to applications. Workflow is that tc can pin the map and applications can attach themselves e.g. after cls/act setup to one or multiple map slots, demuxing is done by the eBPF program. Adding this facility is with minimal effort, it reuses the helper introduced in a43eec30 ("bpf: introduce bpf_perf_event_output() helper") and we get its functionality for free by overloading its BPF_FUNC_ identifier for cls/act programs, ctx is currently unused, but will be made use of in future. Example will be added to iproute2's BPF example files. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 15 4月, 2016 3 次提交
-
-
由 Daniel Borkmann 提交于
This patch converts all helpers that can use ARG_PTR_TO_RAW_STACK as argument type. For tc programs this is bpf_skb_load_bytes(), bpf_skb_get_tunnel_key(), bpf_skb_get_tunnel_opt(). For tracing, this optimizes bpf_get_current_comm() and bpf_probe_read(). The check in bpf_skb_load_bytes() for MAX_BPF_STACK can also be removed since the verifier already makes sure we stay within bounds on stack buffers. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Daniel Borkmann 提交于
When passing buffers from eBPF stack space into a helper function, we have ARG_PTR_TO_STACK argument type for helpers available. The verifier makes sure that such buffers are initialized, within boundaries, etc. However, the downside with this is that we have a couple of helper functions such as bpf_skb_load_bytes() that fill out the passed buffer in the expected success case anyway, so zero initializing them prior to the helper call is unneeded/wasted instructions in the eBPF program that can be avoided. Therefore, add a new helper function argument type called ARG_PTR_TO_RAW_STACK. The idea is to skip the STACK_MISC check in check_stack_boundary() and color the related stack slots as STACK_MISC after we checked all call arguments. Helper functions using ARG_PTR_TO_RAW_STACK must make sure that every path of the helper function will fill the provided buffer area, so that we cannot leak any uninitialized stack memory. This f.e. means that error paths need to memset() the buffers, but the expected fast-path doesn't have to do this anymore. Since there's no such helper needing more than at most one ARG_PTR_TO_RAW_STACK argument, we can keep it simple and don't need to check for multiple areas. Should in future such a use-case really appear, we have check_raw_mode() that will make sure we implement support for it first. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Daniel Borkmann 提交于
Currently, when the verifier checks calls in check_call() function, we call check_func_arg() for all 5 arguments e.g. to make sure expected types are correct. In some cases, we collect meta data (here: map pointer) to perform additional checks such as checking stack boundary on key/value sizes for subsequent arguments. As we're going to extend the meta data, add a generic struct bpf_call_arg_meta that we can use for passing into check_func_arg(). Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 14 4月, 2016 1 次提交
-
-
由 Alexei Starovoitov 提交于
verifier must check for reserved size bits in instruction opcode and reject BPF_LD | BPF_ABS | BPF_DW and BPF_LD | BPF_IND | BPF_DW instructions, otherwise interpreter will WARN_RATELIMIT on them during execution. Fixes: ddd872bc ("bpf: verifier: add checks for BPF_ABS | BPF_IND instructions") Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 11 4月, 2016 1 次提交
-
-
由 Alexei Starovoitov 提交于
verifier is using the following structure to track the state of registers: struct reg_state { enum bpf_reg_type type; union { int imm; struct bpf_map *map_ptr; }; }; and later on in states_equal() does memcmp(&old->regs[i], &cur->regs[i],..) to find equivalent states. Throughout the code of verifier there are assignements to 'imm' and 'map_ptr' fields and it's not obvious that most of the assignments into 'imm' don't need to clear extra 4 bytes (like mark_reg_unknown_value() does) to make sure that memcmp doesn't go over junk left from 'map_ptr' assignment. Simplify the code by converting 'int' into 'long' Suggested-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 09 4月, 2016 1 次提交
-
-
由 Daniel Borkmann 提交于
The verifier needs to go through every path of the program in order to check that it terminates safely, which can be quite a lot of instructions that need to be processed f.e. in cases with more branchy programs. With search pruning from f1bca824 ("bpf: add search pruning optimization to verifier") the search space can already be reduced significantly when the verifier detects that a previously walked path with same register and stack contents terminated already (see verifier's states_equal()), so the search can skip walking those states. When working with larger programs of > ~2000 (out of max 4096) insns, we found that the current limit of 32k instructions is easily hit. For example, a case we ran into is that the search space cannot be pruned due to branches at the beginning of the program that make use of certain stack space slots (STACK_MISC), which are never used in the remaining program (STACK_INVALID). Therefore, the verifier needs to walk paths for the slots in STACK_INVALID state, but also all remaining paths with a stack structure, where the slots are in STACK_MISC, which can nearly double the search space needed. After various experiments, we find that a limit of 64k processed insns is a more reasonable choice when dealing with larger programs in practice. This still allows to reject extreme crafted cases that can have a much higher complexity (f.e. > ~300k) within the 4096 insns limit due to search pruning not being able to take effect. Furthermore, we found that a lot of states can be pruned after a call instruction, f.e. we were able to reduce the search state by ~35% in some cases with this heuristic, trade-off is to keep a bit more states in env->explored_states. Usually, call instructions have a number of preceding register assignments and/or stack stores, where search pruning has a better chance to suceed in states_equal() test. The current code marks the branch targets with STATE_LIST_MARK in case of conditional jumps, and the next (t + 1) instruction in case of unconditional jump so that f.e. a backjump will walk it. We also did experiments with using t + insns[t].off + 1 as a marker in the unconditionally jump case instead of t + 1 with the rationale that these two branches of execution that converge after the label might have more potential of pruning. We found that it was a bit better, but not necessarily significantly better than the current state, perhaps also due to clang not generating back jumps often. Hence, we left that as is for now. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 08 4月, 2016 2 次提交
-
-
由 Alexei Starovoitov 提交于
during bpf program loading remember the last byte of ctx access and at the time of attaching the program to tracepoint check that the program doesn't access bytes beyond defined in tracepoint fields This also disallows access to __dynamic_array fields, but can be relaxed in the future. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
needs two wrapper functions to fetch 'struct pt_regs *' to convert tracepoint bpf context into kprobe bpf context to reuse existing helper functions Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 25 3月, 2016 1 次提交
-
-
由 Daniel Borkmann 提交于
Add map_flags attribute to bpf_map_show_fdinfo(), so that tools like tc can check for them when loading objects from a pinned entry, e.g. if user intent wrt allocation (BPF_F_NO_PREALLOC) is different to the pinned object, it can bail out. Follow-up to 6c905981 ("bpf: pre-allocate hash map elements"), so that tc can still support this with v4.6. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 10 3月, 2016 2 次提交
-
-
由 Alexei Starovoitov 提交于
Lots of places in the kernel use memcpy(buf, comm, TASK_COMM_LEN); but the result is typically passed to print("%s", buf) and extra bytes after zero don't cause any harm. In bpf the result of bpf_get_current_comm() is used as the part of map key and was causing spurious hash map mismatches. Use strlcpy() to guarantee zero-terminated string. bpf verifier checks that output buffer is zero-initialized, so even for short task names the output buffer don't have junk bytes. Note it's not a security concern, since kprobe+bpf is root only. Fixes: ffeedafb ("bpf: introduce current->pid, tgid, uid, gid, comm accessors") Reported-by: NTobias Waldekranz <tobias@waldekranz.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
0-day bot reported build error: kernel/built-in.o: In function `map_lookup_elem': >> kernel/bpf/.tmp_syscall.o:(.text+0x329b3c): undefined reference to `bpf_stackmap_copy' when CONFIG_BPF_SYSCALL is set and CONFIG_PERF_EVENTS is not. Add weak definition to resolve it. This code path in map_lookup_elem() is never taken when CONFIG_PERF_EVENTS is not set. Fixes: 557c0c6e ("bpf: convert stackmap to pre-allocation") Reported-by: NFengguang Wu <fengguang.wu@intel.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 09 3月, 2016 5 次提交
-
-
由 Alexei Starovoitov 提交于
It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f6 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
Suggested-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
If kprobe is placed on spin_unlock then calling kmalloc/kfree from bpf programs is not safe, since the following dead lock is possible: kfree->spin_lock(kmem_cache_node->lock)...spin_unlock->kprobe-> bpf_prog->map_update->kmalloc->spin_lock(of the same kmem_cache_node->lock) and deadlocks. The following solutions were considered and some implemented, but eventually discarded - kmem_cache_create for every map - add recursion check to slow-path of slub - use reserved memory in bpf_map_update for in_irq or in preempt_disabled - kmalloc via irq_work At the end pre-allocation of all map elements turned out to be the simplest solution and since the user is charged upfront for all the memory, such pre-allocation doesn't affect the user space visible behavior. Since it's impossible to tell whether kprobe is triggered in a safe location from kmalloc point of view, use pre-allocation by default and introduce new BPF_F_NO_PREALLOC flag. While testing of per-cpu hash maps it was discovered that alloc_percpu(GFP_ATOMIC) has odd corner cases and often fails to allocate memory even when 90% of it is free. The pre-allocation of per-cpu hash elements solves this problem as well. Turned out that bpf_map_update() quickly followed by bpf_map_lookup()+bpf_map_delete() is very common pattern used in many of iovisor/bcc/tools, so there is additional benefit of pre-allocation, since such use cases are must faster. Since all hash map elements are now pre-allocated we can remove atomic increment of htab->count and save few more cycles. Also add bpf_map_precharge_memlock() to check rlimit_memlock early to avoid large malloc/free done by users who don't have sufficient limits. Pre-allocation is done with vmalloc and alloc/free is done via percpu_freelist. Here are performance numbers for different pre-allocation algorithms that were implemented, but discarded in favor of percpu_freelist: 1 cpu: pcpu_ida 2.1M pcpu_ida nolock 2.3M bt 2.4M kmalloc 1.8M hlist+spinlock 2.3M pcpu_freelist 2.6M 4 cpu: pcpu_ida 1.5M pcpu_ida nolock 1.8M bt w/smp_align 1.7M bt no/smp_align 1.1M kmalloc 0.7M hlist+spinlock 0.2M pcpu_freelist 2.0M 8 cpu: pcpu_ida 0.7M bt w/smp_align 0.8M kmalloc 0.4M pcpu_freelist 1.5M 32 cpu: kmalloc 0.13M pcpu_freelist 0.49M pcpu_ida nolock is a modified percpu_ida algorithm without percpu_ida_cpu locks and without cross-cpu tag stealing. It's faster than existing percpu_ida, but not as fast as pcpu_freelist. bt is a variant of block/blk-mq-tag.c simlified and customized for bpf use case. bt w/smp_align is using cache line for every 'long' (similar to blk-mq-tag). bt no/smp_align allocates 'long' bitmasks continuously to save memory. It's comparable to percpu_ida and in some cases faster, but slower than percpu_freelist hlist+spinlock is the simplest free list with single spinlock. As expeceted it has very bad scaling in SMP. kmalloc is existing implementation which is still available via BPF_F_NO_PREALLOC flag. It's significantly slower in single cpu and in 8 cpu setup it's 3 times slower than pre-allocation with pcpu_freelist, but saves memory, so in cases where map->max_entries can be large and number of map update/delete per second is low, it may make sense to use it. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
Introduce simple percpu_freelist to keep single list of elements spread across per-cpu singly linked lists. /* push element into the list */ void pcpu_freelist_push(struct pcpu_freelist *, struct pcpu_freelist_node *); /* pop element from the list */ struct pcpu_freelist_node *pcpu_freelist_pop(struct pcpu_freelist *); The object is pushed to the current cpu list. Pop first trying to get the object from the current cpu list, if it's empty goes to the neigbour cpu list. For bpf program usage pattern the collision rate is very low, since programs push and pop the objects typically on the same cpu. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
if kprobe is placed within update or delete hash map helpers that hold bucket spin lock and triggered bpf program is trying to grab the spinlock for the same bucket on the same cpu, it will deadlock. Fix it by extending existing recursion prevention mechanism. Note, map_lookup and other tracing helpers don't have this problem, since they don't hold any locks and don't modify global data. bpf_trace_printk has its own recursive check and ok as well. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 29 2月, 2016 1 次提交
-
-
由 Josh Poimboeuf 提交于
objtool reports the following false positive warnings: kernel/bpf/core.o: warning: objtool: __bpf_prog_run()+0x5c: sibling call from callable instruction with changed frame pointer kernel/bpf/core.o: warning: objtool: __bpf_prog_run()+0x60: function has unreachable instruction kernel/bpf/core.o: warning: objtool: __bpf_prog_run()+0x64: function has unreachable instruction [...] It's confused by the following dynamic jump instruction in __bpf_prog_run():: jmp *(%r12,%rax,8) which corresponds to the following line in the C code: goto *jumptable[insn->code]; There's no way for objtool to deterministically find all possible branch targets for a dynamic jump, so it can't verify this code. In this case the jumps all stay within the function, and there's nothing unusual going on related to the stack, so we can whitelist the function. Signed-off-by: NJosh Poimboeuf <jpoimboe@redhat.com> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris J Arges <chris.j.arges@canonical.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Pedro Alves <palves@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: live-patching@vger.kernel.org Cc: netdev@vger.kernel.org Link: http://lkml.kernel.org/r/b90e6bf3fdbfb5c4cc1b164b965502e53cf48935.1456719558.git.jpoimboe@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 22 2月, 2016 1 次提交
-
-
由 Daniel Borkmann 提交于
Currently, when we pass a buffer from the eBPF stack into a helper function, the function proto indicates argument types as ARG_PTR_TO_STACK and ARG_CONST_STACK_SIZE pair. If R<X> contains the former, then R<X+1> must be of the latter type. Then, verifier checks whether the buffer points into eBPF stack, is initialized, etc. The verifier also guarantees that the constant value passed in R<X+1> is greater than 0, so helper functions don't need to test for it and can always assume a non-NULL initialized buffer as well as non-0 buffer size. This patch adds a new argument types ARG_CONST_STACK_SIZE_OR_ZERO that allows to also pass NULL as R<X> and 0 as R<X+1> into the helper function. Such helper functions, of course, need to be able to handle these cases internally then. Verifier guarantees that either R<X> == NULL && R<X+1> == 0 or R<X> != NULL && R<X+1> != 0 (like the case of ARG_CONST_STACK_SIZE), any other combinations are not possible to load. I went through various options of extending the verifier, and introducing the type ARG_CONST_STACK_SIZE_OR_ZERO seems to have most minimal changes needed to the verifier. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 2月, 2016 2 次提交
-
-
由 Alexei Starovoitov 提交于
add new map type to store stack traces and corresponding helper bpf_get_stackid(ctx, map, flags) - walk user or kernel stack and return id @ctx: struct pt_regs* @map: pointer to stack_trace map @flags: bits 0-7 - numer of stack frames to skip bit 8 - collect user stack instead of kernel bit 9 - compare stacks by hash only bit 10 - if two different stacks hash into the same stackid discard old other bits - reserved Return: >= 0 stackid on success or negative error stackid is a 32-bit integer handle that can be further combined with other data (including other stackid) and used as a key into maps. Userspace will access stackmap using standard lookup/delete syscall commands to retrieve full stack trace for given stackid. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Sasha Levin 提交于
bpf_percpu_hash_update() expects rcu lock to be held and warns if it's not, which pointed out a missing rcu read lock. Fixes: 15a07b33 ("bpf: add lookup/update support for per-cpu hash and array maps") Signed-off-by: NSasha Levin <sasha.levin@oracle.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 11 2月, 2016 1 次提交
-
-
由 Daniel Borkmann 提交于
When ctx access is used, the kernel often needs to expand/rewrite instructions, so after that patching, branch offsets have to be adjusted for both forward and backward jumps in the new eBPF program, but for backward jumps it fails to account the delta. Meaning, for example, if the expansion happens exactly on the insn that sits at the jump target, it doesn't fix up the back jump offset. Analysis on what the check in adjust_branches() is currently doing: /* adjust offset of jmps if necessary */ if (i < pos && i + insn->off + 1 > pos) insn->off += delta; else if (i > pos && i + insn->off + 1 < pos) insn->off -= delta; First condition (forward jumps): Before: After: insns[0] insns[0] insns[1] <--- i/insn insns[1] <--- i/insn insns[2] <--- pos insns[P] <--- pos insns[3] insns[P] `------| delta insns[4] <--- target_X insns[P] `-----| insns[5] insns[3] insns[4] <--- target_X insns[5] First case is if we cross pos-boundary and the jump instruction was before pos. This is handeled correctly. I.e. if i == pos, then this would mean our jump that we currently check was the patchlet itself that we just injected. Since such patchlets are self-contained and have no awareness of any insns before or after the patched one, the delta is correctly not adjusted. Also, for the second condition in case of i + insn->off + 1 == pos, means we jump to that newly patched instruction, so no offset adjustment are needed. That part is correct. Second condition (backward jumps): Before: After: insns[0] insns[0] insns[1] <--- target_X insns[1] <--- target_X insns[2] <--- pos <-- target_Y insns[P] <--- pos <-- target_Y insns[3] insns[P] `------| delta insns[4] <--- i/insn insns[P] `-----| insns[5] insns[3] insns[4] <--- i/insn insns[5] Second interesting case is where we cross pos-boundary and the jump instruction was after pos. Backward jump with i == pos would be impossible and pose a bug somewhere in the patchlet, so the first condition checking i > pos is okay only by itself. However, i + insn->off + 1 < pos does not always work as intended to trigger the adjustment. It works when jump targets would be far off where the delta wouldn't matter. But, for example, where the fixed insn->off before pointed to pos (target_Y), it now points to pos + delta, so that additional room needs to be taken into account for the check. This means that i) both tests here need to be adjusted into pos + delta, and ii) for the second condition, the test needs to be <= as pos itself can be a target in the backjump, too. Fixes: 9bac3d6d ("bpf: allow extended BPF programs access skb fields") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 06 2月, 2016 3 次提交
-
-
由 Alexei Starovoitov 提交于
The functions bpf_map_lookup_elem(map, key, value) and bpf_map_update_elem(map, key, value, flags) need to get/set values from all-cpus for per-cpu hash and array maps, so that user space can aggregate/update them as necessary. Example of single counter aggregation in user space: unsigned int nr_cpus = sysconf(_SC_NPROCESSORS_CONF); long values[nr_cpus]; long value = 0; bpf_lookup_elem(fd, key, values); for (i = 0; i < nr_cpus; i++) value += values[i]; The user space must provide round_up(value_size, 8) * nr_cpus array to get/set values, since kernel will use 'long' copy of per-cpu values to try to copy good counters atomically. It's a best-effort, since bpf programs and user space are racing to access the same memory. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
Primary use case is a histogram array of latency where bpf program computes the latency of block requests or other events and stores histogram of latency into array of 64 elements. All cpus are constantly running, so normal increment is not accurate, bpf_xadd causes cache ping-pong and this per-cpu approach allows fastest collision-free counters. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexei Starovoitov 提交于
Introduce BPF_MAP_TYPE_PERCPU_HASH map type which is used to do accurate counters without need to use BPF_XADD instruction which turned out to be too costly for high-performance network monitoring. In the typical use case the 'key' is the flow tuple or other long living object that sees a lot of events per second. bpf_map_lookup_elem() returns per-cpu area. Example: struct { u32 packets; u32 bytes; } * ptr = bpf_map_lookup_elem(&map, &key); /* ptr points to this_cpu area of the value, so the following * increments will not collide with other cpus */ ptr->packets ++; ptr->bytes += skb->len; bpf_update_elem() atomically creates a new element where all per-cpu values are zero initialized and this_cpu value is populated with given 'value'. Note that non-per-cpu hash map always allocates new element and then deletes old after rcu grace period to maintain atomicity of update. Per-cpu hash map updates element values in-place. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 29 1月, 2016 1 次提交
-
-
由 Alexei Starovoitov 提交于
Robustify refcounting. Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: Wang Nan <wangnan0@huawei.com> Cc: vince@deater.net Link: http://lkml.kernel.org/r/20160126045947.GA40151@ast-mbp.thefacebook.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 13 1月, 2016 2 次提交
-
-
由 Rabin Vincent 提交于
On ARM64, a BUG() is triggered in the eBPF JIT if a filter with a constant shift that can't be encoded in the immediate field of the UBFM/SBFM instructions is passed to the JIT. Since these shifts amounts, which are negative or >= regsize, are invalid, reject them in the eBPF verifier and the classic BPF filter checker, for all architectures. Signed-off-by: NRabin Vincent <rabin@rab.in> Acked-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Rabin Vincent 提交于
On ARM64, a BUG() is triggered in the eBPF JIT if a filter with a constant shift that can't be encoded in the immediate field of the UBFM/SBFM instructions is passed to the JIT. Since these shifts amounts, which are negative or >= regsize, are invalid, reject them in the eBPF verifier and the classic BPF filter checker, for all architectures. Signed-off-by: NRabin Vincent <rabin@rab.in> Acked-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 12月, 2015 3 次提交
-
-
由 tom.leiming@gmail.com 提交于
Both htab_map_update_elem() and htab_map_delete_elem() can be called from eBPF program, and they may be in kernel hot path, so it isn't efficient to use a per-hashtable lock in this two helpers. The per-hashtable spinlock is used for protecting bucket's hlist, and per-bucket lock is just enough. This patch converts the per-hashtable lock into per-bucket spinlock, so that contention can be decreased a lot. Signed-off-by: NMing Lei <tom.leiming@gmail.com> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 tom.leiming@gmail.com 提交于
The spinlock is just used for protecting the per-bucket hlist, so it isn't needed for selecting bucket. Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NMing Lei <tom.leiming@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 tom.leiming@gmail.com 提交于
Preparing for removing global per-hashtable lock, so the counter need to be defined as aotmic_t first. Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NMing Lei <tom.leiming@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 19 12月, 2015 1 次提交
-
-
由 Daniel Borkmann 提交于
Back in the days where eBPF (or back then "internal BPF" ;->) was not exposed to user space, and only the classic BPF programs internally translated into eBPF programs, we missed the fact that for classic BPF A and X needed to be cleared. It was fixed back then via 83d5b7ef ("net: filter: initialize A and X registers"), and thus classic BPF specifics were added to the eBPF interpreter core to work around it. This added some confusion for JIT developers later on that take the eBPF interpreter code as an example for deriving their JIT. F.e. in f75298f5 ("s390/bpf: clear correct BPF accumulator register"), at least X could leak stack memory. Furthermore, since this is only needed for classic BPF translations and not for eBPF (verifier takes care that read access to regs cannot be done uninitialized), more complexity is added to JITs as they need to determine whether they deal with migrations or native eBPF where they can just omit clearing A/X in their prologue and thus reduce image size a bit, see f.e. cde66c2d ("s390/bpf: Only clear A and X for converted BPF programs"). In other cases (x86, arm64), A and X is being cleared in the prologue also for eBPF case, which is unnecessary. Lets move this into the BPF migration in bpf_convert_filter() where it actually belongs as long as the number of eBPF JITs are still few. It can thus be done generically; allowing us to remove the quirk from __bpf_prog_run() and to slightly reduce JIT image size in case of eBPF, while reducing code duplication on this matter in current(/future) eBPF JITs. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Reviewed-by: NMichael Holzheu <holzheu@linux.vnet.ibm.com> Tested-by: NMichael Holzheu <holzheu@linux.vnet.ibm.com> Cc: Zi Shen Lim <zlim.lnx@gmail.com> Cc: Yang Shi <yang.shi@linaro.org> Acked-by: NYang Shi <yang.shi@linaro.org> Acked-by: NZi Shen Lim <zlim.lnx@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 12月, 2015 1 次提交
-
-
由 Daniel Borkmann 提交于
Add support for renaming and hard links to the fs. Most of this can be implemented by using simple library operations under the same constraints that we don't use a reserved name like elsewhere. Linking can be useful to share/manage things like maps across subsystem users. It works within the file system boundary, but is not allowed for directories. Symbolic links are explicitly not implemented here, as it can be better done already by doing bind mounts inside bpf fs to set up shared directories f.e. useful when using volumes in docker containers that map a private working directory into /sys/fs/bpf/ which contains itself a bind mounted path from the host's /sys/fs/bpf/ mount that is shared among multiple containers. For single maps instead of whole directory, hard links can be easily used to do the same. Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 03 12月, 2015 1 次提交
-
-
由 Alexei Starovoitov 提交于
For large map->value_size the user space can trigger memory allocation warnings like: WARNING: CPU: 2 PID: 11122 at mm/page_alloc.c:2989 __alloc_pages_nodemask+0x695/0x14e0() Call Trace: [< inline >] __dump_stack lib/dump_stack.c:15 [<ffffffff82743b56>] dump_stack+0x68/0x92 lib/dump_stack.c:50 [<ffffffff81244ec9>] warn_slowpath_common+0xd9/0x140 kernel/panic.c:460 [<ffffffff812450f9>] warn_slowpath_null+0x29/0x30 kernel/panic.c:493 [< inline >] __alloc_pages_slowpath mm/page_alloc.c:2989 [<ffffffff81554e95>] __alloc_pages_nodemask+0x695/0x14e0 mm/page_alloc.c:3235 [<ffffffff816188fe>] alloc_pages_current+0xee/0x340 mm/mempolicy.c:2055 [< inline >] alloc_pages include/linux/gfp.h:451 [<ffffffff81550706>] alloc_kmem_pages+0x16/0xf0 mm/page_alloc.c:3414 [<ffffffff815a1c89>] kmalloc_order+0x19/0x60 mm/slab_common.c:1007 [<ffffffff815a1cef>] kmalloc_order_trace+0x1f/0xa0 mm/slab_common.c:1018 [< inline >] kmalloc_large include/linux/slab.h:390 [<ffffffff81627784>] __kmalloc+0x234/0x250 mm/slub.c:3525 [< inline >] kmalloc include/linux/slab.h:463 [< inline >] map_update_elem kernel/bpf/syscall.c:288 [< inline >] SYSC_bpf kernel/bpf/syscall.c:744 To avoid never succeeding kmalloc with order >= MAX_ORDER check that elem->value_size and computed elem_size are within limits for both hash and array type maps. Also add __GFP_NOWARN to kmalloc(value_size | elem_size) to avoid OOM warnings. Note kmalloc(key_size) is highly unlikely to trigger OOM, since key_size <= 512, so keep those kmalloc-s as-is. Large value_size can cause integer overflows in elem_size and map.pages formulas, so check for that as well. Fixes: aaac3ba9 ("bpf: charge user for creation of BPF maps and programs") Reported-by: NDmitry Vyukov <dvyukov@google.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 02 12月, 2015 1 次提交
-
-
由 Daniel Borkmann 提交于
During own review but also reported by Dmitry's syzkaller [1] it has been noticed that we trigger a heap out-of-bounds access on eBPF array maps when updating elements. This happens with each map whose map->value_size (specified during map creation time) is not multiple of 8 bytes. In array_map_alloc(), elem_size is round_up(attr->value_size, 8) and used to align array map slots for faster access. However, in function array_map_update_elem(), we update the element as ... memcpy(array->value + array->elem_size * index, value, array->elem_size); ... where we access 'value' out-of-bounds, since it was allocated from map_update_elem() from syscall side as kmalloc(map->value_size, GFP_USER) and later on copied through copy_from_user(value, uvalue, map->value_size). Thus, up to 7 bytes, we can access out-of-bounds. Same could happen from within an eBPF program, where in worst case we access beyond an eBPF program's designated stack. Since 1be7f75d ("bpf: enable non-root eBPF programs") didn't hit an official release yet, it only affects priviledged users. In case of array_map_lookup_elem(), the verifier prevents eBPF programs from accessing beyond map->value_size through check_map_access(). Also from syscall side map_lookup_elem() only copies map->value_size back to user, so nothing could leak. [1] http://github.com/google/syzkaller Fixes: 28fbcfa0 ("bpf: add array type of eBPF maps") Reported-by: NDmitry Vyukov <dvyukov@google.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 26 11月, 2015 1 次提交
-
-
由 Daniel Borkmann 提交于
Currently, when having map file descriptors pointing to program arrays, there's still the issue that we unconditionally flush program array contents via bpf_fd_array_map_clear() in bpf_map_release(). This happens when such a file descriptor is released and is independent of the map's refcount. Having this flush independent of the refcount is for a reason: there can be arbitrary complex dependency chains among tail calls, also circular ones (direct or indirect, nesting limit determined during runtime), and we need to make sure that the map drops all references to eBPF programs it holds, so that the map's refcount can eventually drop to zero and initiate its freeing. Btw, a walk of the whole dependency graph would not be possible for various reasons, one being complexity and another one inconsistency, i.e. new programs can be added to parts of the graph at any time, so there's no guaranteed consistent state for the time of such a walk. Now, the program array pinning itself works, but the issue is that each derived file descriptor on close would nevertheless call unconditionally into bpf_fd_array_map_clear(). Instead, keep track of users and postpone this flush until the last reference to a user is dropped. As this only concerns a subset of references (f.e. a prog array could hold a program that itself has reference on the prog array holding it, etc), we need to track them separately. Short analysis on the refcounting: on map creation time usercnt will be one, so there's no change in behaviour for bpf_map_release(), if unpinned. If we already fail in map_create(), we are immediately freed, and no file descriptor has been made public yet. In bpf_obj_pin_user(), we need to probe for a possible map in bpf_fd_probe_obj() already with a usercnt reference, so before we drop the reference on the fd with fdput(). Therefore, if actual pinning fails, we need to drop that reference again in bpf_any_put(), otherwise we keep holding it. When last reference drops on the inode, the bpf_any_put() in bpf_evict_inode() will take care of dropping the usercnt again. In the bpf_obj_get_user() case, the bpf_any_get() will grab a reference on the usercnt, still at a time when we have the reference on the path. Should we later on fail to grab a new file descriptor, bpf_any_put() will drop it, otherwise we hold it until bpf_map_release() time. Joint work with Alexei. Fixes: b2197755 ("bpf: add support for persistent maps/progs") Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-