- 19 12月, 2012 1 次提交
-
-
由 Glauber Costa 提交于
Create a mechanism that skip memcg allocations during certain pieces of our core code. It basically works in the same way as preempt_disable()/preempt_enable(): By marking a region under which all allocations will be accounted to the root memcg. We need this to prevent races in early cache creation, when we allocate data using caches that are not necessarily created already. Signed-off-by: NGlauber Costa <glommer@parallels.com> yCc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 18 12月, 2012 1 次提交
-
-
由 Gao feng 提交于
Since commit 1cdcbec1 ("CRED: Neuter sys_capset()") is_container_init() has no callers. Signed-off-by: NGao feng <gaofeng@cn.fujitsu.com> Cc: David Howells <dhowells@redhat.com> Acked-by: NSerge Hallyn <serge.hallyn@canonical.com> Cc: James Morris <jmorris@namei.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 12 12月, 2012 2 次提交
-
-
由 David Rientjes 提交于
test_set_oom_score_adj() and compare_swap_oom_score_adj() are used to specify that current should be killed first if an oom condition occurs in between the two calls. The usage is short oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX); ... compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj); to store the thread's oom_score_adj, temporarily change it to the maximum score possible, and then restore the old value if it is still the same. This happens to still be racy, however, if the user writes OOM_SCORE_ADJ_MAX to /proc/pid/oom_score_adj in between the two calls. The compare_swap_oom_score_adj() will then incorrectly reset the old value prior to the write of OOM_SCORE_ADJ_MAX. To fix this, introduce a new oom_flags_t member in struct signal_struct that will be used for per-thread oom killer flags. KSM and swapoff can now use a bit in this member to specify that threads should be killed first in oom conditions without playing around with oom_score_adj. This also allows the correct oom_score_adj to always be shown when reading /proc/pid/oom_score. Signed-off-by: NDavid Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: NMichal Hocko <mhocko@suse.cz> Cc: Anton Vorontsov <anton.vorontsov@linaro.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Rientjes 提交于
The maximum oom_score_adj is 1000 and the minimum oom_score_adj is -1000, so this range can be represented by the signed short type with no functional change. The extra space this frees up in struct signal_struct will be used for per-thread oom kill flags in the next patch. Signed-off-by: NDavid Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: NMichal Hocko <mhocko@suse.cz> Cc: Anton Vorontsov <anton.vorontsov@linaro.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 12月, 2012 5 次提交
-
-
由 Mel Gorman 提交于
This patch adds Kconfig options and kernel parameters to allow the enabling and disabling of automatic NUMA balancing. The existance of such a switch was and is very important when debugging problems related to transparent hugepages and we should have the same for automatic NUMA placement. Signed-off-by: NMel Gorman <mgorman@suse.de>
-
由 Mel Gorman 提交于
The PTE scanning rate and fault rates are two of the biggest sources of system CPU overhead with automatic NUMA placement. Ideally a proper policy would detect if a workload was properly placed, schedule and adjust the PTE scanning rate accordingly. We do not track the necessary information to do that but we at least know if we migrated or not. This patch scans slower if a page was not migrated as the result of a NUMA hinting fault up to sysctl_numa_balancing_scan_period_max which is now higher than the previous default. Once every minute it will reset the scanner in case of phase changes. This is hilariously crude and the numbers are arbitrary. Workloads will converge quite slowly in comparison to what a proper policy should be able to do. On the plus side, we will chew up less CPU for workloads that have no need for automatic balancing. Signed-off-by: NMel Gorman <mgorman@suse.de>
-
由 Peter Zijlstra 提交于
Add a 1 second delay before starting to scan the working set of a task and starting to balance it amongst nodes. [ note that before the constant per task WSS sampling rate patch the initial scan would happen much later still, in effect that patch caused this regression. ] The theory is that short-run tasks benefit very little from NUMA placement: they come and go, and they better stick to the node they were started on. As tasks mature and rebalance to other CPUs and nodes, so does their NUMA placement have to change and so does it start to matter more and more. In practice this change fixes an observable kbuild regression: # [ a perf stat --null --repeat 10 test of ten bzImage builds to /dev/shm ] !NUMA: 45.291088843 seconds time elapsed ( +- 0.40% ) 45.154231752 seconds time elapsed ( +- 0.36% ) +NUMA, no slow start: 46.172308123 seconds time elapsed ( +- 0.30% ) 46.343168745 seconds time elapsed ( +- 0.25% ) +NUMA, 1 sec slow start: 45.224189155 seconds time elapsed ( +- 0.25% ) 45.160866532 seconds time elapsed ( +- 0.17% ) and it also fixes an observable perf bench (hackbench) regression: # perf stat --null --repeat 10 perf bench sched messaging -NUMA: -NUMA: 0.246225691 seconds time elapsed ( +- 1.31% ) +NUMA no slow start: 0.252620063 seconds time elapsed ( +- 1.13% ) +NUMA 1sec delay: 0.248076230 seconds time elapsed ( +- 1.35% ) The implementation is simple and straightforward, most of the patch deals with adding the /proc/sys/kernel/numa_balancing_scan_delay_ms tunable knob. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> [ Wrote the changelog, ran measurements, tuned the default. ] Signed-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com>
-
由 Peter Zijlstra 提交于
Previously, to probe the working set of a task, we'd use a very simple and crude method: mark all of its address space PROT_NONE. That method has various (obvious) disadvantages: - it samples the working set at dissimilar rates, giving some tasks a sampling quality advantage over others. - creates performance problems for tasks with very large working sets - over-samples processes with large address spaces but which only very rarely execute Improve that method by keeping a rotating offset into the address space that marks the current position of the scan, and advance it by a constant rate (in a CPU cycles execution proportional manner). If the offset reaches the last mapped address of the mm then it then it starts over at the first address. The per-task nature of the working set sampling functionality in this tree allows such constant rate, per task, execution-weight proportional sampling of the working set, with an adaptive sampling interval/frequency that goes from once per 100ms up to just once per 8 seconds. The current sampling volume is 256 MB per interval. As tasks mature and converge their working set, so does the sampling rate slow down to just a trickle, 256 MB per 8 seconds of CPU time executed. This, beyond being adaptive, also rate-limits rarely executing systems and does not over-sample on overloaded systems. [ In AutoNUMA speak, this patch deals with the effective sampling rate of the 'hinting page fault'. AutoNUMA's scanning is currently rate-limited, but it is also fundamentally single-threaded, executing in the knuma_scand kernel thread, so the limit in AutoNUMA is global and does not scale up with the number of CPUs, nor does it scan tasks in an execution proportional manner. So the idea of rate-limiting the scanning was first implemented in the AutoNUMA tree via a global rate limit. This patch goes beyond that by implementing an execution rate proportional working set sampling rate that is not implemented via a single global scanning daemon. ] [ Dan Carpenter pointed out a possible NULL pointer dereference in the first version of this patch. ] Based-on-idea-by: NAndrea Arcangeli <aarcange@redhat.com> Bug-Found-By: NDan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> [ Wrote changelog and fixed bug. ] Signed-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com>
-
由 Peter Zijlstra 提交于
NOTE: This patch is based on "sched, numa, mm: Add fault driven placement and migration policy" but as it throws away all the policy to just leave a basic foundation I had to drop the signed-offs-by. This patch creates a bare-bones method for setting PTEs pte_numa in the context of the scheduler that when faulted later will be faulted onto the node the CPU is running on. In itself this does nothing useful but any placement policy will fundamentally depend on receiving hints on placement from fault context and doing something intelligent about it. Signed-off-by: NMel Gorman <mgorman@suse.de> Acked-by: NRik van Riel <riel@redhat.com>
-
- 29 11月, 2012 6 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Frederic Weisbecker 提交于
task_cputime_adjusted() and thread_group_cputime_adjusted() essentially share the same code. They just don't use the same source: * The first function uses the cputime in the task struct and the previous adjusted snapshot that ensures monotonicity. * The second adds the cputime of all tasks in the group and the previous adjusted snapshot of the whole group from the signal structure. Just consolidate the common code that does the adjustment. These functions just need to fetch the values from the appropriate source. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
-
由 Frederic Weisbecker 提交于
We have thread_group_cputime() and thread_group_times(). The naming doesn't provide enough information about the difference between these two APIs. To lower the confusion, rename thread_group_times() to thread_group_cputime_adjusted(). This name better suggests that it's a version of thread_group_cputime() that does some stabilization on the raw cputime values. ie here: scale on top of CFS runtime stats and bound lower value for monotonicity. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
-
- 28 11月, 2012 1 次提交
-
-
由 Marcelo Tosatti 提交于
Originally from Jeremy Fitzhardinge. Acked-by: NIngo Molnar <mingo@redhat.com> Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com>
-
- 24 10月, 2012 7 次提交
-
-
由 Paul Turner 提交于
While per-entity load-tracking is generally useful, beyond computing shares distribution, e.g. runnable based load-balance (in progress), governors, power-management, etc. These facilities are not yet consumers of this data. This may be trivially reverted when the information is required; but avoid paying the overhead for calculations we will not use until then. Signed-off-by: NPaul Turner <pjt@google.com> Reviewed-by: NBen Segall <bsegall@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141507.422162369@google.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Paul Turner 提交于
Since we are now doing bottom up load accumulation we need explicit notification when a task has been re-parented so that the old hierarchy can be updated. Adds: migrate_task_rq(struct task_struct *p, int next_cpu) (The alternative is to do this out of __set_task_cpu, but it was suggested that this would be a cleaner encapsulation.) Signed-off-by: NPaul Turner <pjt@google.com> Reviewed-by: NBen Segall <bsegall@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141506.660023400@google.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Paul Turner 提交于
We are currently maintaining: runnable_load(cfs_rq) = \Sum task_load(t) For all running children t of cfs_rq. While this can be naturally updated for tasks in a runnable state (as they are scheduled); this does not account for the load contributed by blocked task entities. This can be solved by introducing a separate accounting for blocked load: blocked_load(cfs_rq) = \Sum runnable(b) * weight(b) Obviously we do not want to iterate over all blocked entities to account for their decay, we instead observe that: runnable_load(t) = \Sum p_i*y^i and that to account for an additional idle period we only need to compute: y*runnable_load(t). This means that we can compute all blocked entities at once by evaluating: blocked_load(cfs_rq)` = y * blocked_load(cfs_rq) Finally we maintain a decay counter so that when a sleeping entity re-awakens we can determine how much of its load should be removed from the blocked sum. Signed-off-by: NPaul Turner <pjt@google.com> Reviewed-by: NBen Segall <bsegall@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141506.585389902@google.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Paul Turner 提交于
For a given task t, we can compute its contribution to load as: task_load(t) = runnable_avg(t) * weight(t) On a parenting cfs_rq we can then aggregate: runnable_load(cfs_rq) = \Sum task_load(t), for all runnable children t Maintain this bottom up, with task entities adding their contributed load to the parenting cfs_rq sum. When a task entity's load changes we add the same delta to the maintained sum. Signed-off-by: NPaul Turner <pjt@google.com> Reviewed-by: NBen Segall <bsegall@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141506.514678907@google.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Paul Turner 提交于
Instead of tracking averaging the load parented by a cfs_rq, we can track entity load directly. With the load for a given cfs_rq then being the sum of its children. To do this we represent the historical contribution to runnable average within each trailing 1024us of execution as the coefficients of a geometric series. We can express this for a given task t as: runnable_sum(t) = \Sum u_i * y^i, runnable_avg_period(t) = \Sum 1024 * y^i load(t) = weight_t * runnable_sum(t) / runnable_avg_period(t) Where: u_i is the usage in the last i`th 1024us period (approximately 1ms) ~ms and y is chosen such that y^k = 1/2. We currently choose k to be 32 which roughly translates to about a sched period. Signed-off-by: NPaul Turner <pjt@google.com> Reviewed-by: NBen Segall <bsegall@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141506.372695337@google.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Paul E. McKenney 提交于
The RCU CPU stall warnings rely on trigger_all_cpu_backtrace() to do NMI-based dump of the stack traces of all CPUs. Unfortunately, a number of architectures do not implement trigger_all_cpu_backtrace(), in which case RCU falls back to just dumping the stack of the running CPU. This is unhelpful in the case where the running CPU has detected that some other CPU has stalled. This commit therefore makes the running CPU dump the stacks of the tasks running on the stalled CPUs. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Frederic Weisbecker 提交于
It's only there to call rcu_user_hooks_switch(). Let's just call rcu_user_hooks_switch() directly, we don't need this function in the middle. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Weinberger <richard@nod.at> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 13 10月, 2012 1 次提交
-
-
由 David Howells 提交于
Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-by: NArnd Bergmann <arnd@arndb.de> Acked-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NMichael Kerrisk <mtk.manpages@gmail.com> Acked-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: NDave Jones <davej@redhat.com>
-
- 09 10月, 2012 1 次提交
-
-
由 Davidlohr Bueso 提交于
The deprecated /proc/<pid>/oom_adj is scheduled for removal this month. Signed-off-by: NDavidlohr Bueso <dave@gnu.org> Acked-by: NDavid Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 10月, 2012 1 次提交
-
-
由 Alex Kelly 提交于
Create a new header file, fs/coredump.h, which contains functions only used by the new coredump.c. It also moves do_coredump to the include/linux/coredump.h header file, for consistency. Signed-off-by: NAlex Kelly <alex.page.kelly@gmail.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org> Acked-by: NSerge Hallyn <serge.hallyn@canonical.com> Acked-by: NKees Cook <keescook@chromium.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 10月, 2012 1 次提交
-
-
由 Alex Kelly 提交于
This prepares for making core dump functionality optional. The variable "suid_dumpable" and associated functions are left in fs/exec.c because they're used elsewhere, such as in ptrace. Signed-off-by: NAlex Kelly <alex.page.kelly@gmail.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org> Acked-by: NSerge Hallyn <serge.hallyn@canonical.com> Acked-by: NKees Cook <keescook@chromium.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 01 10月, 2012 1 次提交
-
-
由 Al Viro 提交于
Let architectures select GENERIC_KERNEL_THREAD and have their copy_thread() treat NULL regs as "it came from kernel_thread(), sp argument contains the function new thread will be calling and stack_size - the argument for that function". Switching the architectures begins shortly... Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 26 9月, 2012 1 次提交
-
-
由 Frederic Weisbecker 提交于
Clear the syscalls hook of a task when it's scheduled out so that if the task migrates, it doesn't run the syscall slow path on a CPU that might not need it. Also set the syscalls hook on the next task if needed. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Alessio Igor Bogani <abogani@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Kevin Hilman <khilman@ti.com> Cc: Max Krasnyansky <maxk@qualcomm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephen Hemminger <shemminger@vyatta.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Sven-Thorsten Dietrich <thebigcorporation@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
- 25 9月, 2012 1 次提交
-
-
由 Eric Dumazet 提交于
We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: NVijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 18 9月, 2012 1 次提交
-
-
由 Eric W. Biederman 提交于
Always store audit loginuids in type kuid_t. Print loginuids by converting them into uids in the appropriate user namespace, and then printing the resulting uid. Modify audit_get_loginuid to return a kuid_t. Modify audit_set_loginuid to take a kuid_t. Modify /proc/<pid>/loginuid on read to convert the loginuid into the user namespace of the opener of the file. Modify /proc/<pid>/loginud on write to convert the loginuid rom the user namespace of the opener of the file. Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Eric Paris <eparis@redhat.com> Cc: Paul Moore <paul@paul-moore.com> ? Cc: David Miller <davem@davemloft.net> Signed-off-by: NEric W. Biederman <ebiederm@xmission.com>
-
- 17 9月, 2012 1 次提交
-
-
由 Linus Torvalds 提交于
This reverts commit 970e1789. Nikolay Ulyanitsky reported thatthe 3.6-rc5 kernel has a 15-20% performance drop on PostgreSQL 9.2 on his machine (running "pgbench"). Borislav Petkov was able to reproduce this, and bisected it to this commit 970e1789 ("sched: Improve scalability via 'CPU buddies' ...") apparently because the new single-idle-buddy model simply doesn't find idle CPU's to reschedule on aggressively enough. Mike Galbraith suspects that it is likely due to the user-mode spinlocks in PostgreSQL not reacting well to preemption, but we don't really know the details - I'll just revert the commit for now. There are hopefully other approaches to improve scheduler scalability without it causing these kinds of downsides. Reported-by: NNikolay Ulyanitsky <lystor@gmail.com> Bisected-by: NBorislav Petkov <bp@alien8.de> Acked-by: NMike Galbraith <efault@gmx.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 9月, 2012 1 次提交
-
-
由 Oleg Nesterov 提交于
Add the new MMF_RECALC_UPROBES flag, it means that MMF_HAS_UPROBES can be false positive after remove_breakpoint() or uprobe_munmap(). It is also set by uprobe_dup_mmap(), this is not optimal but simple. We could add the new hook, uprobe_dup_vma(), to set MMF_HAS_UPROBES only if the new mm actually has uprobes, but I don't think this makes sense. The next patch will use this flag to clear MMF_HAS_UPROBES. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NSrikar Dronamraju <srikar@linux.vnet.ibm.com>
-
- 13 9月, 2012 2 次提交
-
-
由 Alex Shi 提交于
There is no load_balancer to be selected now. It just sets the state of the nohz tick to stop. So rename the function, pass the 'cpu' as a parameter and then remove the useless call from tick_nohz_restart_sched_tick(). [ s/set_nohz_tick_stopped/nohz_balance_enter_idle/g s/clear_nohz_tick_stopped/nohz_balance_exit_idle/g ] Signed-off-by: NAlex Shi <alex.shi@intel.com> Acked-by: NSuresh Siddha <suresh.b.siddha@intel.com> Cc: Venkatesh Pallipadi <venki@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1347261059-24747-1-git-send-email-alex.shi@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Now that the last architecture to use this has stopped doing so (ARM, thanks Catalin!) we can remove this complexity from the scheduler core. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Link: http://lkml.kernel.org/n/tip-g9p2a1w81xxbrze25v9zpzbf@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 29 8月, 2012 1 次提交
-
-
由 Oleg Nesterov 提交于
Add the new MMF_HAS_UPROBES flag. It is set by install_breakpoint() and it is copied by dup_mmap(), uprobe_pre_sstep_notifier() checks it to avoid the slow path if the task was never probed. Perhaps it makes sense to check it in valid_vma(is_register => false) as well. This needs the new dup_mmap()->uprobe_dup_mmap() hook. We can't use uprobe_reset_state() or put MMF_HAS_UPROBES into MMF_INIT_MASK, we need oldmm->mmap_sem to avoid the race with uprobe_register() or mmap() from another thread. Currently we never clear this bit, it can be false-positive after uprobe_unregister() or uprobe_munmap() or if dup_mmap() hits the probed VM_DONTCOPY vma. But this is fine correctness-wise and has no effect unless the task hits the non-uprobe breakpoint. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NSrikar Dronamraju <srikar@linux.vnet.ibm.com>
-
- 14 8月, 2012 1 次提交
-
-
由 Alex Shi 提交于
Since power saving code was removed from sched now, the implement code is out of service in this function, and even pollute other logical. like, 'want_sd' never has chance to be set '0', that remove the effect of SD_WAKE_AFFINE here. So, clean up the obsolete code, includes SD_PREFER_LOCAL. Signed-off-by: NAlex Shi <alex.shi@intel.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/5028F431.6000306@intel.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 09 8月, 2012 1 次提交
-
-
由 Rafael J. Wysocki 提交于
Revert commit 45226e94 (NMI watchdog: fix for lockup detector breakage on resume) which breaks resume from system suspend on my SH7372 Mackerel board (by causing a NULL pointer dereference to happen) and is generally wrong, because it abuses the CPU hotplug functionality in a shamelessly blatant way. The original issue should be addressed through appropriate syscore resume callback instead. Signed-off-by: NRafael J. Wysocki <rjw@sisk.pl>
-
- 01 8月, 2012 2 次提交
-
-
由 Mel Gorman 提交于
This is needed to allow network softirq packet processing to make use of PF_MEMALLOC. Currently softirq context cannot use PF_MEMALLOC due to it not being associated with a task, and therefore not having task flags to fiddle with - thus the gfp to alloc flag mapping ignores the task flags when in interrupts (hard or soft) context. Allowing softirqs to make use of PF_MEMALLOC therefore requires some trickery. This patch borrows the task flags from whatever process happens to be preempted by the softirq. It then modifies the gfp to alloc flags mapping to not exclude task flags in softirq context, and modify the softirq code to save, clear and restore the PF_MEMALLOC flag. The save and clear, ensures the preempted task's PF_MEMALLOC flag doesn't leak into the softirq. The restore ensures a softirq's PF_MEMALLOC flag cannot leak back into the preempted process. This should be safe due to the following reasons Softirqs can run on multiple CPUs sure but the same task should not be executing the same softirq code. Neither should the softirq handler be preempted by any other softirq handler so the flags should not leak to an unrelated softirq. Softirqs re-enable hardware interrupts in __do_softirq() so can be preempted by hardware interrupts so PF_MEMALLOC is inherited by the hard IRQ. However, this is similar to a process in reclaim being preempted by a hardirq. While PF_MEMALLOC is set, gfp_to_alloc_flags() distinguishes between hard and soft irqs and avoids giving a hardirq the ALLOC_NO_WATERMARKS flag. If the softirq is deferred to ksoftirq then its flags may be used instead of a normal tasks but as the softirq cannot be preempted, the PF_MEMALLOC flag does not leak to other code by accident. [davem@davemloft.net: Document why PF_MEMALLOC is safe] Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrew Morton 提交于
Sanity: CONFIG_CGROUP_MEM_RES_CTLR -> CONFIG_MEMCG CONFIG_CGROUP_MEM_RES_CTLR_SWAP -> CONFIG_MEMCG_SWAP CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED -> CONFIG_MEMCG_SWAP_ENABLED CONFIG_CGROUP_MEM_RES_CTLR_KMEM -> CONFIG_MEMCG_KMEM [mhocko@suse.cz: fix missed bits] Cc: Glauber Costa <glommer@parallels.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-