提交 9fdd54f2 编写于 作者: L Len Brown

ACPI: delete CPU_IDLE=n code

CPU_IDLE=y has been default for ACPI=y since Nov-2007,
and has shipped in many distributions since then.

Here we delete the CPU_IDLE=n ACPI idle code, since
nobody should be using it, and we don't want to
maintain two versions.
Signed-off-by: NLen Brown <len.brown@intel.com>
上级 31878dd8
......@@ -9,6 +9,7 @@ menuconfig ACPI
depends on PCI
depends on PM
select PNP
select CPU_IDLE
default y
---help---
Advanced Configuration and Power Interface (ACPI) support for
......
......@@ -66,43 +66,17 @@ ACPI_MODULE_NAME("processor_idle");
#define ACPI_PROCESSOR_FILE_POWER "power"
#define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
#define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
#ifndef CONFIG_CPU_IDLE
#define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
#define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
static void (*pm_idle_save) (void) __read_mostly;
#else
#define C2_OVERHEAD 1 /* 1us */
#define C3_OVERHEAD 1 /* 1us */
#endif
#define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
#ifdef CONFIG_CPU_IDLE
module_param(max_cstate, uint, 0000);
#else
module_param(max_cstate, uint, 0644);
#endif
static unsigned int nocst __read_mostly;
module_param(nocst, uint, 0000);
#ifndef CONFIG_CPU_IDLE
/*
* bm_history -- bit-mask with a bit per jiffy of bus-master activity
* 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
* 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
* 100 HZ: 0x0000000F: 4 jiffies = 40ms
* reduce history for more aggressive entry into C3
*/
static unsigned int bm_history __read_mostly =
(HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
module_param(bm_history, uint, 0644);
static int acpi_processor_set_power_policy(struct acpi_processor *pr);
#else /* CONFIG_CPU_IDLE */
static unsigned int latency_factor __read_mostly = 2;
module_param(latency_factor, uint, 0644);
#endif
/*
* IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
......@@ -224,51 +198,6 @@ static void acpi_safe_halt(void)
current_thread_info()->status |= TS_POLLING;
}
#ifndef CONFIG_CPU_IDLE
static void
acpi_processor_power_activate(struct acpi_processor *pr,
struct acpi_processor_cx *new)
{
struct acpi_processor_cx *old;
if (!pr || !new)
return;
old = pr->power.state;
if (old)
old->promotion.count = 0;
new->demotion.count = 0;
pr->power.state = new;
return;
}
static atomic_t c3_cpu_count;
/* Common C-state entry for C2, C3, .. */
static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
{
/* Don't trace irqs off for idle */
stop_critical_timings();
if (cstate->entry_method == ACPI_CSTATE_FFH) {
/* Call into architectural FFH based C-state */
acpi_processor_ffh_cstate_enter(cstate);
} else {
int unused;
/* IO port based C-state */
inb(cstate->address);
/* Dummy wait op - must do something useless after P_LVL2 read
because chipsets cannot guarantee that STPCLK# signal
gets asserted in time to freeze execution properly. */
unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
}
start_critical_timings();
}
#endif /* !CONFIG_CPU_IDLE */
#ifdef ARCH_APICTIMER_STOPS_ON_C3
/*
......@@ -370,421 +299,6 @@ static int tsc_halts_in_c(int state)
}
#endif
#ifndef CONFIG_CPU_IDLE
static void acpi_processor_idle(void)
{
struct acpi_processor *pr = NULL;
struct acpi_processor_cx *cx = NULL;
struct acpi_processor_cx *next_state = NULL;
int sleep_ticks = 0;
u32 t1, t2 = 0;
/*
* Interrupts must be disabled during bus mastering calculations and
* for C2/C3 transitions.
*/
local_irq_disable();
pr = __get_cpu_var(processors);
if (!pr) {
local_irq_enable();
return;
}
/*
* Check whether we truly need to go idle, or should
* reschedule:
*/
if (unlikely(need_resched())) {
local_irq_enable();
return;
}
cx = pr->power.state;
if (!cx || acpi_idle_suspend) {
if (pm_idle_save) {
pm_idle_save(); /* enables IRQs */
} else {
acpi_safe_halt();
local_irq_enable();
}
return;
}
/*
* Check BM Activity
* -----------------
* Check for bus mastering activity (if required), record, and check
* for demotion.
*/
if (pr->flags.bm_check) {
u32 bm_status = 0;
unsigned long diff = jiffies - pr->power.bm_check_timestamp;
if (diff > 31)
diff = 31;
pr->power.bm_activity <<= diff;
acpi_get_register_unlocked(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
if (bm_status) {
pr->power.bm_activity |= 0x1;
acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
}
/*
* PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
* the true state of bus mastering activity; forcing us to
* manually check the BMIDEA bit of each IDE channel.
*/
else if (errata.piix4.bmisx) {
if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
|| (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
pr->power.bm_activity |= 0x1;
}
pr->power.bm_check_timestamp = jiffies;
/*
* If bus mastering is or was active this jiffy, demote
* to avoid a faulty transition. Note that the processor
* won't enter a low-power state during this call (to this
* function) but should upon the next.
*
* TBD: A better policy might be to fallback to the demotion
* state (use it for this quantum only) istead of
* demoting -- and rely on duration as our sole demotion
* qualification. This may, however, introduce DMA
* issues (e.g. floppy DMA transfer overrun/underrun).
*/
if ((pr->power.bm_activity & 0x1) &&
cx->demotion.threshold.bm) {
local_irq_enable();
next_state = cx->demotion.state;
goto end;
}
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* Check for P_LVL2_UP flag before entering C2 and above on
* an SMP system. We do it here instead of doing it at _CST/P_LVL
* detection phase, to work cleanly with logical CPU hotplug.
*/
if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
!pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
cx = &pr->power.states[ACPI_STATE_C1];
#endif
/*
* Sleep:
* ------
* Invoke the current Cx state to put the processor to sleep.
*/
if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
current_thread_info()->status &= ~TS_POLLING;
/*
* TS_POLLING-cleared state must be visible before we
* test NEED_RESCHED:
*/
smp_mb();
if (need_resched()) {
current_thread_info()->status |= TS_POLLING;
local_irq_enable();
return;
}
}
switch (cx->type) {
case ACPI_STATE_C1:
/*
* Invoke C1.
* Use the appropriate idle routine, the one that would
* be used without acpi C-states.
*/
if (pm_idle_save) {
pm_idle_save(); /* enables IRQs */
} else {
acpi_safe_halt();
local_irq_enable();
}
/*
* TBD: Can't get time duration while in C1, as resumes
* go to an ISR rather than here. Need to instrument
* base interrupt handler.
*
* Note: the TSC better not stop in C1, sched_clock() will
* skew otherwise.
*/
sleep_ticks = 0xFFFFFFFF;
break;
case ACPI_STATE_C2:
/* Get start time (ticks) */
t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
/* Tell the scheduler that we are going deep-idle: */
sched_clock_idle_sleep_event();
/* Invoke C2 */
acpi_state_timer_broadcast(pr, cx, 1);
acpi_cstate_enter(cx);
/* Get end time (ticks) */
t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
#if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
/* TSC halts in C2, so notify users */
if (tsc_halts_in_c(ACPI_STATE_C2))
mark_tsc_unstable("possible TSC halt in C2");
#endif
/* Compute time (ticks) that we were actually asleep */
sleep_ticks = ticks_elapsed(t1, t2);
/* Tell the scheduler how much we idled: */
sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
/* Re-enable interrupts */
local_irq_enable();
/* Do not account our idle-switching overhead: */
sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
current_thread_info()->status |= TS_POLLING;
acpi_state_timer_broadcast(pr, cx, 0);
break;
case ACPI_STATE_C3:
acpi_unlazy_tlb(smp_processor_id());
/*
* Must be done before busmaster disable as we might
* need to access HPET !
*/
acpi_state_timer_broadcast(pr, cx, 1);
/*
* disable bus master
* bm_check implies we need ARB_DIS
* !bm_check implies we need cache flush
* bm_control implies whether we can do ARB_DIS
*
* That leaves a case where bm_check is set and bm_control is
* not set. In that case we cannot do much, we enter C3
* without doing anything.
*/
if (pr->flags.bm_check && pr->flags.bm_control) {
if (atomic_inc_return(&c3_cpu_count) ==
num_online_cpus()) {
/*
* All CPUs are trying to go to C3
* Disable bus master arbitration
*/
acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
}
} else if (!pr->flags.bm_check) {
/* SMP with no shared cache... Invalidate cache */
ACPI_FLUSH_CPU_CACHE();
}
/* Get start time (ticks) */
t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
/* Invoke C3 */
/* Tell the scheduler that we are going deep-idle: */
sched_clock_idle_sleep_event();
acpi_cstate_enter(cx);
/* Get end time (ticks) */
t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
if (pr->flags.bm_check && pr->flags.bm_control) {
/* Enable bus master arbitration */
atomic_dec(&c3_cpu_count);
acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
}
#if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
/* TSC halts in C3, so notify users */
if (tsc_halts_in_c(ACPI_STATE_C3))
mark_tsc_unstable("TSC halts in C3");
#endif
/* Compute time (ticks) that we were actually asleep */
sleep_ticks = ticks_elapsed(t1, t2);
/* Tell the scheduler how much we idled: */
sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
/* Re-enable interrupts */
local_irq_enable();
/* Do not account our idle-switching overhead: */
sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
current_thread_info()->status |= TS_POLLING;
acpi_state_timer_broadcast(pr, cx, 0);
break;
default:
local_irq_enable();
return;
}
cx->usage++;
if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
cx->time += sleep_ticks;
next_state = pr->power.state;
#ifdef CONFIG_HOTPLUG_CPU
/* Don't do promotion/demotion */
if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
!pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
next_state = cx;
goto end;
}
#endif
/*
* Promotion?
* ----------
* Track the number of longs (time asleep is greater than threshold)
* and promote when the count threshold is reached. Note that bus
* mastering activity may prevent promotions.
* Do not promote above max_cstate.
*/
if (cx->promotion.state &&
((cx->promotion.state - pr->power.states) <= max_cstate)) {
if (sleep_ticks > cx->promotion.threshold.ticks &&
cx->promotion.state->latency <=
pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
cx->promotion.count++;
cx->demotion.count = 0;
if (cx->promotion.count >=
cx->promotion.threshold.count) {
if (pr->flags.bm_check) {
if (!
(pr->power.bm_activity & cx->
promotion.threshold.bm)) {
next_state =
cx->promotion.state;
goto end;
}
} else {
next_state = cx->promotion.state;
goto end;
}
}
}
}
/*
* Demotion?
* ---------
* Track the number of shorts (time asleep is less than time threshold)
* and demote when the usage threshold is reached.
*/
if (cx->demotion.state) {
if (sleep_ticks < cx->demotion.threshold.ticks) {
cx->demotion.count++;
cx->promotion.count = 0;
if (cx->demotion.count >= cx->demotion.threshold.count) {
next_state = cx->demotion.state;
goto end;
}
}
}
end:
/*
* Demote if current state exceeds max_cstate
* or if the latency of the current state is unacceptable
*/
if ((pr->power.state - pr->power.states) > max_cstate ||
pr->power.state->latency >
pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
if (cx->demotion.state)
next_state = cx->demotion.state;
}
/*
* New Cx State?
* -------------
* If we're going to start using a new Cx state we must clean up
* from the previous and prepare to use the new.
*/
if (next_state != pr->power.state)
acpi_processor_power_activate(pr, next_state);
}
static int acpi_processor_set_power_policy(struct acpi_processor *pr)
{
unsigned int i;
unsigned int state_is_set = 0;
struct acpi_processor_cx *lower = NULL;
struct acpi_processor_cx *higher = NULL;
struct acpi_processor_cx *cx;
if (!pr)
return -EINVAL;
/*
* This function sets the default Cx state policy (OS idle handler).
* Our scheme is to promote quickly to C2 but more conservatively
* to C3. We're favoring C2 for its characteristics of low latency
* (quick response), good power savings, and ability to allow bus
* mastering activity. Note that the Cx state policy is completely
* customizable and can be altered dynamically.
*/
/* startup state */
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
cx = &pr->power.states[i];
if (!cx->valid)
continue;
if (!state_is_set)
pr->power.state = cx;
state_is_set++;
break;
}
if (!state_is_set)
return -ENODEV;
/* demotion */
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
cx = &pr->power.states[i];
if (!cx->valid)
continue;
if (lower) {
cx->demotion.state = lower;
cx->demotion.threshold.ticks = cx->latency_ticks;
cx->demotion.threshold.count = 1;
if (cx->type == ACPI_STATE_C3)
cx->demotion.threshold.bm = bm_history;
}
lower = cx;
}
/* promotion */
for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
cx = &pr->power.states[i];
if (!cx->valid)
continue;
if (higher) {
cx->promotion.state = higher;
cx->promotion.threshold.ticks = cx->latency_ticks;
if (cx->type >= ACPI_STATE_C2)
cx->promotion.threshold.count = 4;
else
cx->promotion.threshold.count = 10;
if (higher->type == ACPI_STATE_C3)
cx->promotion.threshold.bm = bm_history;
}
higher = cx;
}
return 0;
}
#endif /* !CONFIG_CPU_IDLE */
static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
{
......@@ -1027,11 +541,7 @@ static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
*/
cx->valid = 1;
#ifndef CONFIG_CPU_IDLE
cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
#else
cx->latency_ticks = cx->latency;
#endif
return;
}
......@@ -1111,11 +621,7 @@ static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
*/
cx->valid = 1;
#ifndef CONFIG_CPU_IDLE
cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
#else
cx->latency_ticks = cx->latency;
#endif
/*
* On older chipsets, BM_RLD needs to be set
* in order for Bus Master activity to wake the
......@@ -1189,20 +695,6 @@ static int acpi_processor_get_power_info(struct acpi_processor *pr)
pr->power.count = acpi_processor_power_verify(pr);
#ifndef CONFIG_CPU_IDLE
/*
* Set Default Policy
* ------------------
* Now that we know which states are supported, set the default
* policy. Note that this policy can be changed dynamically
* (e.g. encourage deeper sleeps to conserve battery life when
* not on AC).
*/
result = acpi_processor_set_power_policy(pr);
if (result)
return result;
#endif
/*
* if one state of type C2 or C3 is available, mark this
* CPU as being "idle manageable"
......@@ -1300,69 +792,6 @@ static const struct file_operations acpi_processor_power_fops = {
.release = single_release,
};
#ifndef CONFIG_CPU_IDLE
int acpi_processor_cst_has_changed(struct acpi_processor *pr)
{
int result = 0;
if (boot_option_idle_override)
return 0;
if (!pr)
return -EINVAL;
if (nocst) {
return -ENODEV;
}
if (!pr->flags.power_setup_done)
return -ENODEV;
/*
* Fall back to the default idle loop, when pm_idle_save had
* been initialized.
*/
if (pm_idle_save) {
pm_idle = pm_idle_save;
/* Relies on interrupts forcing exit from idle. */
synchronize_sched();
}
pr->flags.power = 0;
result = acpi_processor_get_power_info(pr);
if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
pm_idle = acpi_processor_idle;
return result;
}
#ifdef CONFIG_SMP
static void smp_callback(void *v)
{
/* we already woke the CPU up, nothing more to do */
}
/*
* This function gets called when a part of the kernel has a new latency
* requirement. This means we need to get all processors out of their C-state,
* and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
* wakes them all right up.
*/
static int acpi_processor_latency_notify(struct notifier_block *b,
unsigned long l, void *v)
{
smp_call_function(smp_callback, NULL, 1);
return NOTIFY_OK;
}
static struct notifier_block acpi_processor_latency_notifier = {
.notifier_call = acpi_processor_latency_notify,
};
#endif
#else /* CONFIG_CPU_IDLE */
/**
* acpi_idle_bm_check - checks if bus master activity was detected
......@@ -1756,8 +1185,6 @@ int acpi_processor_cst_has_changed(struct acpi_processor *pr)
return ret;
}
#endif /* CONFIG_CPU_IDLE */
int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
struct acpi_device *device)
{
......@@ -1786,10 +1213,6 @@ int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
"ACPI: processor limited to max C-state %d\n",
max_cstate);
first_run++;
#if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY,
&acpi_processor_latency_notifier);
#endif
}
if (!pr)
......@@ -1813,11 +1236,9 @@ int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
* platforms that only support C1.
*/
if (pr->flags.power) {
#ifdef CONFIG_CPU_IDLE
acpi_processor_setup_cpuidle(pr);
if (cpuidle_register_device(&pr->power.dev))
return -EIO;
#endif
printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
for (i = 1; i <= pr->power.count; i++)
......@@ -1825,13 +1246,6 @@ int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
printk(" C%d[C%d]", i,
pr->power.states[i].type);
printk(")\n");
#ifndef CONFIG_CPU_IDLE
if (pr->id == 0) {
pm_idle_save = pm_idle;
pm_idle = acpi_processor_idle;
}
#endif
}
/* 'power' [R] */
......@@ -1850,34 +1264,12 @@ int acpi_processor_power_exit(struct acpi_processor *pr,
if (boot_option_idle_override)
return 0;
#ifdef CONFIG_CPU_IDLE
cpuidle_unregister_device(&pr->power.dev);
#endif
pr->flags.power_setup_done = 0;
if (acpi_device_dir(device))
remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
acpi_device_dir(device));
#ifndef CONFIG_CPU_IDLE
/* Unregister the idle handler when processor #0 is removed. */
if (pr->id == 0) {
if (pm_idle_save)
pm_idle = pm_idle_save;
/*
* We are about to unload the current idle thread pm callback
* (pm_idle), Wait for all processors to update cached/local
* copies of pm_idle before proceeding.
*/
cpu_idle_wait();
#ifdef CONFIG_SMP
pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY,
&acpi_processor_latency_notifier);
#endif
}
#endif
return 0;
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册