提交 ca109491 编写于 作者: P Peter Zijlstra 提交者: Ingo Molnar

hrtimer: removing all ur callback modes

Impact: cleanup, move all hrtimer processing into hardirq context

This is an attempt at removing some of the hrtimer complexity by
reducing the number of callback modes to 1.

This means that all hrtimer callback functions will be ran from HARD-irq
context.

I went through all the 30 odd hrtimer callback functions in the kernel
and saw only one that I'm not quite sure of, which is the one in
net/can/bcm.c - hence I'm CC-ing the folks responsible for that code.

Furthermore, the hrtimer core now calls callbacks directly with IRQs
disabled in case you try to enqueue an expired timer. If this timer is a
periodic timer (which should use hrtimer_forward() to advance its time)
then it might be possible to end up in an inf. recursive loop due to the
fact that hrtimer_forward() doesn't round up to the next timer
granularity, and therefore keeps on calling the callback - obviously
this needs a fix.

Aside from that, this seems to compile and actually boot on my dual core
test box - although I'm sure there are some bugs in, me not hitting any
makes me certain :-)
Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: NIngo Molnar <mingo@elte.hu>
上级 ed313489
...@@ -697,7 +697,7 @@ static enum hrtimer_restart ads7846_timer(struct hrtimer *handle) ...@@ -697,7 +697,7 @@ static enum hrtimer_restart ads7846_timer(struct hrtimer *handle)
struct ads7846 *ts = container_of(handle, struct ads7846, timer); struct ads7846 *ts = container_of(handle, struct ads7846, timer);
int status = 0; int status = 0;
spin_lock_irq(&ts->lock); spin_lock(&ts->lock);
if (unlikely(!get_pendown_state(ts) || if (unlikely(!get_pendown_state(ts) ||
device_suspended(&ts->spi->dev))) { device_suspended(&ts->spi->dev))) {
...@@ -728,7 +728,7 @@ static enum hrtimer_restart ads7846_timer(struct hrtimer *handle) ...@@ -728,7 +728,7 @@ static enum hrtimer_restart ads7846_timer(struct hrtimer *handle)
dev_err(&ts->spi->dev, "spi_async --> %d\n", status); dev_err(&ts->spi->dev, "spi_async --> %d\n", status);
} }
spin_unlock_irq(&ts->lock); spin_unlock(&ts->lock);
return HRTIMER_NORESTART; return HRTIMER_NORESTART;
} }
......
...@@ -42,26 +42,6 @@ enum hrtimer_restart { ...@@ -42,26 +42,6 @@ enum hrtimer_restart {
HRTIMER_RESTART, /* Timer must be restarted */ HRTIMER_RESTART, /* Timer must be restarted */
}; };
/*
* hrtimer callback modes:
*
* HRTIMER_CB_SOFTIRQ: Callback must run in softirq context
* HRTIMER_CB_IRQSAFE_PERCPU: Callback must run in hardirq context
* Special mode for tick emulation and
* scheduler timer. Such timers are per
* cpu and not allowed to be migrated on
* cpu unplug.
* HRTIMER_CB_IRQSAFE_UNLOCKED: Callback should run in hardirq context
* with timer->base lock unlocked
* used for timers which call wakeup to
* avoid lock order problems with rq->lock
*/
enum hrtimer_cb_mode {
HRTIMER_CB_SOFTIRQ,
HRTIMER_CB_IRQSAFE_PERCPU,
HRTIMER_CB_IRQSAFE_UNLOCKED,
};
/* /*
* Values to track state of the timer * Values to track state of the timer
* *
...@@ -70,7 +50,6 @@ enum hrtimer_cb_mode { ...@@ -70,7 +50,6 @@ enum hrtimer_cb_mode {
* 0x00 inactive * 0x00 inactive
* 0x01 enqueued into rbtree * 0x01 enqueued into rbtree
* 0x02 callback function running * 0x02 callback function running
* 0x04 callback pending (high resolution mode)
* *
* Special cases: * Special cases:
* 0x03 callback function running and enqueued * 0x03 callback function running and enqueued
...@@ -92,8 +71,7 @@ enum hrtimer_cb_mode { ...@@ -92,8 +71,7 @@ enum hrtimer_cb_mode {
#define HRTIMER_STATE_INACTIVE 0x00 #define HRTIMER_STATE_INACTIVE 0x00
#define HRTIMER_STATE_ENQUEUED 0x01 #define HRTIMER_STATE_ENQUEUED 0x01
#define HRTIMER_STATE_CALLBACK 0x02 #define HRTIMER_STATE_CALLBACK 0x02
#define HRTIMER_STATE_PENDING 0x04 #define HRTIMER_STATE_MIGRATE 0x04
#define HRTIMER_STATE_MIGRATE 0x08
/** /**
* struct hrtimer - the basic hrtimer structure * struct hrtimer - the basic hrtimer structure
...@@ -109,8 +87,6 @@ enum hrtimer_cb_mode { ...@@ -109,8 +87,6 @@ enum hrtimer_cb_mode {
* @function: timer expiry callback function * @function: timer expiry callback function
* @base: pointer to the timer base (per cpu and per clock) * @base: pointer to the timer base (per cpu and per clock)
* @state: state information (See bit values above) * @state: state information (See bit values above)
* @cb_mode: high resolution timer feature to select the callback execution
* mode
* @cb_entry: list head to enqueue an expired timer into the callback list * @cb_entry: list head to enqueue an expired timer into the callback list
* @start_site: timer statistics field to store the site where the timer * @start_site: timer statistics field to store the site where the timer
* was started * was started
...@@ -129,7 +105,6 @@ struct hrtimer { ...@@ -129,7 +105,6 @@ struct hrtimer {
struct hrtimer_clock_base *base; struct hrtimer_clock_base *base;
unsigned long state; unsigned long state;
struct list_head cb_entry; struct list_head cb_entry;
enum hrtimer_cb_mode cb_mode;
#ifdef CONFIG_TIMER_STATS #ifdef CONFIG_TIMER_STATS
int start_pid; int start_pid;
void *start_site; void *start_site;
...@@ -188,15 +163,11 @@ struct hrtimer_clock_base { ...@@ -188,15 +163,11 @@ struct hrtimer_clock_base {
* @check_clocks: Indictator, when set evaluate time source and clock * @check_clocks: Indictator, when set evaluate time source and clock
* event devices whether high resolution mode can be * event devices whether high resolution mode can be
* activated. * activated.
* @cb_pending: Expired timers are moved from the rbtree to this
* list in the timer interrupt. The list is processed
* in the softirq.
* @nr_events: Total number of timer interrupt events * @nr_events: Total number of timer interrupt events
*/ */
struct hrtimer_cpu_base { struct hrtimer_cpu_base {
spinlock_t lock; spinlock_t lock;
struct hrtimer_clock_base clock_base[HRTIMER_MAX_CLOCK_BASES]; struct hrtimer_clock_base clock_base[HRTIMER_MAX_CLOCK_BASES];
struct list_head cb_pending;
#ifdef CONFIG_HIGH_RES_TIMERS #ifdef CONFIG_HIGH_RES_TIMERS
ktime_t expires_next; ktime_t expires_next;
int hres_active; int hres_active;
...@@ -404,8 +375,7 @@ static inline int hrtimer_active(const struct hrtimer *timer) ...@@ -404,8 +375,7 @@ static inline int hrtimer_active(const struct hrtimer *timer)
*/ */
static inline int hrtimer_is_queued(struct hrtimer *timer) static inline int hrtimer_is_queued(struct hrtimer *timer)
{ {
return timer->state & return timer->state & HRTIMER_STATE_ENQUEUED;
(HRTIMER_STATE_ENQUEUED | HRTIMER_STATE_PENDING);
} }
/* /*
......
...@@ -251,9 +251,6 @@ enum ...@@ -251,9 +251,6 @@ enum
BLOCK_SOFTIRQ, BLOCK_SOFTIRQ,
TASKLET_SOFTIRQ, TASKLET_SOFTIRQ,
SCHED_SOFTIRQ, SCHED_SOFTIRQ,
#ifdef CONFIG_HIGH_RES_TIMERS
HRTIMER_SOFTIRQ,
#endif
RCU_SOFTIRQ, /* Preferable RCU should always be the last softirq */ RCU_SOFTIRQ, /* Preferable RCU should always be the last softirq */
NR_SOFTIRQS NR_SOFTIRQS
......
...@@ -442,22 +442,6 @@ static inline void debug_hrtimer_activate(struct hrtimer *timer) { } ...@@ -442,22 +442,6 @@ static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif #endif
/*
* Check, whether the timer is on the callback pending list
*/
static inline int hrtimer_cb_pending(const struct hrtimer *timer)
{
return timer->state & HRTIMER_STATE_PENDING;
}
/*
* Remove a timer from the callback pending list
*/
static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
{
list_del_init(&timer->cb_entry);
}
/* High resolution timer related functions */ /* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS #ifdef CONFIG_HIGH_RES_TIMERS
...@@ -651,6 +635,8 @@ static inline void hrtimer_init_timer_hres(struct hrtimer *timer) ...@@ -651,6 +635,8 @@ static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{ {
} }
static void __run_hrtimer(struct hrtimer *timer);
/* /*
* When High resolution timers are active, try to reprogram. Note, that in case * When High resolution timers are active, try to reprogram. Note, that in case
* the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
...@@ -661,31 +647,14 @@ static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, ...@@ -661,31 +647,14 @@ static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
struct hrtimer_clock_base *base) struct hrtimer_clock_base *base)
{ {
if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) { if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
/*
/* Timer is expired, act upon the callback mode */ * XXX: recursion check?
switch(timer->cb_mode) { * hrtimer_forward() should round up with timer granularity
case HRTIMER_CB_IRQSAFE_PERCPU: * so that we never get into inf recursion here,
case HRTIMER_CB_IRQSAFE_UNLOCKED: * it doesn't do that though
/* */
* This is solely for the sched tick emulation with __run_hrtimer(timer);
* dynamic tick support to ensure that we do not return 1;
* restart the tick right on the edge and end up with
* the tick timer in the softirq ! The calling site
* takes care of this. Also used for hrtimer sleeper !
*/
debug_hrtimer_deactivate(timer);
return 1;
case HRTIMER_CB_SOFTIRQ:
/*
* Move everything else into the softirq pending list !
*/
list_add_tail(&timer->cb_entry,
&base->cpu_base->cb_pending);
timer->state = HRTIMER_STATE_PENDING;
return 1;
default:
BUG();
}
} }
return 0; return 0;
} }
...@@ -724,11 +693,6 @@ static int hrtimer_switch_to_hres(void) ...@@ -724,11 +693,6 @@ static int hrtimer_switch_to_hres(void)
return 1; return 1;
} }
static inline void hrtimer_raise_softirq(void)
{
raise_softirq(HRTIMER_SOFTIRQ);
}
#else #else
static inline int hrtimer_hres_active(void) { return 0; } static inline int hrtimer_hres_active(void) { return 0; }
...@@ -747,7 +711,6 @@ static inline int hrtimer_reprogram(struct hrtimer *timer, ...@@ -747,7 +711,6 @@ static inline int hrtimer_reprogram(struct hrtimer *timer,
{ {
return 0; return 0;
} }
static inline void hrtimer_raise_softirq(void) { }
#endif /* CONFIG_HIGH_RES_TIMERS */ #endif /* CONFIG_HIGH_RES_TIMERS */
...@@ -890,10 +853,7 @@ static void __remove_hrtimer(struct hrtimer *timer, ...@@ -890,10 +853,7 @@ static void __remove_hrtimer(struct hrtimer *timer,
struct hrtimer_clock_base *base, struct hrtimer_clock_base *base,
unsigned long newstate, int reprogram) unsigned long newstate, int reprogram)
{ {
/* High res. callback list. NOP for !HIGHRES */ if (timer->state & HRTIMER_STATE_ENQUEUED) {
if (hrtimer_cb_pending(timer))
hrtimer_remove_cb_pending(timer);
else {
/* /*
* Remove the timer from the rbtree and replace the * Remove the timer from the rbtree and replace the
* first entry pointer if necessary. * first entry pointer if necessary.
...@@ -953,7 +913,7 @@ hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_n ...@@ -953,7 +913,7 @@ hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_n
{ {
struct hrtimer_clock_base *base, *new_base; struct hrtimer_clock_base *base, *new_base;
unsigned long flags; unsigned long flags;
int ret, raise; int ret;
base = lock_hrtimer_base(timer, &flags); base = lock_hrtimer_base(timer, &flags);
...@@ -988,26 +948,8 @@ hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_n ...@@ -988,26 +948,8 @@ hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_n
enqueue_hrtimer(timer, new_base, enqueue_hrtimer(timer, new_base,
new_base->cpu_base == &__get_cpu_var(hrtimer_bases)); new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
/*
* The timer may be expired and moved to the cb_pending
* list. We can not raise the softirq with base lock held due
* to a possible deadlock with runqueue lock.
*/
raise = timer->state == HRTIMER_STATE_PENDING;
/*
* We use preempt_disable to prevent this task from migrating after
* setting up the softirq and raising it. Otherwise, if me migrate
* we will raise the softirq on the wrong CPU.
*/
preempt_disable();
unlock_hrtimer_base(timer, &flags); unlock_hrtimer_base(timer, &flags);
if (raise)
hrtimer_raise_softirq();
preempt_enable();
return ret; return ret;
} }
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
...@@ -1192,75 +1134,6 @@ int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) ...@@ -1192,75 +1134,6 @@ int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
} }
EXPORT_SYMBOL_GPL(hrtimer_get_res); EXPORT_SYMBOL_GPL(hrtimer_get_res);
static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base)
{
spin_lock_irq(&cpu_base->lock);
while (!list_empty(&cpu_base->cb_pending)) {
enum hrtimer_restart (*fn)(struct hrtimer *);
struct hrtimer *timer;
int restart;
int emulate_hardirq_ctx = 0;
timer = list_entry(cpu_base->cb_pending.next,
struct hrtimer, cb_entry);
debug_hrtimer_deactivate(timer);
timer_stats_account_hrtimer(timer);
fn = timer->function;
/*
* A timer might have been added to the cb_pending list
* when it was migrated during a cpu-offline operation.
* Emulate hardirq context for such timers.
*/
if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU ||
timer->cb_mode == HRTIMER_CB_IRQSAFE_UNLOCKED)
emulate_hardirq_ctx = 1;
__remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
spin_unlock_irq(&cpu_base->lock);
if (unlikely(emulate_hardirq_ctx)) {
local_irq_disable();
restart = fn(timer);
local_irq_enable();
} else
restart = fn(timer);
spin_lock_irq(&cpu_base->lock);
timer->state &= ~HRTIMER_STATE_CALLBACK;
if (restart == HRTIMER_RESTART) {
BUG_ON(hrtimer_active(timer));
/*
* Enqueue the timer, allow reprogramming of the event
* device
*/
enqueue_hrtimer(timer, timer->base, 1);
} else if (hrtimer_active(timer)) {
/*
* If the timer was rearmed on another CPU, reprogram
* the event device.
*/
struct hrtimer_clock_base *base = timer->base;
if (base->first == &timer->node &&
hrtimer_reprogram(timer, base)) {
/*
* Timer is expired. Thus move it from tree to
* pending list again.
*/
__remove_hrtimer(timer, base,
HRTIMER_STATE_PENDING, 0);
list_add_tail(&timer->cb_entry,
&base->cpu_base->cb_pending);
}
}
}
spin_unlock_irq(&cpu_base->lock);
}
static void __run_hrtimer(struct hrtimer *timer) static void __run_hrtimer(struct hrtimer *timer)
{ {
struct hrtimer_clock_base *base = timer->base; struct hrtimer_clock_base *base = timer->base;
...@@ -1268,25 +1141,21 @@ static void __run_hrtimer(struct hrtimer *timer) ...@@ -1268,25 +1141,21 @@ static void __run_hrtimer(struct hrtimer *timer)
enum hrtimer_restart (*fn)(struct hrtimer *); enum hrtimer_restart (*fn)(struct hrtimer *);
int restart; int restart;
WARN_ON(!irqs_disabled());
debug_hrtimer_deactivate(timer); debug_hrtimer_deactivate(timer);
__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
timer_stats_account_hrtimer(timer); timer_stats_account_hrtimer(timer);
fn = timer->function; fn = timer->function;
if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU ||
timer->cb_mode == HRTIMER_CB_IRQSAFE_UNLOCKED) { /*
/* * Because we run timers from hardirq context, there is no chance
* Used for scheduler timers, avoid lock inversion with * they get migrated to another cpu, therefore its safe to unlock
* rq->lock and tasklist_lock. * the timer base.
* */
* These timers are required to deal with enqueue expiry spin_unlock(&cpu_base->lock);
* themselves and are not allowed to migrate. restart = fn(timer);
*/ spin_lock(&cpu_base->lock);
spin_unlock(&cpu_base->lock);
restart = fn(timer);
spin_lock(&cpu_base->lock);
} else
restart = fn(timer);
/* /*
* Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
...@@ -1311,7 +1180,7 @@ void hrtimer_interrupt(struct clock_event_device *dev) ...@@ -1311,7 +1180,7 @@ void hrtimer_interrupt(struct clock_event_device *dev)
struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
struct hrtimer_clock_base *base; struct hrtimer_clock_base *base;
ktime_t expires_next, now; ktime_t expires_next, now;
int i, raise = 0; int i;
BUG_ON(!cpu_base->hres_active); BUG_ON(!cpu_base->hres_active);
cpu_base->nr_events++; cpu_base->nr_events++;
...@@ -1360,16 +1229,6 @@ void hrtimer_interrupt(struct clock_event_device *dev) ...@@ -1360,16 +1229,6 @@ void hrtimer_interrupt(struct clock_event_device *dev)
break; break;
} }
/* Move softirq callbacks to the pending list */
if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
__remove_hrtimer(timer, base,
HRTIMER_STATE_PENDING, 0);
list_add_tail(&timer->cb_entry,
&base->cpu_base->cb_pending);
raise = 1;
continue;
}
__run_hrtimer(timer); __run_hrtimer(timer);
} }
spin_unlock(&cpu_base->lock); spin_unlock(&cpu_base->lock);
...@@ -1383,10 +1242,6 @@ void hrtimer_interrupt(struct clock_event_device *dev) ...@@ -1383,10 +1242,6 @@ void hrtimer_interrupt(struct clock_event_device *dev)
if (tick_program_event(expires_next, 0)) if (tick_program_event(expires_next, 0))
goto retry; goto retry;
} }
/* Raise softirq ? */
if (raise)
raise_softirq(HRTIMER_SOFTIRQ);
} }
/** /**
...@@ -1413,11 +1268,6 @@ void hrtimer_peek_ahead_timers(void) ...@@ -1413,11 +1268,6 @@ void hrtimer_peek_ahead_timers(void)
local_irq_restore(flags); local_irq_restore(flags);
} }
static void run_hrtimer_softirq(struct softirq_action *h)
{
run_hrtimer_pending(&__get_cpu_var(hrtimer_bases));
}
#endif /* CONFIG_HIGH_RES_TIMERS */ #endif /* CONFIG_HIGH_RES_TIMERS */
/* /*
...@@ -1429,8 +1279,6 @@ static void run_hrtimer_softirq(struct softirq_action *h) ...@@ -1429,8 +1279,6 @@ static void run_hrtimer_softirq(struct softirq_action *h)
*/ */
void hrtimer_run_pending(void) void hrtimer_run_pending(void)
{ {
struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
if (hrtimer_hres_active()) if (hrtimer_hres_active())
return; return;
...@@ -1444,8 +1292,6 @@ void hrtimer_run_pending(void) ...@@ -1444,8 +1292,6 @@ void hrtimer_run_pending(void)
*/ */
if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
hrtimer_switch_to_hres(); hrtimer_switch_to_hres();
run_hrtimer_pending(cpu_base);
} }
/* /*
...@@ -1482,14 +1328,6 @@ void hrtimer_run_queues(void) ...@@ -1482,14 +1328,6 @@ void hrtimer_run_queues(void)
hrtimer_get_expires_tv64(timer)) hrtimer_get_expires_tv64(timer))
break; break;
if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
__remove_hrtimer(timer, base,
HRTIMER_STATE_PENDING, 0);
list_add_tail(&timer->cb_entry,
&base->cpu_base->cb_pending);
continue;
}
__run_hrtimer(timer); __run_hrtimer(timer);
} }
spin_unlock(&cpu_base->lock); spin_unlock(&cpu_base->lock);
...@@ -1516,9 +1354,6 @@ void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) ...@@ -1516,9 +1354,6 @@ void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
{ {
sl->timer.function = hrtimer_wakeup; sl->timer.function = hrtimer_wakeup;
sl->task = task; sl->task = task;
#ifdef CONFIG_HIGH_RES_TIMERS
sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
#endif
} }
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
...@@ -1655,36 +1490,22 @@ static void __cpuinit init_hrtimers_cpu(int cpu) ...@@ -1655,36 +1490,22 @@ static void __cpuinit init_hrtimers_cpu(int cpu)
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
cpu_base->clock_base[i].cpu_base = cpu_base; cpu_base->clock_base[i].cpu_base = cpu_base;
INIT_LIST_HEAD(&cpu_base->cb_pending);
hrtimer_init_hres(cpu_base); hrtimer_init_hres(cpu_base);
} }
#ifdef CONFIG_HOTPLUG_CPU #ifdef CONFIG_HOTPLUG_CPU
static int migrate_hrtimer_list(struct hrtimer_clock_base *old_base, static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
struct hrtimer_clock_base *new_base, int dcpu) struct hrtimer_clock_base *new_base, int dcpu)
{ {
struct hrtimer *timer; struct hrtimer *timer;
struct rb_node *node; struct rb_node *node;
int raise = 0;
while ((node = rb_first(&old_base->active))) { while ((node = rb_first(&old_base->active))) {
timer = rb_entry(node, struct hrtimer, node); timer = rb_entry(node, struct hrtimer, node);
BUG_ON(hrtimer_callback_running(timer)); BUG_ON(hrtimer_callback_running(timer));
debug_hrtimer_deactivate(timer); debug_hrtimer_deactivate(timer);
/*
* Should not happen. Per CPU timers should be
* canceled _before_ the migration code is called
*/
if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU) {
__remove_hrtimer(timer, old_base,
HRTIMER_STATE_INACTIVE, 0);
WARN(1, "hrtimer (%p %p)active but cpu %d dead\n",
timer, timer->function, dcpu);
continue;
}
/* /*
* Mark it as STATE_MIGRATE not INACTIVE otherwise the * Mark it as STATE_MIGRATE not INACTIVE otherwise the
* timer could be seen as !active and just vanish away * timer could be seen as !active and just vanish away
...@@ -1708,48 +1529,19 @@ static int migrate_hrtimer_list(struct hrtimer_clock_base *old_base, ...@@ -1708,48 +1529,19 @@ static int migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
* otherwise we end up with a stale timer. * otherwise we end up with a stale timer.
*/ */
if (timer->state == HRTIMER_STATE_MIGRATE) { if (timer->state == HRTIMER_STATE_MIGRATE) {
timer->state = HRTIMER_STATE_PENDING; /* XXX: running on offline cpu */
list_add_tail(&timer->cb_entry, __run_hrtimer(timer);
&new_base->cpu_base->cb_pending);
raise = 1;
} }
#endif #endif
/* Clear the migration state bit */ /* Clear the migration state bit */
timer->state &= ~HRTIMER_STATE_MIGRATE; timer->state &= ~HRTIMER_STATE_MIGRATE;
} }
return raise;
} }
#ifdef CONFIG_HIGH_RES_TIMERS
static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
struct hrtimer_cpu_base *new_base)
{
struct hrtimer *timer;
int raise = 0;
while (!list_empty(&old_base->cb_pending)) {
timer = list_entry(old_base->cb_pending.next,
struct hrtimer, cb_entry);
__remove_hrtimer(timer, timer->base, HRTIMER_STATE_PENDING, 0);
timer->base = &new_base->clock_base[timer->base->index];
list_add_tail(&timer->cb_entry, &new_base->cb_pending);
raise = 1;
}
return raise;
}
#else
static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
struct hrtimer_cpu_base *new_base)
{
return 0;
}
#endif
static void migrate_hrtimers(int cpu) static void migrate_hrtimers(int cpu)
{ {
struct hrtimer_cpu_base *old_base, *new_base; struct hrtimer_cpu_base *old_base, *new_base;
int i, raise = 0; int i;
BUG_ON(cpu_online(cpu)); BUG_ON(cpu_online(cpu));
old_base = &per_cpu(hrtimer_bases, cpu); old_base = &per_cpu(hrtimer_bases, cpu);
...@@ -1764,20 +1556,13 @@ static void migrate_hrtimers(int cpu) ...@@ -1764,20 +1556,13 @@ static void migrate_hrtimers(int cpu)
spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
if (migrate_hrtimer_list(&old_base->clock_base[i], migrate_hrtimer_list(&old_base->clock_base[i],
&new_base->clock_base[i], cpu)) &new_base->clock_base[i], cpu);
raise = 1;
} }
if (migrate_hrtimer_pending(old_base, new_base))
raise = 1;
spin_unlock(&old_base->lock); spin_unlock(&old_base->lock);
spin_unlock_irq(&new_base->lock); spin_unlock_irq(&new_base->lock);
put_cpu_var(hrtimer_bases); put_cpu_var(hrtimer_bases);
if (raise)
hrtimer_raise_softirq();
} }
#endif /* CONFIG_HOTPLUG_CPU */ #endif /* CONFIG_HOTPLUG_CPU */
...@@ -1817,9 +1602,6 @@ void __init hrtimers_init(void) ...@@ -1817,9 +1602,6 @@ void __init hrtimers_init(void)
hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
(void *)(long)smp_processor_id()); (void *)(long)smp_processor_id());
register_cpu_notifier(&hrtimers_nb); register_cpu_notifier(&hrtimers_nb);
#ifdef CONFIG_HIGH_RES_TIMERS
open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
} }
/** /**
......
...@@ -203,7 +203,6 @@ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) ...@@ -203,7 +203,6 @@ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
hrtimer_init(&rt_b->rt_period_timer, hrtimer_init(&rt_b->rt_period_timer,
CLOCK_MONOTONIC, HRTIMER_MODE_REL); CLOCK_MONOTONIC, HRTIMER_MODE_REL);
rt_b->rt_period_timer.function = sched_rt_period_timer; rt_b->rt_period_timer.function = sched_rt_period_timer;
rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
} }
static inline int rt_bandwidth_enabled(void) static inline int rt_bandwidth_enabled(void)
...@@ -1139,7 +1138,6 @@ static void init_rq_hrtick(struct rq *rq) ...@@ -1139,7 +1138,6 @@ static void init_rq_hrtick(struct rq *rq)
hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
rq->hrtick_timer.function = hrtick; rq->hrtick_timer.function = hrtick;
rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
} }
#else /* CONFIG_SCHED_HRTICK */ #else /* CONFIG_SCHED_HRTICK */
static inline void hrtick_clear(struct rq *rq) static inline void hrtick_clear(struct rq *rq)
......
...@@ -131,7 +131,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) ...@@ -131,7 +131,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
{ {
enum hrtimer_restart res = HRTIMER_NORESTART; enum hrtimer_restart res = HRTIMER_NORESTART;
write_seqlock_irq(&xtime_lock); write_seqlock(&xtime_lock);
switch (time_state) { switch (time_state) {
case TIME_OK: case TIME_OK:
...@@ -164,7 +164,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) ...@@ -164,7 +164,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
} }
update_vsyscall(&xtime, clock); update_vsyscall(&xtime, clock);
write_sequnlock_irq(&xtime_lock); write_sequnlock(&xtime_lock);
return res; return res;
} }
......
...@@ -681,7 +681,6 @@ void tick_setup_sched_timer(void) ...@@ -681,7 +681,6 @@ void tick_setup_sched_timer(void)
*/ */
hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
ts->sched_timer.function = tick_sched_timer; ts->sched_timer.function = tick_sched_timer;
ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
/* Get the next period (per cpu) */ /* Get the next period (per cpu) */
hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
......
...@@ -202,7 +202,6 @@ static void start_stack_timer(int cpu) ...@@ -202,7 +202,6 @@ static void start_stack_timer(int cpu)
hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
hrtimer->function = stack_trace_timer_fn; hrtimer->function = stack_trace_timer_fn;
hrtimer->cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
hrtimer_start(hrtimer, ns_to_ktime(sample_period), HRTIMER_MODE_REL); hrtimer_start(hrtimer, ns_to_ktime(sample_period), HRTIMER_MODE_REL);
} }
......
...@@ -96,7 +96,6 @@ static int __devinit snd_card_pcsp_probe(int devnum, struct device *dev) ...@@ -96,7 +96,6 @@ static int __devinit snd_card_pcsp_probe(int devnum, struct device *dev)
return -EINVAL; return -EINVAL;
hrtimer_init(&pcsp_chip.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); hrtimer_init(&pcsp_chip.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
pcsp_chip.timer.cb_mode = HRTIMER_CB_SOFTIRQ;
pcsp_chip.timer.function = pcsp_do_timer; pcsp_chip.timer.function = pcsp_do_timer;
card = snd_card_new(index, id, THIS_MODULE, 0); card = snd_card_new(index, id, THIS_MODULE, 0);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册