- 19 1月, 2006 1 次提交
-
-
由 David Woodhouse 提交于
The TIF_RESTORE_SIGMASK flag allows us to have a generic implementation of sys_rt_sigsuspend() instead of duplicating it for each architecture. This provides such an implementation and makes arch/powerpc use it. It also tidies up the ppc32 sys_sigsuspend() to use TIF_RESTORE_SIGMASK. Signed-off-by: NDavid Woodhouse <dwmw2@infradead.org> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 12 1月, 2006 1 次提交
-
-
由 Paul Mackerras 提交于
Heikki Lindholm pointed out that there was a potential race with the lazy CPU state (FP, VR, EVR) stuff if preempt is enabled. The race is that in the process of restoring FP state on sigreturn, the task gets preempted by a user task that wants to use the FPU. It will take an FP unavailable exception, which will write the current FPU state to the thread_struct, overwriting the values which sigreturn has stored. Note that this can only happen on UP since we don't implement lazy CPU state on SMP. The fix is to flush the lazy CPU state before updating the thread_struct. To do this we re-use the flush_lazy_cpu_state() function from process.c. Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 09 1月, 2006 1 次提交
-
-
由 David Woodhouse 提交于
This cleanup patch speeds up the null syscall path on ppc64 by about 3%, and brings the ppc32 and ppc64 code slightly closer together. The ppc64 code was checking current_thread_info()->flags twice in the syscall exit path; once for TIF_SYSCALL_T_OR_A before disabling interrupts, and then again for TIF_SIGPENDING|TIF_NEED_RESCHED etc after disabling interrupts. Now we do the same as ppc32 -- check the flags only once in the fast path, and re-enable interrupts if necessary in the ptrace case. The patch abolishes the 'syscall_noerror' member of struct thread_info and replaces it with a TIF_NOERROR bit in the flags, which is handled in the slow path. This shortens the syscall entry code, which no longer needs to clear syscall_noerror. The patch adds a TIF_SAVE_NVGPRS flag which causes the syscall exit slow path to save the non-volatile GPRs into a signal frame. This removes the need for the assembly wrappers around sys_sigsuspend(), sys_rt_sigsuspend(), et al which existed solely to save those registers in advance. It also means I don't have to add new wrappers for ppoll() and pselect(), which is what I was supposed to be doing when I got distracted into this... Finally, it unifies the ppc64 and ppc32 methods of handling syscall exit directly into a signal handler (as required by sigsuspend et al) by introducing a TIF_RESTOREALL flag which causes _all_ the registers to be reloaded from the pt_regs by taking the ret_from_exception path, instead of the normal syscall exit path which stomps on the callee-saved GPRs. It appears to pass an LTP test run on ppc64, and passes basic testing on ppc32 too. Brief tests of ptrace functionality with strace and gdb also appear OK. I wouldn't send it to Linus for 2.6.15 just yet though :) Signed-off-by: NDavid Woodhouse <dwmw2@infradead.org> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 15 11月, 2005 1 次提交
-
-
由 Paul Mackerras 提交于
As pointed out by Gary Byers, we were clearing the image of the FPSCR (floating point status and control register) in the thread_struct before copying it to the user stack when invoking a signal. Thus the task would see its FPSCR getting cleared when it took a signal. While fixing it I noticed that our swapcontext system call was also clearing FPSCR. It shouldn't, so I fixed that too. Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 07 11月, 2005 1 次提交
-
-
由 David Gibson 提交于
The ancient ppcdebug/PPCDBG mechanism is now only used in two places. First, in the hash setup code, one of the bits allows the size of the hash table to be reduced by a factor of 8 - which would be better accomplished with a command line option for that purpose. The other was a bunch of bus walking related messages in the iSeries code, which would seem to be insufficient reason to keep the mechanism. This patch removes the last traces of this mechanism. Built and booted on iSeries and pSeries POWER5 LPAR (ARCH=powerpc). Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 03 11月, 2005 1 次提交
-
-
由 Stephen Rothwell 提交于
Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au>
-
- 27 10月, 2005 1 次提交
-
-
由 David Gibson 提交于
The recent merge of fpu.S broken the handling of fpscr for ARCH=powerpc and CONFIG_PPC64=y. FP registers could be corrupted, leading to strange random application crashes. The confusion arises, because the thread_struct has (and requires) a 64-bit area to save the fpscr, because we use load/store double instructions to get it in to/out of the FPU. However, only the low 32-bits are actually used, so we want to treat it as a 32-bit quantity when manipulating its bits to avoid extra load/stores on 32-bit. This patch replaces the current definition with a structure of two 32-bit quantities (pad and val), to clarify things as much as is possible. The 'val' field is used when manipulating bits, the structure itself is used when obtaining the address for loading/unloading the value from the FPU. While we're at it, consolidate the 4 (!) almost identical versions of cvt_fd() and cvt_df() (arch/ppc/kernel/misc.S, arch/ppc64/kernel/misc.S, arch/powerpc/kernel/misc_32.S, arch/powerpc/kernel/misc_64.S) into a single version in fpu.S. The new version takes a pointer to thread_struct and applies the correct offset itself, rather than a pointer to the fpscr field itself, again to avoid confusion as to which is the correct field to use. Finally, this patch makes ARCH=ppc64 also use the consolidated fpu.S code, which it previously did not. Built for G5 (ARCH=ppc64 and ARCH=powerpc), 32-bit powermac (ARCH=ppc and ARCH=powerpc) and Walnut (ARCH=ppc, CONFIG_MATH_EMULATION=y). Booted on G5 (ARCH=powerpc) and things which previously fell over no longer do. Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 12 9月, 2005 1 次提交
-
-
由 Anton Blanchard 提交于
Add hardware data breakpoint support. Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 30 8月, 2005 1 次提交
-
-
由 Steven Rostedt 提交于
It has been reported that the way Linux handles NODEFER for signals is not consistent with the way other Unix boxes handle it. I've written a program to test the behavior of how this flag affects signals and had several reports from people who ran this on various Unix boxes, confirming that Linux seems to be unique on the way this is handled. The way NODEFER affects signals on other Unix boxes is as follows: 1) If NODEFER is set, other signals in sa_mask are still blocked. 2) If NODEFER is set and the signal is in sa_mask, then the signal is still blocked. (Note: this is the behavior of all tested but Linux _and_ NetBSD 2.0 *). The way NODEFER affects signals on Linux: 1) If NODEFER is set, other signals are _not_ blocked regardless of sa_mask (Even NetBSD doesn't do this). 2) If NODEFER is set and the signal is in sa_mask, then the signal being handled is not blocked. The patch converts signal handling in all current Linux architectures to the way most Unix boxes work. Unix boxes that were tested: DU4, AIX 5.2, Irix 6.5, NetBSD 2.0, SFU 3.5 on WinXP, AIX 5.3, Mac OSX, and of course Linux 2.6.13-rcX. * NetBSD was the only other Unix to behave like Linux on point #2. The main concern was brought up by point #1 which even NetBSD isn't like Linux. So with this patch, we leave NetBSD as the lonely one that behaves differently here with #2. Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 06 5月, 2005 1 次提交
-
-
由 Tobias Klauser 提交于
Replace a custom MIN() macro with the min() macro from kernel.h This patch removes 4 lines of redundant code. Signed-off-by: NTobias Klauser <tklauser@nuerscht.ch> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 17 4月, 2005 1 次提交
-
-
由 Linus Torvalds 提交于
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
-