- 06 5月, 2014 1 次提交
-
-
由 Andy Lutomirski 提交于
This code is used during CPU setup, and it isn't strictly speaking related to the 32-bit vdso. It's easier to understand how this works when the code is closer to its callers. This also lets syscall32_cpu_init be static, which might save some trivial amount of kernel text. Signed-off-by: NAndy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/4e466987204e232d7b55a53ff6b9739f12237461.1399317206.git.luto@amacapital.netSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 07 3月, 2014 1 次提交
-
-
由 Steven Rostedt 提交于
x86_64 uses a per_cpu variable kernel_stack to always point to the thread stack of current. This is where the thread_info is stored and is accessed from this location even when the irq or exception stack is in use. This removes the complexity of having to maintain the thread info on the stack when interrupts are running and having to copy the preempt_count and other fields to the interrupt stack. x86_32 uses the old method of copying the thread_info from the thread stack to the exception stack just before executing the exception. Having the two different requires #ifdefs and also the x86_32 way is a bit of a pain to maintain. By converting x86_32 to the same method of x86_64, we can remove #ifdefs, clean up the x86_32 code a little, and remove the overhead of the copy. Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Brian Gerst <brgerst@gmail.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20110806012354.263834829@goodmis.org Link: http://lkml.kernel.org/r/20140206144321.852942014@goodmis.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 28 2月, 2014 2 次提交
-
-
由 H. Peter Anvin 提交于
If we explicitly disable the use of CLFLUSH, we should disable the use of CLFLUSHOPT as well. Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com> Link: http://lkml.kernel.org/n/tip-jtdv7btppr4jgzxm3sxx1e74@git.kernel.org
-
由 H. Peter Anvin 提交于
We call this "clflush" in /proc/cpuinfo, and have cpu_has_clflush()... let's be consistent and just call it that. Cc: Gleb Natapov <gleb@kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Alan Cox <alan@linux.intel.com> Link: http://lkml.kernel.org/n/tip-mlytfzjkvuf739okyn40p8a5@git.kernel.org
-
- 13 2月, 2014 1 次提交
-
-
由 H. Peter Anvin 提交于
If SMAP support is not compiled into the kernel, don't enable SMAP in CR4 -- in fact, we should clear it, because the kernel doesn't contain the proper STAC/CLAC instructions for SMAP support. Found by Fengguang Wu's test system. Reported-by: NFengguang Wu <fengguang.wu@intel.com> Link: http://lkml.kernel.org/r/20140213124550.GA30497@localhostSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com> Cc: <stable@vger.kernel.org> # v3.7+
-
- 04 1月, 2014 1 次提交
-
-
由 Kirill A. Shutemov 提交于
The Intel Software Developer’s Manual covers few more TLB configurations exposed as CPUID 2 descriptors: 61H Instruction TLB: 4 KByte pages, fully associative, 48 entries 63H Data TLB: 1 GByte pages, 4-way set associative, 4 entries 76H Instruction TLB: 2M/4M pages, fully associative, 8 entries B5H Instruction TLB: 4KByte pages, 8-way set associative, 64 entries B6H Instruction TLB: 4KByte pages, 8-way set associative, 128 entries C1H Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries C2H DTLB DTLB: 2 MByte/$MByte pages, 4-way associative, 16 entries Let's detect them as well. Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Link: http://lkml.kernel.org/r/1387801018-14499-1-git-send-email-kirill.shutemov@linux.intel.comSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 26 10月, 2013 1 次提交
-
-
由 Jan Beulich 提交于
struct cpu_dev's c_models is only ever set inside CONFIG_X86_32 conditionals (or code that's being built for 32-bit only), so there's no use of reserving the (empty) space for the model names in a 64-bit kernel. Similarly, c_size_cache is only used in the #else of a CONFIG_X86_64 conditional, so reserving space for (and in one case even initializing) that field is pointless for 64-bit kernels too. While moving both fields to the end of the structure, I also noticed that: - the c_models array size was one too small, potentially causing table_lookup_model() to return garbage on Intel CPUs (intel.c's instance was lacking the sentinel with family being zero), so the patch bumps that by one, - c_models' vendor sub-field was unused (and anyway redundant with the base structure's c_x86_vendor field), so the patch deletes it. Also rename the legacy fields so that their legacy nature stands out and comment their declarations. Signed-off-by: NJan Beulich <jbeulich@suse.com> Link: http://lkml.kernel.org/r/5265036802000078000FC4DB@nat28.tlf.novell.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 9月, 2013 1 次提交
-
-
由 Peter Zijlstra 提交于
Convert x86 to use a per-cpu preemption count. The reason for doing so is that accessing per-cpu variables is a lot cheaper than accessing thread_info variables. We still need to save/restore the actual preemption count due to PREEMPT_ACTIVE so we place the per-cpu __preempt_count variable in the same cache-line as the other hot __switch_to() variables such as current_task. NOTE: this save/restore is required even for !PREEMPT kernels as cond_resched() also relies on preempt_count's PREEMPT_ACTIVE to ignore task_struct::state. Also rename thread_info::preempt_count to ensure nobody is 'accidentally' still poking at it. Suggested-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-gzn5rfsf8trgjoqx8hyayy3q@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 07 8月, 2013 1 次提交
-
-
由 Andi Kleen 提交于
Plus one function, load_gs_index(). Signed-off-by: NAndi Kleen <ak@linux.intel.com> Link: http://lkml.kernel.org/r/1375740170-7446-10-git-send-email-andi@firstfloor.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 15 7月, 2013 1 次提交
-
-
由 Paul Gortmaker 提交于
The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: NIngo Molnar <mingo@kernel.org> Acked-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NH. Peter Anvin <hpa@linux.intel.com> Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
-
- 21 6月, 2013 5 次提交
-
-
由 Seiji Aguchi 提交于
[Purpose of this patch] As Vaibhav explained in the thread below, tracepoints for irq vectors are useful. http://www.spinics.net/lists/mm-commits/msg85707.html <snip> The current interrupt traces from irq_handler_entry and irq_handler_exit provide when an interrupt is handled. They provide good data about when the system has switched to kernel space and how it affects the currently running processes. There are some IRQ vectors which trigger the system into kernel space, which are not handled in generic IRQ handlers. Tracing such events gives us the information about IRQ interaction with other system events. The trace also tells where the system is spending its time. We want to know which cores are handling interrupts and how they are affecting other processes in the system. Also, the trace provides information about when the cores are idle and which interrupts are changing that state. <snip> On the other hand, my usecase is tracing just local timer event and getting a value of instruction pointer. I suggested to add an argument local timer event to get instruction pointer before. But there is another way to get it with external module like systemtap. So, I don't need to add any argument to irq vector tracepoints now. [Patch Description] Vaibhav's patch shared a trace point ,irq_vector_entry/irq_vector_exit, in all events. But there is an above use case to trace specific irq_vector rather than tracing all events. In this case, we are concerned about overhead due to unwanted events. So, add following tracepoints instead of introducing irq_vector_entry/exit. so that we can enable them independently. - local_timer_vector - reschedule_vector - call_function_vector - call_function_single_vector - irq_work_entry_vector - error_apic_vector - thermal_apic_vector - threshold_apic_vector - spurious_apic_vector - x86_platform_ipi_vector Also, introduce a logic switching IDT at enabling/disabling time so that a time penalty makes a zero when tracepoints are disabled. Detailed explanations are as follows. - Create trace irq handlers with entering_irq()/exiting_irq(). - Create a new IDT, trace_idt_table, at boot time by adding a logic to _set_gate(). It is just a copy of original idt table. - Register the new handlers for tracpoints to the new IDT by introducing macros to alloc_intr_gate() called at registering time of irq_vector handlers. - Add checking, whether irq vector tracing is on/off, into load_current_idt(). This has to be done below debug checking for these reasons. - Switching to debug IDT may be kicked while tracing is enabled. - On the other hands, switching to trace IDT is kicked only when debugging is disabled. In addition, the new IDT is created only when CONFIG_TRACING is enabled to avoid being used for other purposes. Signed-off-by: NSeiji Aguchi <seiji.aguchi@hds.com> Link: http://lkml.kernel.org/r/51C323ED.5050708@hds.comSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com> Cc: Steven Rostedt <rostedt@goodmis.org>
-
由 Seiji Aguchi 提交于
Rename variables for debugging to describe meaning of them precisely. Also, introduce a generic way to switch IDT by checking a current state, debug on/off. Signed-off-by: NSeiji Aguchi <seiji.aguchi@hds.com> Link: http://lkml.kernel.org/r/51C323A8.7050905@hds.comSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com> Cc: Steven Rostedt <rostedt@goodmis.org>
-
由 Borislav Petkov 提交于
We want to use this in early code where alternatives might not have run yet and for that case we fall back to the dynamic boot_cpu_has. For that, force a 5-byte jump since the compiler could be generating differently sized jumps for each label. Signed-off-by: NBorislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1370772454-6106-5-git-send-email-bp@alien8.deSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Borislav Petkov 提交于
static_cpu_has may be used only after alternatives have run. Before that it always returns false if constant folding with __builtin_constant_p() doesn't happen. And you don't want that. This patch is the result of me debugging an issue where I overzealously put static_cpu_has in code which executed before alternatives have run and had to spend some time with scratching head and cursing at the monitor. So add a jump to a warning which screams loudly when we use this function too early. The alternatives patch that check away in conjunction with patching the rest of the kernel image. [ hpa: factored this into its own configuration option. If we want to have an overarching option, it should be an option which selects other options, not as a group option in the source code. ] Signed-off-by: NBorislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1370772454-6106-4-git-send-email-bp@alien8.deSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Borislav Petkov 提交于
This will be used in alternatives later as an always-replace flag. Signed-off-by: NBorislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1370772454-6106-2-git-send-email-bp@alien8.deSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 07 6月, 2013 1 次提交
-
-
由 H. Peter Anvin 提交于
Reimplement FPU detection code in C and drop old, not-so-recommended detection method in asm. Move all the relevant stuff into i387.c where it conceptually belongs. Finally drop cpuinfo_x86.hard_math. [ hpa: huge thanks to Borislav for taking my original concept patch and productizing it ] [ Boris, note to self: do not use static_cpu_has before alternatives! ] Signed-off-by: NH. Peter Anvin <hpa@zytor.com> Link: http://lkml.kernel.org/r/1367244262-29511-2-git-send-email-bp@alien8.de Link: http://lkml.kernel.org/r/1365436666-9837-2-git-send-email-bp@alien8.deSigned-off-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 03 4月, 2013 1 次提交
-
-
由 Borislav Petkov 提交于
We add another 32-bit vector at the end of the ->x86_capability bitvector which collects bugs present in CPUs. After all, a CPU bug is a kind of a capability, albeit a strange one. Signed-off-by: NBorislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1363788448-31325-2-git-send-email-bp@alien8.deSigned-off-by: NH. Peter Anvin <hpa@zytor.com>
-
- 01 2月, 2013 2 次提交
-
-
由 Fenghua Yu 提交于
In 64 bit, load ucode on AP in cpu_init(). In 32 bit, show ucode loading info on AP in cpu_init(). Microcode has been loaded earlier before paging. Now it is safe to show the loading microcode info on this AP. Signed-off-by: NFenghua Yu <fenghua.yu@intel.com> Link: http://lkml.kernel.org/r/1356075872-3054-5-git-send-email-fenghua.yu@intel.comSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Fenghua Yu 提交于
Remove static declaration in have_cpuid_p() to make it a global function. The function will be called in early loading microcode. Signed-off-by: NFenghua Yu <fenghua.yu@intel.com> Link: http://lkml.kernel.org/r/1356075872-3054-4-git-send-email-fenghua.yu@intel.comSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 29 11月, 2012 1 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 15 11月, 2012 1 次提交
-
-
由 Fenghua Yu 提交于
Previously these functions were not run on the BSP (CPU 0, the boot processor) since the boot processor init would only be executed before this functionality was initialized. Signed-off-by: NFenghua Yu <fenghua.yu@intel.com> Link: http://lkml.kernel.org/r/1352835171-3958-11-git-send-email-fenghua.yu@intel.comSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 28 9月, 2012 1 次提交
-
-
由 H. Peter Anvin 提交于
There is no fundamental reason why we should switch SMEP and SMAP on during early cpu initialization just to switch them off again. Now with %eflags and %cr4 forced to be initialized to a clean state, we only need the one-way enable. Also, make the functions inline to make them (somewhat) harder to abuse. This does mean that SMEP and SMAP do not get initialized anywhere near as early. Even using early_param() instead of __setup() doesn't give us control early enough to do this during the early cpu initialization phase. This seems reasonable to me, because SMEP and SMAP should not matter until we have userspace to protect ourselves from, but it does potentially make it possible for a bug involving a "leak of permissions to userspace" to get uncaught. Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 22 9月, 2012 2 次提交
-
-
由 H. Peter Anvin 提交于
If Supervisor Mode Access Prevention is available and not disabled by the user, turn it on. Also fix the expansion of SMEP (Supervisor Mode Execution Prevention.) Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com> Link: http://lkml.kernel.org/r/1348256595-29119-10-git-send-email-hpa@linux.intel.com
-
由 H. Peter Anvin 提交于
When Supervisor Mode Access Prevention (SMAP) is enabled, access to userspace from the kernel is controlled by the AC flag. To make the performance of manipulating that flag acceptable, there are two new instructions, STAC and CLAC, to set and clear it. This patch adds those instructions, via alternative(), when the SMAP feature is enabled. It also adds X86_EFLAGS_AC unconditionally to the SYSCALL entry mask; there is simply no reason to make that one conditional. Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com> Link: http://lkml.kernel.org/r/1348256595-29119-9-git-send-email-hpa@linux.intel.com
-
- 19 9月, 2012 2 次提交
-
-
由 Borislav Petkov 提交于
When acting on a user bug report, we find ourselves constantly asking for /proc/cpuinfo in order to know the exact family, model, stepping of the CPU in question. Instead of having to ask this, add this to dmesg so that it is visible and no ambiguities can ensue from looking at the official name string of the CPU coming from CPUID and trying to map it to f/m/s. Output then looks like this: [ 0.146041] smpboot: CPU0: AMD FX(tm)-8100 Eight-Core Processor (fam: 15, model: 01, stepping: 02) Signed-off-by: NBorislav Petkov <borislav.petkov@amd.com> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Link: http://lkml.kernel.org/r/1347640666-13638-1-git-send-email-bp@amd64.org [ tweaked it minimally to add commas. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Suresh Siddha 提交于
Decouple non-lazy/eager fpu restore policy from the existence of the xsave feature. Introduce a synthetic CPUID flag to represent the eagerfpu policy. "eagerfpu=on" boot paramter will enable the policy. Requested-by: NH. Peter Anvin <hpa@zytor.com> Requested-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1347300665-6209-2-git-send-email-suresh.b.siddha@intel.comSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 13 9月, 2012 1 次提交
-
-
由 Ian Campbell 提交于
On 64 bit x86 we save the current eflags in cpu_init for use in ret_from_fork. Strictly speaking reserved bits in EFLAGS should be read as written but in practise it is unlikely that EFLAGS could ever be extended in this way and the kernel alread clears any undefined flags early on. The equivalent 32 bit code simply hard codes 0x0202 as the new EFLAGS. This change makes 64 bit use the same mechanism to setup the initial EFLAGS on fork. Note that 64 bit resets EFLAGS before calling schedule_tail() as opposed to 32 bit which calls schedule_tail() first. Therefore the correct value for EFLAGS has opposite IF bit. Signed-off-by: NIan Campbell <ian.campbell@citrix.com> Signed-off-by: NCyrill Gorcunov <gorcunov@openvz.org> Acked-by: NAndi Kleen <ak@linux.intel.com> Acked-by: N"H. Peter Anvin" <hpa@zytor.com> Cc: Brian Gerst <brgerst@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Pekka Enberg <penberg@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Link: http://lkml.kernel.org/r/20120824195847.GA31628@moonSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 09 8月, 2012 1 次提交
-
-
由 Suresh Siddha 提交于
Clear AVX, AVX2 features along with clearing XSAVE feature bits, as part of the parsing "noxsave" parameter. Fixes the kernel boot panic with "noxsave" boot parameter. We could have checked cpu_has_osxsave along with cpu_has_avx etc, but Peter mentioned clearing the feature bits will be better for uses like static_cpu_has() etc. Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343755754.2041.2.camel@sbsiddha-desk.sc.intel.com Cc: <stable@vger.kernel.org> # v3.5 Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
-
- 07 8月, 2012 2 次提交
-
-
由 Borislav Petkov 提交于
Push the max CPUID leaf check into the ->detect_tlb function and remove general test case from the generic path. Signed-off-by: NBorislav Petkov <borislav.petkov@amd.com> Link: http://lkml.kernel.org/r/1344272439-29080-3-git-send-email-bp@amd64.orgAcked-by: NAlex Shi <alex.shi@intel.com> Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
-
由 Borislav Petkov 提交于
The TLB characteristics appeared like this in dmesg: [ 0.065817] Last level iTLB entries: 4KB 512, 2MB 1024, 4MB 512 [ 0.065817] Last level dTLB entries: 4KB 1024, 2MB 1024, 4MB 512 [ 0.065817] tlb_flushall_shift is 0xffffffff where tlb_flushall_shift is actually -1 but dumped as a hex number. However, the Kconfig option CONFIG_DEBUG_TLBFLUSH and the rest of the code treats this as a signed decimal and states "If you set it to -1, the code flushes the whole TLB unconditionally." So, fix its formatting in accordance with the other references to it. Signed-off-by: NBorislav Petkov <borislav.petkov@amd.com> Link: http://lkml.kernel.org/r/1344272439-29080-2-git-send-email-bp@amd64.orgAcked-by: NAlex Shi <alex.shi@intel.com> Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
-
- 28 6月, 2012 2 次提交
-
-
由 Alex Shi 提交于
Testing show different CPU type(micro architectures and NUMA mode) has different balance points between the TLB flush all and multiple invlpg. And there also has cases the tlb flush change has no any help. This patch give a interface to let x86 vendor developers have a chance to set different shift for different CPU type. like some machine in my hands, balance points is 16 entries on Romely-EP; while it is at 8 entries on Bloomfield NHM-EP; and is 256 on IVB mobile CPU. but on model 15 core2 Xeon using invlpg has nothing help. For untested machine, do a conservative optimization, same as NHM CPU. Signed-off-by: NAlex Shi <alex.shi@intel.com> Link: http://lkml.kernel.org/r/1340845344-27557-5-git-send-email-alex.shi@intel.comSigned-off-by: NH. Peter Anvin <hpa@zytor.com>
-
由 Alex Shi 提交于
For 4KB pages, x86 CPU has 2 or 1 level TLB, first level is data TLB and instruction TLB, second level is shared TLB for both data and instructions. For hupe page TLB, usually there is just one level and seperated by 2MB/4MB and 1GB. Although each levels TLB size is important for performance tuning, but for genernal and rude optimizing, last level TLB entry number is suitable. And in fact, last level TLB always has the biggest entry number. This patch will get the biggest TLB entry number and use it in furture TLB optimizing. Accroding Borislav's suggestion, except tlb_ll[i/d]_* array, other function and data will be released after system boot up. For all kinds of x86 vendor friendly, vendor specific code was moved to its specific files. Signed-off-by: NAlex Shi <alex.shi@intel.com> Link: http://lkml.kernel.org/r/1340845344-27557-2-git-send-email-alex.shi@intel.comSigned-off-by: NH. Peter Anvin <hpa@zytor.com>
-
- 08 6月, 2012 1 次提交
-
-
由 Borislav Petkov 提交于
There's no real reason why, when showing the MSRs on a CPU at boottime, we should be using the AMD-specific variant. Simply use the generic safe one which handles #GPs just fine. Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: NBorislav Petkov <borislav.petkov@amd.com> Link: http://lkml.kernel.org/r/1338562358-28182-3-git-send-email-bp@amd64.orgAcked-by: NKonrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
-
- 01 6月, 2012 1 次提交
-
-
由 Steven Rostedt 提交于
When the NMI handler runs, it checks if it preempted a debug handler and if that handler is using the debug stack. If it is, it changes the IDT table not to update the stack, otherwise it will reset the debug stack and corrupt the debug handler it preempted. Now that ftrace uses breakpoints to change functions from nops to callers, many more places may hit a breakpoint. Unfortunately this includes some of the calls that lockdep performs. Which causes issues with the debug stack. It too needs to change the debug stack before tracing (if called from the debug handler). Allow the debug_stack_set_zero() and debug_stack_reset() to be nested so that the debug handlers can take advantage of them too. [ Used this_cpu_*() over __get_cpu_var() as suggested by H. Peter Anvin ] Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 15 5月, 2012 1 次提交
-
-
由 Alex Shi 提交于
Since percpu_xxx() serial functions are duplicated with this_cpu_xxx(). Removing percpu_xxx() definition and replacing them by this_cpu_xxx() in code. There is no function change in this patch, just preparation for later percpu_xxx serial function removing. On x86 machine the this_cpu_xxx() serial functions are same as __this_cpu_xxx() without no unnecessary premmpt enable/disable. Thanks for Stephen Rothwell, he found and fixed a i386 build error in the patch. Also thanks for Andrew Morton, he kept updating the patchset in Linus' tree. Signed-off-by: NAlex Shi <alex.shi@intel.com> Acked-by: NChristoph Lameter <cl@gentwo.org> Acked-by: NTejun Heo <tj@kernel.org> Acked-by: N"H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 17 4月, 2012 1 次提交
-
-
由 Andreas Herrmann 提交于
It's only called from amd.c:srat_detect_node(). The introduced condition for calling the fixup code is true for all AMD multi-node processors, e.g. Magny-Cours and Interlagos. There we have 2 NUMA nodes on one socket. Thus there are cores having different numa-node-id but with equal phys_proc_id. There is no point to print error messages in such a situation. The confusing/misleading error message was introduced with commit 64be4c1c ("x86: Add x86_init platform override to fix up NUMA core numbering"). Remove the default fixup function (especially the error message) and replace it by a NULL pointer check, move the Numascale-specific condition for calling the fixup into the fixup-function itself and slightly adapt the comment. Signed-off-by: NAndreas Herrmann <andreas.herrmann3@amd.com> Acked-by: NBorislav Petkov <borislav.petkov@amd.com> Cc: <stable@kernel.org> Cc: <sp@numascale.com> Cc: <bp@amd64.org> Cc: <daniel@numascale-asia.com> Link: http://lkml.kernel.org/r/20120402160648.GR27684@alberich.amd.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 23 3月, 2012 1 次提交
-
-
由 Yinghai Lu 提交于
Dave found: | During bootup, I now have 162 messages like this.. | [ 0.227346] MSR0000001b: 00000000fee00900 | [ 0.227465] MSR00000021: 0000000000000001 | [ 0.227584] MSR0000002a: 00000000c1c81400 | | commit 21c3fcf3 looks suspect. | It claims that it will only print these out if show_msr= is | passed, but that doesn't seem to be the case. Fix it by changing to the version that checks the index. Reported-and-tested-by: NDave Jones <davej@redhat.com> Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1332477103-4595-1-git-send-email-yinghai@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 29 2月, 2012 1 次提交
-
-
由 Paul Gortmaker 提交于
Since we already have a debugreg.h header file, move the assoc. get/set functions to it. In addition to it being the logical home for them, it has a secondary advantage. The functions that are moved use BUG(). So we really need to have linux/bug.h in scope. But asm/processor.h is used about 600 times, vs. only about 15 for debugreg.h -- so adding bug.h to the latter reduces the amount of time we'll be processing it during a compile. Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com> Acked-by: NIngo Molnar <mingo@elte.hu> CC: Thomas Gleixner <tglx@linutronix.de> CC: "H. Peter Anvin" <hpa@zytor.com>
-
- 22 2月, 2012 2 次提交
-
-
由 Linus Torvalds 提交于
While various modules include <asm/i387.h> to get access to things we actually *intend* for them to use, most of that header file was really pretty low-level internal stuff that we really don't want to expose to others. So split the header file into two: the small exported interfaces remain in <asm/i387.h>, while the internal definitions that are only used by core architecture code are now in <asm/fpu-internal.h>. The guiding principle for this was to expose functions that we export to modules, and leave them in <asm/i387.h>, while stuff that is used by task switching or was marked GPL-only is in <asm/fpu-internal.h>. The fpu-internal.h file could be further split up too, especially since arch/x86/kvm/ uses some of the remaining stuff for its module. But that kvm usage should probably be abstracted out a bit, and at least now the internal FPU accessor functions are much more contained. Even if it isn't perhaps as contained as it _could_ be. Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1202211340330.5354@i5.linux-foundation.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Linus Torvalds 提交于
Instead of exporting the very low-level internals of the FPU state save/restore code (ie things like 'fpu_owner_task'), we should export the higher-level interfaces. Inlining these things is pointless anyway: sure, sometimes the end result is small, but while 'stts()' can result in just three x86 instructions, those are not cheap instructions (writing %cr0 is a serializing instruction and a very slow one at that). So the overhead of a function call is not noticeable, and we really don't want random modules mucking about with our internal state save logic anyway. So this unexports 'fpu_owner_task', and instead uninlines and exports the actual functions that modules can use: fpu_kernel_begin/end() and unlazy_fpu(). Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1202211339590.5354@i5.linux-foundation.orgSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-