提交 5bb7ea26 编写于 作者: A Al Viro 提交者: David S. Miller

forcedeth endianness bugs

* misannotation: struct register_test members are actually host-endian
* bug: cpu_to_le64(n) >> 32 instead of cpu_to_le32(n >> 32) in setting
->bufhigh and similar for ->buflow (take low bits, _then_ convert to
little-endian, not the other way round).
* bug: setup_hw_rings() should not convert to little-endian at all (we
feed the result to writel(), not store in shared data structure), let
alone try to play with shifting and masking little-endian values.  Introduced
when setup_hw_rings() went in, screwed both 64bit case and the old code for
32bit rings it had replaced.
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
Signed-off-by: NJeff Garzik <jeff@garzik.org>
上级 79ea13ce
...@@ -712,8 +712,8 @@ static const struct nv_ethtool_str nv_etests_str[] = { ...@@ -712,8 +712,8 @@ static const struct nv_ethtool_str nv_etests_str[] = {
}; };
struct register_test { struct register_test {
__le32 reg; __u32 reg;
__le32 mask; __u32 mask;
}; };
static const struct register_test nv_registers_test[] = { static const struct register_test nv_registers_test[] = {
...@@ -929,6 +929,16 @@ static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target, ...@@ -929,6 +929,16 @@ static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
#define NV_SETUP_RX_RING 0x01 #define NV_SETUP_RX_RING 0x01
#define NV_SETUP_TX_RING 0x02 #define NV_SETUP_TX_RING 0x02
static inline u32 dma_low(dma_addr_t addr)
{
return addr;
}
static inline u32 dma_high(dma_addr_t addr)
{
return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
}
static void setup_hw_rings(struct net_device *dev, int rxtx_flags) static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
{ {
struct fe_priv *np = get_nvpriv(dev); struct fe_priv *np = get_nvpriv(dev);
...@@ -936,19 +946,19 @@ static void setup_hw_rings(struct net_device *dev, int rxtx_flags) ...@@ -936,19 +946,19 @@ static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) { if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
if (rxtx_flags & NV_SETUP_RX_RING) { if (rxtx_flags & NV_SETUP_RX_RING) {
writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr); writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
} }
if (rxtx_flags & NV_SETUP_TX_RING) { if (rxtx_flags & NV_SETUP_TX_RING) {
writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr); writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
} }
} else { } else {
if (rxtx_flags & NV_SETUP_RX_RING) { if (rxtx_flags & NV_SETUP_RX_RING) {
writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr); writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh); writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
} }
if (rxtx_flags & NV_SETUP_TX_RING) { if (rxtx_flags & NV_SETUP_TX_RING) {
writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr); writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh); writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
} }
} }
} }
...@@ -1571,8 +1581,8 @@ static int nv_alloc_rx_optimized(struct net_device *dev) ...@@ -1571,8 +1581,8 @@ static int nv_alloc_rx_optimized(struct net_device *dev)
skb_tailroom(skb), skb_tailroom(skb),
PCI_DMA_FROMDEVICE); PCI_DMA_FROMDEVICE);
np->put_rx_ctx->dma_len = skb_tailroom(skb); np->put_rx_ctx->dma_len = skb_tailroom(skb);
np->put_rx.ex->bufhigh = cpu_to_le64(np->put_rx_ctx->dma) >> 32; np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
np->put_rx.ex->buflow = cpu_to_le64(np->put_rx_ctx->dma) & 0x0FFFFFFFF; np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
wmb(); wmb();
np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL); np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
if (unlikely(np->put_rx.ex++ == np->last_rx.ex)) if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
...@@ -1937,8 +1947,8 @@ static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev) ...@@ -1937,8 +1947,8 @@ static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt, np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
PCI_DMA_TODEVICE); PCI_DMA_TODEVICE);
np->put_tx_ctx->dma_len = bcnt; np->put_tx_ctx->dma_len = bcnt;
put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32; put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF; put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
tx_flags = NV_TX2_VALID; tx_flags = NV_TX2_VALID;
...@@ -1963,8 +1973,8 @@ static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev) ...@@ -1963,8 +1973,8 @@ static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt, np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
PCI_DMA_TODEVICE); PCI_DMA_TODEVICE);
np->put_tx_ctx->dma_len = bcnt; np->put_tx_ctx->dma_len = bcnt;
put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32; put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF; put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
offset += bcnt; offset += bcnt;
...@@ -2680,8 +2690,8 @@ static void nv_set_multicast(struct net_device *dev) ...@@ -2680,8 +2690,8 @@ static void nv_set_multicast(struct net_device *dev)
walk = dev->mc_list; walk = dev->mc_list;
while (walk != NULL) { while (walk != NULL) {
u32 a, b; u32 a, b;
a = le32_to_cpu(*(u32 *) walk->dmi_addr); a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4])); b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
alwaysOn[0] &= a; alwaysOn[0] &= a;
alwaysOff[0] &= ~a; alwaysOff[0] &= ~a;
alwaysOn[1] &= b; alwaysOn[1] &= b;
...@@ -4539,8 +4549,8 @@ static int nv_loopback_test(struct net_device *dev) ...@@ -4539,8 +4549,8 @@ static int nv_loopback_test(struct net_device *dev)
np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr); np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra); np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
} else { } else {
np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32; np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF; np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra); np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
} }
writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册