提交 bb17b787 编写于 作者: G Geert Uytterhoeven 提交者: James Bottomley

[SCSI] gvp11: Reindentation

Signed-off-by: NGeert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: NJames Bottomley <James.Bottomley@suse.de>
上级 09bc85b0
...@@ -19,331 +19,335 @@ ...@@ -19,331 +19,335 @@
#include "wd33c93.h" #include "wd33c93.h"
#include "gvp11.h" #include "gvp11.h"
#include<linux/stat.h> #include <linux/stat.h>
#define DMA(ptr) ((gvp11_scsiregs *)((ptr)->base))
#define HDATA(ptr) ((struct WD33C93_hostdata *)((ptr)->hostdata))
static irqreturn_t gvp11_intr (int irq, void *_instance) #define DMA(ptr) ((gvp11_scsiregs *)((ptr)->base))
#define HDATA(ptr) ((struct WD33C93_hostdata *)((ptr)->hostdata))
static irqreturn_t gvp11_intr(int irq, void *_instance)
{ {
unsigned long flags; unsigned long flags;
unsigned int status; unsigned int status;
struct Scsi_Host *instance = (struct Scsi_Host *)_instance; struct Scsi_Host *instance = (struct Scsi_Host *)_instance;
status = DMA(instance)->CNTR; status = DMA(instance)->CNTR;
if (!(status & GVP11_DMAC_INT_PENDING)) if (!(status & GVP11_DMAC_INT_PENDING))
return IRQ_NONE; return IRQ_NONE;
spin_lock_irqsave(instance->host_lock, flags); spin_lock_irqsave(instance->host_lock, flags);
wd33c93_intr(instance); wd33c93_intr(instance);
spin_unlock_irqrestore(instance->host_lock, flags); spin_unlock_irqrestore(instance->host_lock, flags);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
static int gvp11_xfer_mask = 0; static int gvp11_xfer_mask = 0;
void gvp11_setup (char *str, int *ints) void gvp11_setup(char *str, int *ints)
{ {
gvp11_xfer_mask = ints[1]; gvp11_xfer_mask = ints[1];
} }
static int dma_setup(struct scsi_cmnd *cmd, int dir_in) static int dma_setup(struct scsi_cmnd *cmd, int dir_in)
{ {
unsigned short cntr = GVP11_DMAC_INT_ENABLE; unsigned short cntr = GVP11_DMAC_INT_ENABLE;
unsigned long addr = virt_to_bus(cmd->SCp.ptr); unsigned long addr = virt_to_bus(cmd->SCp.ptr);
int bank_mask; int bank_mask;
static int scsi_alloc_out_of_range = 0; static int scsi_alloc_out_of_range = 0;
/* use bounce buffer if the physical address is bad */
if (addr & HDATA(cmd->device->host)->dma_xfer_mask)
{
HDATA(cmd->device->host)->dma_bounce_len = (cmd->SCp.this_residual + 511)
& ~0x1ff;
if( !scsi_alloc_out_of_range ) {
HDATA(cmd->device->host)->dma_bounce_buffer =
kmalloc (HDATA(cmd->device->host)->dma_bounce_len, GFP_KERNEL);
HDATA(cmd->device->host)->dma_buffer_pool = BUF_SCSI_ALLOCED;
}
if (scsi_alloc_out_of_range || /* use bounce buffer if the physical address is bad */
!HDATA(cmd->device->host)->dma_bounce_buffer) { if (addr & HDATA(cmd->device->host)->dma_xfer_mask) {
HDATA(cmd->device->host)->dma_bounce_buffer = HDATA(cmd->device->host)->dma_bounce_len =
amiga_chip_alloc(HDATA(cmd->device->host)->dma_bounce_len, (cmd->SCp.this_residual + 511) & ~0x1ff;
"GVP II SCSI Bounce Buffer");
if (!scsi_alloc_out_of_range) {
HDATA(cmd->device->host)->dma_bounce_buffer =
kmalloc(HDATA(cmd->device->host)->dma_bounce_len,
GFP_KERNEL);
HDATA(cmd->device->host)->dma_buffer_pool =
BUF_SCSI_ALLOCED;
}
if(!HDATA(cmd->device->host)->dma_bounce_buffer) if (scsi_alloc_out_of_range ||
{ !HDATA(cmd->device->host)->dma_bounce_buffer) {
HDATA(cmd->device->host)->dma_bounce_len = 0; HDATA(cmd->device->host)->dma_bounce_buffer =
return 1; amiga_chip_alloc(HDATA(cmd->device->host)->dma_bounce_len,
} "GVP II SCSI Bounce Buffer");
HDATA(cmd->device->host)->dma_buffer_pool = BUF_CHIP_ALLOCED; if (!HDATA(cmd->device->host)->dma_bounce_buffer) {
} HDATA(cmd->device->host)->dma_bounce_len = 0;
return 1;
}
/* check if the address of the bounce buffer is OK */ HDATA(cmd->device->host)->dma_buffer_pool =
addr = virt_to_bus(HDATA(cmd->device->host)->dma_bounce_buffer); BUF_CHIP_ALLOCED;
}
if (addr & HDATA(cmd->device->host)->dma_xfer_mask) { /* check if the address of the bounce buffer is OK */
/* fall back to Chip RAM if address out of range */ addr = virt_to_bus(HDATA(cmd->device->host)->dma_bounce_buffer);
if( HDATA(cmd->device->host)->dma_buffer_pool == BUF_SCSI_ALLOCED) {
kfree (HDATA(cmd->device->host)->dma_bounce_buffer); if (addr & HDATA(cmd->device->host)->dma_xfer_mask) {
scsi_alloc_out_of_range = 1; /* fall back to Chip RAM if address out of range */
} else { if (HDATA(cmd->device->host)->dma_buffer_pool ==
amiga_chip_free (HDATA(cmd->device->host)->dma_bounce_buffer); BUF_SCSI_ALLOCED) {
} kfree(HDATA(cmd->device->host)->dma_bounce_buffer);
scsi_alloc_out_of_range = 1;
HDATA(cmd->device->host)->dma_bounce_buffer = } else {
amiga_chip_alloc(HDATA(cmd->device->host)->dma_bounce_len, amiga_chip_free(HDATA(cmd->device->host)->dma_bounce_buffer);
"GVP II SCSI Bounce Buffer"); }
if(!HDATA(cmd->device->host)->dma_bounce_buffer) HDATA(cmd->device->host)->dma_bounce_buffer =
{ amiga_chip_alloc(HDATA(cmd->device->host)->dma_bounce_len,
HDATA(cmd->device->host)->dma_bounce_len = 0; "GVP II SCSI Bounce Buffer");
return 1;
} if (!HDATA(cmd->device->host)->dma_bounce_buffer) {
HDATA(cmd->device->host)->dma_bounce_len = 0;
addr = virt_to_bus(HDATA(cmd->device->host)->dma_bounce_buffer); return 1;
HDATA(cmd->device->host)->dma_buffer_pool = BUF_CHIP_ALLOCED; }
}
addr = virt_to_bus(HDATA(cmd->device->host)->dma_bounce_buffer);
if (!dir_in) { HDATA(cmd->device->host)->dma_buffer_pool =
/* copy to bounce buffer for a write */ BUF_CHIP_ALLOCED;
memcpy (HDATA(cmd->device->host)->dma_bounce_buffer, }
cmd->SCp.ptr, cmd->SCp.this_residual);
if (!dir_in) {
/* copy to bounce buffer for a write */
memcpy(HDATA(cmd->device->host)->dma_bounce_buffer,
cmd->SCp.ptr, cmd->SCp.this_residual);
}
} }
}
/* setup dma direction */ /* setup dma direction */
if (!dir_in) if (!dir_in)
cntr |= GVP11_DMAC_DIR_WRITE; cntr |= GVP11_DMAC_DIR_WRITE;
HDATA(cmd->device->host)->dma_dir = dir_in; HDATA(cmd->device->host)->dma_dir = dir_in;
DMA(cmd->device->host)->CNTR = cntr; DMA(cmd->device->host)->CNTR = cntr;
/* setup DMA *physical* address */ /* setup DMA *physical* address */
DMA(cmd->device->host)->ACR = addr; DMA(cmd->device->host)->ACR = addr;
if (dir_in) if (dir_in) {
/* invalidate any cache */ /* invalidate any cache */
cache_clear (addr, cmd->SCp.this_residual); cache_clear(addr, cmd->SCp.this_residual);
else } else {
/* push any dirty cache */ /* push any dirty cache */
cache_push (addr, cmd->SCp.this_residual); cache_push(addr, cmd->SCp.this_residual);
}
if ((bank_mask = (~HDATA(cmd->device->host)->dma_xfer_mask >> 18) & 0x01c0)) if ((bank_mask = (~HDATA(cmd->device->host)->dma_xfer_mask >> 18) & 0x01c0))
DMA(cmd->device->host)->BANK = bank_mask & (addr >> 18); DMA(cmd->device->host)->BANK = bank_mask & (addr >> 18);
/* start DMA */ /* start DMA */
DMA(cmd->device->host)->ST_DMA = 1; DMA(cmd->device->host)->ST_DMA = 1;
/* return success */ /* return success */
return 0; return 0;
} }
static void dma_stop(struct Scsi_Host *instance, struct scsi_cmnd *SCpnt, static void dma_stop(struct Scsi_Host *instance, struct scsi_cmnd *SCpnt,
int status) int status)
{ {
/* stop DMA */ /* stop DMA */
DMA(instance)->SP_DMA = 1; DMA(instance)->SP_DMA = 1;
/* remove write bit from CONTROL bits */ /* remove write bit from CONTROL bits */
DMA(instance)->CNTR = GVP11_DMAC_INT_ENABLE; DMA(instance)->CNTR = GVP11_DMAC_INT_ENABLE;
/* copy from a bounce buffer, if necessary */ /* copy from a bounce buffer, if necessary */
if (status && HDATA(instance)->dma_bounce_buffer) { if (status && HDATA(instance)->dma_bounce_buffer) {
if (HDATA(instance)->dma_dir && SCpnt) if (HDATA(instance)->dma_dir && SCpnt)
memcpy (SCpnt->SCp.ptr, memcpy(SCpnt->SCp.ptr,
HDATA(instance)->dma_bounce_buffer, HDATA(instance)->dma_bounce_buffer,
SCpnt->SCp.this_residual); SCpnt->SCp.this_residual);
if (HDATA(instance)->dma_buffer_pool == BUF_SCSI_ALLOCED) if (HDATA(instance)->dma_buffer_pool == BUF_SCSI_ALLOCED)
kfree (HDATA(instance)->dma_bounce_buffer); kfree(HDATA(instance)->dma_bounce_buffer);
else else
amiga_chip_free(HDATA(instance)->dma_bounce_buffer); amiga_chip_free(HDATA(instance)->dma_bounce_buffer);
HDATA(instance)->dma_bounce_buffer = NULL; HDATA(instance)->dma_bounce_buffer = NULL;
HDATA(instance)->dma_bounce_len = 0; HDATA(instance)->dma_bounce_len = 0;
} }
} }
#define CHECK_WD33C93 #define CHECK_WD33C93
int __init gvp11_detect(struct scsi_host_template *tpnt) int __init gvp11_detect(struct scsi_host_template *tpnt)
{ {
static unsigned char called = 0; static unsigned char called = 0;
struct Scsi_Host *instance; struct Scsi_Host *instance;
unsigned long address; unsigned long address;
unsigned int epc; unsigned int epc;
struct zorro_dev *z = NULL; struct zorro_dev *z = NULL;
unsigned int default_dma_xfer_mask; unsigned int default_dma_xfer_mask;
wd33c93_regs regs; wd33c93_regs regs;
int num_gvp11 = 0; int num_gvp11 = 0;
#ifdef CHECK_WD33C93 #ifdef CHECK_WD33C93
volatile unsigned char *sasr_3393, *scmd_3393; volatile unsigned char *sasr_3393, *scmd_3393;
unsigned char save_sasr; unsigned char save_sasr;
unsigned char q, qq; unsigned char q, qq;
#endif #endif
if (!MACH_IS_AMIGA || called) if (!MACH_IS_AMIGA || called)
return 0; return 0;
called = 1; called = 1;
tpnt->proc_name = "GVP11"; tpnt->proc_name = "GVP11";
tpnt->proc_info = &wd33c93_proc_info; tpnt->proc_info = &wd33c93_proc_info;
while ((z = zorro_find_device(ZORRO_WILDCARD, z))) { while ((z = zorro_find_device(ZORRO_WILDCARD, z))) {
/* /*
* This should (hopefully) be the correct way to identify * This should (hopefully) be the correct way to identify
* all the different GVP SCSI controllers (except for the * all the different GVP SCSI controllers (except for the
* SERIES I though). * SERIES I though).
*/ */
if (z->id == ZORRO_PROD_GVP_COMBO_030_R3_SCSI || if (z->id == ZORRO_PROD_GVP_COMBO_030_R3_SCSI ||
z->id == ZORRO_PROD_GVP_SERIES_II) z->id == ZORRO_PROD_GVP_SERIES_II)
default_dma_xfer_mask = ~0x00ffffff; default_dma_xfer_mask = ~0x00ffffff;
else if (z->id == ZORRO_PROD_GVP_GFORCE_030_SCSI || else if (z->id == ZORRO_PROD_GVP_GFORCE_030_SCSI ||
z->id == ZORRO_PROD_GVP_A530_SCSI || z->id == ZORRO_PROD_GVP_A530_SCSI ||
z->id == ZORRO_PROD_GVP_COMBO_030_R4_SCSI) z->id == ZORRO_PROD_GVP_COMBO_030_R4_SCSI)
default_dma_xfer_mask = ~0x01ffffff; default_dma_xfer_mask = ~0x01ffffff;
else if (z->id == ZORRO_PROD_GVP_A1291 || else if (z->id == ZORRO_PROD_GVP_A1291 ||
z->id == ZORRO_PROD_GVP_GFORCE_040_SCSI_1) z->id == ZORRO_PROD_GVP_GFORCE_040_SCSI_1)
default_dma_xfer_mask = ~0x07ffffff; default_dma_xfer_mask = ~0x07ffffff;
else else
continue; continue;
/* /*
* Rumors state that some GVP ram boards use the same product * Rumors state that some GVP ram boards use the same product
* code as the SCSI controllers. Therefore if the board-size * code as the SCSI controllers. Therefore if the board-size
* is not 64KB we asume it is a ram board and bail out. * is not 64KB we asume it is a ram board and bail out.
*/ */
if (z->resource.end-z->resource.start != 0xffff) if (z->resource.end - z->resource.start != 0xffff)
continue; continue;
address = z->resource.start; address = z->resource.start;
if (!request_mem_region(address, 256, "wd33c93")) if (!request_mem_region(address, 256, "wd33c93"))
continue; continue;
#ifdef CHECK_WD33C93 #ifdef CHECK_WD33C93
/* /*
* These darn GVP boards are a problem - it can be tough to tell * These darn GVP boards are a problem - it can be tough to tell
* whether or not they include a SCSI controller. This is the * whether or not they include a SCSI controller. This is the
* ultimate Yet-Another-GVP-Detection-Hack in that it actually * ultimate Yet-Another-GVP-Detection-Hack in that it actually
* probes for a WD33c93 chip: If we find one, it's extremely * probes for a WD33c93 chip: If we find one, it's extremely
* likely that this card supports SCSI, regardless of Product_ * likely that this card supports SCSI, regardless of Product_
* Code, Board_Size, etc. * Code, Board_Size, etc.
*/ */
/* Get pointers to the presumed register locations and save contents */ /* Get pointers to the presumed register locations and save contents */
sasr_3393 = &(((gvp11_scsiregs *)(ZTWO_VADDR(address)))->SASR); sasr_3393 = &(((gvp11_scsiregs *)(ZTWO_VADDR(address)))->SASR);
scmd_3393 = &(((gvp11_scsiregs *)(ZTWO_VADDR(address)))->SCMD); scmd_3393 = &(((gvp11_scsiregs *)(ZTWO_VADDR(address)))->SCMD);
save_sasr = *sasr_3393; save_sasr = *sasr_3393;
/* First test the AuxStatus Reg */ /* First test the AuxStatus Reg */
q = *sasr_3393; /* read it */ q = *sasr_3393; /* read it */
if (q & 0x08) /* bit 3 should always be clear */ if (q & 0x08) /* bit 3 should always be clear */
goto release; goto release;
*sasr_3393 = WD_AUXILIARY_STATUS; /* setup indirect address */ *sasr_3393 = WD_AUXILIARY_STATUS; /* setup indirect address */
if (*sasr_3393 == WD_AUXILIARY_STATUS) { /* shouldn't retain the write */ if (*sasr_3393 == WD_AUXILIARY_STATUS) { /* shouldn't retain the write */
*sasr_3393 = save_sasr; /* Oops - restore this byte */ *sasr_3393 = save_sasr; /* Oops - restore this byte */
goto release; goto release;
} }
if (*sasr_3393 != q) { /* should still read the same */ if (*sasr_3393 != q) { /* should still read the same */
*sasr_3393 = save_sasr; /* Oops - restore this byte */ *sasr_3393 = save_sasr; /* Oops - restore this byte */
goto release; goto release;
} }
if (*scmd_3393 != q) /* and so should the image at 0x1f */ if (*scmd_3393 != q) /* and so should the image at 0x1f */
goto release; goto release;
/*
/* Ok, we probably have a wd33c93, but let's check a few other places * Ok, we probably have a wd33c93, but let's check a few other places
* for good measure. Make sure that this works for both 'A and 'B * for good measure. Make sure that this works for both 'A and 'B
* chip versions. * chip versions.
*/ */
*sasr_3393 = WD_SCSI_STATUS; *sasr_3393 = WD_SCSI_STATUS;
q = *scmd_3393; q = *scmd_3393;
*sasr_3393 = WD_SCSI_STATUS; *sasr_3393 = WD_SCSI_STATUS;
*scmd_3393 = ~q; *scmd_3393 = ~q;
*sasr_3393 = WD_SCSI_STATUS; *sasr_3393 = WD_SCSI_STATUS;
qq = *scmd_3393; qq = *scmd_3393;
*sasr_3393 = WD_SCSI_STATUS; *sasr_3393 = WD_SCSI_STATUS;
*scmd_3393 = q; *scmd_3393 = q;
if (qq != q) /* should be read only */ if (qq != q) /* should be read only */
goto release; goto release;
*sasr_3393 = 0x1e; /* this register is unimplemented */ *sasr_3393 = 0x1e; /* this register is unimplemented */
q = *scmd_3393; q = *scmd_3393;
*sasr_3393 = 0x1e; *sasr_3393 = 0x1e;
*scmd_3393 = ~q; *scmd_3393 = ~q;
*sasr_3393 = 0x1e; *sasr_3393 = 0x1e;
qq = *scmd_3393; qq = *scmd_3393;
*sasr_3393 = 0x1e; *sasr_3393 = 0x1e;
*scmd_3393 = q; *scmd_3393 = q;
if (qq != q || qq != 0xff) /* should be read only, all 1's */ if (qq != q || qq != 0xff) /* should be read only, all 1's */
goto release; goto release;
*sasr_3393 = WD_TIMEOUT_PERIOD; *sasr_3393 = WD_TIMEOUT_PERIOD;
q = *scmd_3393; q = *scmd_3393;
*sasr_3393 = WD_TIMEOUT_PERIOD; *sasr_3393 = WD_TIMEOUT_PERIOD;
*scmd_3393 = ~q; *scmd_3393 = ~q;
*sasr_3393 = WD_TIMEOUT_PERIOD; *sasr_3393 = WD_TIMEOUT_PERIOD;
qq = *scmd_3393; qq = *scmd_3393;
*sasr_3393 = WD_TIMEOUT_PERIOD; *sasr_3393 = WD_TIMEOUT_PERIOD;
*scmd_3393 = q; *scmd_3393 = q;
if (qq != (~q & 0xff)) /* should be read/write */ if (qq != (~q & 0xff)) /* should be read/write */
goto release; goto release;
#endif #endif
instance = scsi_register (tpnt, sizeof (struct WD33C93_hostdata)); instance = scsi_register(tpnt, sizeof(struct WD33C93_hostdata));
if(instance == NULL) if (instance == NULL)
goto release; goto release;
instance->base = ZTWO_VADDR(address); instance->base = ZTWO_VADDR(address);
instance->irq = IRQ_AMIGA_PORTS; instance->irq = IRQ_AMIGA_PORTS;
instance->unique_id = z->slotaddr; instance->unique_id = z->slotaddr;
if (gvp11_xfer_mask) if (gvp11_xfer_mask)
HDATA(instance)->dma_xfer_mask = gvp11_xfer_mask; HDATA(instance)->dma_xfer_mask = gvp11_xfer_mask;
else else
HDATA(instance)->dma_xfer_mask = default_dma_xfer_mask; HDATA(instance)->dma_xfer_mask = default_dma_xfer_mask;
DMA(instance)->secret2 = 1;
DMA(instance)->secret2 = 1; DMA(instance)->secret1 = 0;
DMA(instance)->secret1 = 0; DMA(instance)->secret3 = 15;
DMA(instance)->secret3 = 15; while (DMA(instance)->CNTR & GVP11_DMAC_BUSY)
while (DMA(instance)->CNTR & GVP11_DMAC_BUSY) ; ;
DMA(instance)->CNTR = 0; DMA(instance)->CNTR = 0;
DMA(instance)->BANK = 0; DMA(instance)->BANK = 0;
epc = *(unsigned short *)(ZTWO_VADDR(address) + 0x8000); epc = *(unsigned short *)(ZTWO_VADDR(address) + 0x8000);
/* /*
* Check for 14MHz SCSI clock * Check for 14MHz SCSI clock
*/ */
regs.SASR = &(DMA(instance)->SASR); regs.SASR = &(DMA(instance)->SASR);
regs.SCMD = &(DMA(instance)->SCMD); regs.SCMD = &(DMA(instance)->SCMD);
HDATA(instance)->no_sync = 0xff; HDATA(instance)->no_sync = 0xff;
HDATA(instance)->fast = 0; HDATA(instance)->fast = 0;
HDATA(instance)->dma_mode = CTRL_DMA; HDATA(instance)->dma_mode = CTRL_DMA;
wd33c93_init(instance, regs, dma_setup, dma_stop, wd33c93_init(instance, regs, dma_setup, dma_stop,
(epc & GVP_SCSICLKMASK) ? WD33C93_FS_8_10 (epc & GVP_SCSICLKMASK) ? WD33C93_FS_8_10
: WD33C93_FS_12_15); : WD33C93_FS_12_15);
if (request_irq(IRQ_AMIGA_PORTS, gvp11_intr, IRQF_SHARED, "GVP11 SCSI", if (request_irq(IRQ_AMIGA_PORTS, gvp11_intr, IRQF_SHARED,
instance)) "GVP11 SCSI", instance))
goto unregister; goto unregister;
DMA(instance)->CNTR = GVP11_DMAC_INT_ENABLE; DMA(instance)->CNTR = GVP11_DMAC_INT_ENABLE;
num_gvp11++; num_gvp11++;
continue; continue;
unregister: unregister:
scsi_unregister(instance); scsi_unregister(instance);
release: release:
release_mem_region(address, 256); release_mem_region(address, 256);
} }
return num_gvp11; return num_gvp11;
} }
static int gvp11_bus_reset(struct scsi_cmnd *cmd) static int gvp11_bus_reset(struct scsi_cmnd *cmd)
...@@ -388,11 +392,11 @@ static struct scsi_host_template driver_template = { ...@@ -388,11 +392,11 @@ static struct scsi_host_template driver_template = {
int gvp11_release(struct Scsi_Host *instance) int gvp11_release(struct Scsi_Host *instance)
{ {
#ifdef MODULE #ifdef MODULE
DMA(instance)->CNTR = 0; DMA(instance)->CNTR = 0;
release_mem_region(ZTWO_PADDR(instance->base), 256); release_mem_region(ZTWO_PADDR(instance->base), 256);
free_irq(IRQ_AMIGA_PORTS, instance); free_irq(IRQ_AMIGA_PORTS, instance);
#endif #endif
return 1; return 1;
} }
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
...@@ -15,11 +15,11 @@ int gvp11_detect(struct scsi_host_template *); ...@@ -15,11 +15,11 @@ int gvp11_detect(struct scsi_host_template *);
int gvp11_release(struct Scsi_Host *); int gvp11_release(struct Scsi_Host *);
#ifndef CMD_PER_LUN #ifndef CMD_PER_LUN
#define CMD_PER_LUN 2 #define CMD_PER_LUN 2
#endif #endif
#ifndef CAN_QUEUE #ifndef CAN_QUEUE
#define CAN_QUEUE 16 #define CAN_QUEUE 16
#endif #endif
#ifndef HOSTS_C #ifndef HOSTS_C
...@@ -28,24 +28,24 @@ int gvp11_release(struct Scsi_Host *); ...@@ -28,24 +28,24 @@ int gvp11_release(struct Scsi_Host *);
* if the transfer address ANDed with this results in a non-zero * if the transfer address ANDed with this results in a non-zero
* result, then we can't use DMA. * result, then we can't use DMA.
*/ */
#define GVP11_XFER_MASK (0xff000001) #define GVP11_XFER_MASK (0xff000001)
typedef struct { typedef struct {
unsigned char pad1[64]; unsigned char pad1[64];
volatile unsigned short CNTR; volatile unsigned short CNTR;
unsigned char pad2[31]; unsigned char pad2[31];
volatile unsigned char SASR; volatile unsigned char SASR;
unsigned char pad3; unsigned char pad3;
volatile unsigned char SCMD; volatile unsigned char SCMD;
unsigned char pad4[4]; unsigned char pad4[4];
volatile unsigned short BANK; volatile unsigned short BANK;
unsigned char pad5[6]; unsigned char pad5[6];
volatile unsigned long ACR; volatile unsigned long ACR;
volatile unsigned short secret1; /* store 0 here */ volatile unsigned short secret1; /* store 0 here */
volatile unsigned short ST_DMA; volatile unsigned short ST_DMA;
volatile unsigned short SP_DMA; volatile unsigned short SP_DMA;
volatile unsigned short secret2; /* store 1 here */ volatile unsigned short secret2; /* store 1 here */
volatile unsigned short secret3; /* store 15 here */ volatile unsigned short secret3; /* store 15 here */
} gvp11_scsiregs; } gvp11_scsiregs;
/* bits in CNTR */ /* bits in CNTR */
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册