- 11 5月, 2012 1 次提交
-
-
由 Dmitry Torokhov 提交于
Change matrix-keymap helper to be out-of-line, like sparse keymap, allow the helper perform basic keymap validation and return errors, and prepare for device tree support. Signed-off-by: NDmitry Torokhov <dtor@mail.ru>
-
- 01 12月, 2011 1 次提交
-
-
由 JJ Ding 提交于
Commit 940ab889 introduced a new macro to save some platform_driver boilerplate code. Use it. Signed-off-by: NJJ Ding <dgdunix@gmail.com> Signed-off-by: NDmitry Torokhov <dtor@mail.ru>
-
- 13 10月, 2011 1 次提交
-
-
由 Hui Wang 提交于
The imx_keypad driver was indicating that it was wakeup capable in imx_keypad_probe(), but it didn't implement suspend or resume methods. According to the i.MX series MCU Reference Manual, the kpp (keypad port) is a major wake up source which can detect any key press even in low power mode and even when there is no clock. Signed-off-by: NHui Wang <jason77.wang@gmail.com> Reviewed-by: NWanlong Gao <gaowanlong@cn.fujitsu.com> Signed-off-by: NDmitry Torokhov <dtor@mail.ru>
-
- 08 9月, 2011 1 次提交
-
-
由 Yong Zhang 提交于
This flag is a NOOP and can be removed now. Signed-off-by: NYong Zhang <yong.zhang0@gmail.com> Signed-off-by: NDmitry Torokhov <dtor@mail.ru>
-
- 30 3月, 2010 1 次提交
-
-
由 Tejun Heo 提交于
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: NTejun Heo <tj@kernel.org> Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
-
- 01 2月, 2010 1 次提交
-
-
由 Alberto Panizzo 提交于
The IMX family of Application Processors is shipped with a Keypad Port supported by this driver. The peripheral can control up to an 8x8 matrix key pad where all the scanning is done via software. The hardware provides two interrupts: one for key presses (KDI) and one for all key releases (KRI). There is also a simple circuit for glitch reduction (said for synchronization) made by two series of 3 D-latches clocked by the keypad-clock that stabilize the interrupts sources. KDI and KRI are fired only if the respective conditions are maintained for at last 4 keypad-clock cycle. Since those circuits are poor for a correct debounce process (the keypad-clock frequency is 32K and bounces longer than 94us are not masked) the driver, when an interrupt arrives, samples the matrix with a period of 10ms until the readins are stable for IMX_KEYPAD_SCANS_FOR_STABILITY times (currently set at 3). After getting stable result appropriate events are sent through the input stack. If some keys are maintained pressed, the driver continues to scan the matrix with a longer period (60ms) to catch possible multiple key presses without overloading the cpu. This process ends when all keys are released. This driver is tested to build in kernel or as a module and follow the specification of Freescale Application processors: i.MX25 i.MX27 i.MX31 i.MX35 i.MX51 especially tested on i.MX31. Signed-off-by: NAlberto Panizzo <maramaopercheseimorto@gmail.com> Signed-off-by: NDmitry Torokhov <dtor@mail.ru>
-