提交 aa62e90f 编写于 作者: J Juha Yrjola 提交者: Tony Lindgren

ARM: OMAP2/3: Add generic onenand support when connected to GPMC

Add generic onenand support when connected to GPMC and make the
boards to use it.

The patch has been modified to make it more generic to support all
the boards with GPMC. The patch also remove unused prototype for
omap2_onenand_rephase(void).

Note that board-apollon.c is currently using the MTD_ONENAND_GENERIC
and setting the GPMC timings in the bootloader. Setting the GPMC
timings in the bootloader will not allow supporting frequency
scaling for the onenand source clock.
Signed-off-by: NTony Lindgren <tony@atomide.com>
上级 279b918d
......@@ -282,7 +282,7 @@ CONFIG_ALIGNMENT_TRAP=y
#
CONFIG_ZBOOT_ROM_TEXT=0x0
CONFIG_ZBOOT_ROM_BSS=0x0
CONFIG_CMDLINE="init=/sbin/preinit ubi.mtd=4 root=ubi0:rootfs rootfstype=ubifs rw console=ttyMTD5"
CONFIG_CMDLINE="init=/sbin/preinit ubi.mtd=rootfs root=ubi0:rootfs rootfstype=ubifs rootflags=bulk_read,no_chk_data_crc rw console=ttyMTD,log console=tty0"
# CONFIG_XIP_KERNEL is not set
# CONFIG_KEXEC is not set
......
......@@ -58,3 +58,6 @@ obj-$(CONFIG_MACH_NOKIA_RX51) += board-rx51.o \
ifeq ($(CONFIG_USB_MUSB_SOC),y)
obj-y += usb-musb.o
endif
onenand-$(CONFIG_MTD_ONENAND_OMAP2) := gpmc-onenand.o
obj-y += $(onenand-m) $(onenand-y)
......@@ -27,6 +27,7 @@
#include <mach/dma.h>
#include <mach/gpmc.h>
#include <mach/keypad.h>
#include <mach/onenand.h>
#include "mmc-twl4030.h"
......@@ -408,6 +409,62 @@ static int __init rx51_i2c_init(void)
return 0;
}
#if defined(CONFIG_MTD_ONENAND_OMAP2) || \
defined(CONFIG_MTD_ONENAND_OMAP2_MODULE)
static struct mtd_partition onenand_partitions[] = {
{
.name = "bootloader",
.offset = 0,
.size = 0x20000,
.mask_flags = MTD_WRITEABLE, /* Force read-only */
},
{
.name = "config",
.offset = MTDPART_OFS_APPEND,
.size = 0x60000,
},
{
.name = "log",
.offset = MTDPART_OFS_APPEND,
.size = 0x40000,
},
{
.name = "kernel",
.offset = MTDPART_OFS_APPEND,
.size = 0x200000,
},
{
.name = "initfs",
.offset = MTDPART_OFS_APPEND,
.size = 0x200000,
},
{
.name = "rootfs",
.offset = MTDPART_OFS_APPEND,
.size = MTDPART_SIZ_FULL,
},
};
static struct omap_onenand_platform_data board_onenand_data = {
.cs = 0,
.gpio_irq = 65,
.parts = onenand_partitions,
.nr_parts = ARRAY_SIZE(onenand_partitions),
};
static void __init board_onenand_init(void)
{
gpmc_onenand_init(&board_onenand_data);
}
#else
static inline void board_onenand_init(void)
{
}
#endif
void __init rx51_peripherals_init(void)
{
......@@ -415,5 +472,6 @@ void __init rx51_peripherals_init(void)
ARRAY_SIZE(rx51_peripherals_devices));
rx51_i2c_init();
rx51_init_smc91x();
board_onenand_init();
}
/*
* linux/arch/arm/mach-omap2/gpmc-onenand.c
*
* Copyright (C) 2006 - 2009 Nokia Corporation
* Contacts: Juha Yrjola
* Tony Lindgren
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/mtd/onenand_regs.h>
#include <linux/io.h>
#include <asm/mach/flash.h>
#include <mach/onenand.h>
#include <mach/board.h>
#include <mach/gpmc.h>
static struct omap_onenand_platform_data *gpmc_onenand_data;
static struct platform_device gpmc_onenand_device = {
.name = "omap2-onenand",
.id = -1,
};
static int omap2_onenand_set_async_mode(int cs, void __iomem *onenand_base)
{
struct gpmc_timings t;
const int t_cer = 15;
const int t_avdp = 12;
const int t_aavdh = 7;
const int t_ce = 76;
const int t_aa = 76;
const int t_oe = 20;
const int t_cez = 20; /* max of t_cez, t_oez */
const int t_ds = 30;
const int t_wpl = 40;
const int t_wph = 30;
memset(&t, 0, sizeof(t));
t.sync_clk = 0;
t.cs_on = 0;
t.adv_on = 0;
/* Read */
t.adv_rd_off = gpmc_round_ns_to_ticks(max_t(int, t_avdp, t_cer));
t.oe_on = t.adv_rd_off + gpmc_round_ns_to_ticks(t_aavdh);
t.access = t.adv_on + gpmc_round_ns_to_ticks(t_aa);
t.access = max_t(int, t.access, t.cs_on + gpmc_round_ns_to_ticks(t_ce));
t.access = max_t(int, t.access, t.oe_on + gpmc_round_ns_to_ticks(t_oe));
t.oe_off = t.access + gpmc_round_ns_to_ticks(1);
t.cs_rd_off = t.oe_off;
t.rd_cycle = t.cs_rd_off + gpmc_round_ns_to_ticks(t_cez);
/* Write */
t.adv_wr_off = t.adv_rd_off;
t.we_on = t.oe_on;
if (cpu_is_omap34xx()) {
t.wr_data_mux_bus = t.we_on;
t.wr_access = t.we_on + gpmc_round_ns_to_ticks(t_ds);
}
t.we_off = t.we_on + gpmc_round_ns_to_ticks(t_wpl);
t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(t_wph);
t.wr_cycle = t.cs_wr_off + gpmc_round_ns_to_ticks(t_cez);
/* Configure GPMC for asynchronous read */
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
GPMC_CONFIG1_DEVICESIZE_16 |
GPMC_CONFIG1_MUXADDDATA);
return gpmc_cs_set_timings(cs, &t);
}
static void set_onenand_cfg(void __iomem *onenand_base, int latency,
int sync_read, int sync_write, int hf)
{
u32 reg;
reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
reg &= ~((0x7 << ONENAND_SYS_CFG1_BRL_SHIFT) | (0x7 << 9));
reg |= (latency << ONENAND_SYS_CFG1_BRL_SHIFT) |
ONENAND_SYS_CFG1_BL_16;
if (sync_read)
reg |= ONENAND_SYS_CFG1_SYNC_READ;
else
reg &= ~ONENAND_SYS_CFG1_SYNC_READ;
if (sync_write)
reg |= ONENAND_SYS_CFG1_SYNC_WRITE;
else
reg &= ~ONENAND_SYS_CFG1_SYNC_WRITE;
if (hf)
reg |= ONENAND_SYS_CFG1_HF;
else
reg &= ~ONENAND_SYS_CFG1_HF;
writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
}
static int omap2_onenand_set_sync_mode(struct omap_onenand_platform_data *cfg,
void __iomem *onenand_base,
int freq)
{
struct gpmc_timings t;
const int t_cer = 15;
const int t_avdp = 12;
const int t_cez = 20; /* max of t_cez, t_oez */
const int t_ds = 30;
const int t_wpl = 40;
const int t_wph = 30;
int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
int tick_ns, div, fclk_offset_ns, fclk_offset, gpmc_clk_ns, latency;
int first_time = 0, hf = 0, sync_read = 0, sync_write = 0;
int err, ticks_cez;
int cs = cfg->cs;
u32 reg;
if (cfg->flags & ONENAND_SYNC_READ) {
sync_read = 1;
} else if (cfg->flags & ONENAND_SYNC_READWRITE) {
sync_read = 1;
sync_write = 1;
}
if (!freq) {
/* Very first call freq is not known */
err = omap2_onenand_set_async_mode(cs, onenand_base);
if (err)
return err;
reg = readw(onenand_base + ONENAND_REG_VERSION_ID);
switch ((reg >> 4) & 0xf) {
case 0:
freq = 40;
break;
case 1:
freq = 54;
break;
case 2:
freq = 66;
break;
case 3:
freq = 83;
break;
case 4:
freq = 104;
break;
default:
freq = 54;
break;
}
first_time = 1;
}
switch (freq) {
case 83:
min_gpmc_clk_period = 12; /* 83 MHz */
t_ces = 5;
t_avds = 4;
t_avdh = 2;
t_ach = 6;
t_aavdh = 6;
t_rdyo = 9;
break;
case 66:
min_gpmc_clk_period = 15; /* 66 MHz */
t_ces = 6;
t_avds = 5;
t_avdh = 2;
t_ach = 6;
t_aavdh = 6;
t_rdyo = 11;
break;
default:
min_gpmc_clk_period = 18; /* 54 MHz */
t_ces = 7;
t_avds = 7;
t_avdh = 7;
t_ach = 9;
t_aavdh = 7;
t_rdyo = 15;
sync_write = 0;
break;
}
tick_ns = gpmc_ticks_to_ns(1);
div = gpmc_cs_calc_divider(cs, min_gpmc_clk_period);
gpmc_clk_ns = gpmc_ticks_to_ns(div);
if (gpmc_clk_ns < 15) /* >66Mhz */
hf = 1;
if (hf)
latency = 6;
else if (gpmc_clk_ns >= 25) /* 40 MHz*/
latency = 3;
else
latency = 4;
if (first_time)
set_onenand_cfg(onenand_base, latency,
sync_read, sync_write, hf);
if (div == 1) {
reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2);
reg |= (1 << 7);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg);
reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3);
reg |= (1 << 7);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg);
reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4);
reg |= (1 << 7);
reg |= (1 << 23);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg);
} else {
reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2);
reg &= ~(1 << 7);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg);
reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3);
reg &= ~(1 << 7);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg);
reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4);
reg &= ~(1 << 7);
reg &= ~(1 << 23);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg);
}
/* Set synchronous read timings */
memset(&t, 0, sizeof(t));
t.sync_clk = min_gpmc_clk_period;
t.cs_on = 0;
t.adv_on = 0;
fclk_offset_ns = gpmc_round_ns_to_ticks(max_t(int, t_ces, t_avds));
fclk_offset = gpmc_ns_to_ticks(fclk_offset_ns);
t.page_burst_access = gpmc_clk_ns;
/* Read */
t.adv_rd_off = gpmc_ticks_to_ns(fclk_offset + gpmc_ns_to_ticks(t_avdh));
t.oe_on = gpmc_ticks_to_ns(fclk_offset + gpmc_ns_to_ticks(t_ach));
t.access = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div);
t.oe_off = t.access + gpmc_round_ns_to_ticks(1);
t.cs_rd_off = t.oe_off;
ticks_cez = ((gpmc_ns_to_ticks(t_cez) + div - 1) / div) * div;
t.rd_cycle = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div +
ticks_cez);
/* Write */
if (sync_write) {
t.adv_wr_off = t.adv_rd_off;
t.we_on = 0;
t.we_off = t.cs_rd_off;
t.cs_wr_off = t.cs_rd_off;
t.wr_cycle = t.rd_cycle;
if (cpu_is_omap34xx()) {
t.wr_data_mux_bus = gpmc_ticks_to_ns(fclk_offset +
gpmc_ns_to_ticks(min_gpmc_clk_period +
t_rdyo));
t.wr_access = t.access;
}
} else {
t.adv_wr_off = gpmc_round_ns_to_ticks(max_t(int,
t_avdp, t_cer));
t.we_on = t.adv_wr_off + gpmc_round_ns_to_ticks(t_aavdh);
t.we_off = t.we_on + gpmc_round_ns_to_ticks(t_wpl);
t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(t_wph);
t.wr_cycle = t.cs_wr_off + gpmc_round_ns_to_ticks(t_cez);
if (cpu_is_omap34xx()) {
t.wr_data_mux_bus = t.we_on;
t.wr_access = t.we_on + gpmc_round_ns_to_ticks(t_ds);
}
}
/* Configure GPMC for synchronous read */
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
GPMC_CONFIG1_WRAPBURST_SUPP |
GPMC_CONFIG1_READMULTIPLE_SUPP |
(sync_read ? GPMC_CONFIG1_READTYPE_SYNC : 0) |
(sync_write ? GPMC_CONFIG1_WRITEMULTIPLE_SUPP : 0) |
(sync_write ? GPMC_CONFIG1_WRITETYPE_SYNC : 0) |
GPMC_CONFIG1_CLKACTIVATIONTIME(fclk_offset) |
GPMC_CONFIG1_PAGE_LEN(2) |
(cpu_is_omap34xx() ? 0 :
(GPMC_CONFIG1_WAIT_READ_MON |
GPMC_CONFIG1_WAIT_PIN_SEL(0))) |
GPMC_CONFIG1_DEVICESIZE_16 |
GPMC_CONFIG1_DEVICETYPE_NOR |
GPMC_CONFIG1_MUXADDDATA);
err = gpmc_cs_set_timings(cs, &t);
if (err)
return err;
set_onenand_cfg(onenand_base, latency, sync_read, sync_write, hf);
return 0;
}
static int gpmc_onenand_setup(void __iomem *onenand_base, int freq)
{
struct device *dev = &gpmc_onenand_device.dev;
/* Set sync timings in GPMC */
if (omap2_onenand_set_sync_mode(gpmc_onenand_data, onenand_base,
freq) < 0) {
dev_err(dev, "Unable to set synchronous mode\n");
return -EINVAL;
}
return 0;
}
void __init gpmc_onenand_init(struct omap_onenand_platform_data *_onenand_data)
{
gpmc_onenand_data = _onenand_data;
gpmc_onenand_data->onenand_setup = gpmc_onenand_setup;
gpmc_onenand_device.dev.platform_data = gpmc_onenand_data;
if (cpu_is_omap24xx() &&
(gpmc_onenand_data->flags & ONENAND_SYNC_READWRITE)) {
printk(KERN_ERR "Onenand using only SYNC_READ on 24xx\n");
gpmc_onenand_data->flags &= ~ONENAND_SYNC_READWRITE;
gpmc_onenand_data->flags |= ONENAND_SYNC_READ;
}
if (platform_device_register(&gpmc_onenand_device) < 0) {
printk(KERN_ERR "Unable to register OneNAND device\n");
return;
}
}
......@@ -9,8 +9,12 @@
* published by the Free Software Foundation.
*/
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#define ONENAND_SYNC_READ (1 << 0)
#define ONENAND_SYNC_READWRITE (1 << 1)
struct omap_onenand_platform_data {
int cs;
int gpio_irq;
......@@ -18,8 +22,22 @@ struct omap_onenand_platform_data {
int nr_parts;
int (*onenand_setup)(void __iomem *, int freq);
int dma_channel;
u8 flags;
};
int omap2_onenand_rephase(void);
#define ONENAND_MAX_PARTITIONS 8
#if defined(CONFIG_MTD_ONENAND_OMAP2) || \
defined(CONFIG_MTD_ONENAND_OMAP2_MODULE)
extern void gpmc_onenand_init(struct omap_onenand_platform_data *d);
#else
#define board_onenand_data NULL
static inline void gpmc_onenand_init(struct omap_onenand_platform_data *d)
{
}
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册