提交 3d5271f9 编写于 作者: L Len Brown

Pull release into acpica branch

要显示的变更太多。

To preserve performance only 1000 of 1000+ files are displayed.
#
# NOTE! Don't add files that are generated in specific
# subdirectories here. Add them in the ".gitignore" file
# in that subdirectory instead.
#
# Normal rules
#
.*
*.o
*.a
*.s
*.ko
*.mod.c
#
# Top-level generic files
#
vmlinux*
System.map
Module.symvers
#
# Generated include files
#
include/asm
include/config
include/linux/autoconf.h
include/linux/compile.h
include/linux/version.h
...@@ -611,8 +611,7 @@ S: USA ...@@ -611,8 +611,7 @@ S: USA
N: Randolph Chung N: Randolph Chung
E: tausq@debian.org E: tausq@debian.org
D: Linux/PA-RISC hacker D: Linux/PA-RISC hacker
S: Los Altos, CA 94022 S: Hong Kong
S: USA
N: Juan Jose Ciarlante N: Juan Jose Ciarlante
W: http://juanjox.kernelnotes.org/ W: http://juanjox.kernelnotes.org/
...@@ -1097,7 +1096,7 @@ S: 80050-430 - Curitiba - Paran ...@@ -1097,7 +1096,7 @@ S: 80050-430 - Curitiba - Paran
S: Brazil S: Brazil
N: Kumar Gala N: Kumar Gala
E: kumar.gala@freescale.com E: galak@kernel.crashing.org
D: Embedded PowerPC 6xx/7xx/74xx/82xx/83xx/85xx support D: Embedded PowerPC 6xx/7xx/74xx/82xx/83xx/85xx support
S: Austin, Texas 78729 S: Austin, Texas 78729
S: USA S: USA
...@@ -2247,6 +2246,12 @@ S: 249 Nichols Avenue ...@@ -2247,6 +2246,12 @@ S: 249 Nichols Avenue
S: Syracuse, New York 13206 S: Syracuse, New York 13206
S: USA S: USA
N: Kyle McMartin
E: kyle@parisc-linux.org
D: Linux/PARISC hacker
D: AD1889 sound driver
S: Ottawa, Canada
N: Dirk Melchers N: Dirk Melchers
E: dirk@merlin.nbg.sub.org E: dirk@merlin.nbg.sub.org
D: 8 bit XT hard disk driver for OMTI5520 D: 8 bit XT hard disk driver for OMTI5520
...@@ -3399,6 +3404,15 @@ S: Chudenicka 8 ...@@ -3399,6 +3404,15 @@ S: Chudenicka 8
S: 10200 Prague 10, Hostivar S: 10200 Prague 10, Hostivar
S: Czech Republic S: Czech Republic
N: Thibaut Varene
E: T-Bone@parisc-linux.org
W: http://www.parisc-linux.org/
P: 1024D/B7D2F063 E67C 0D43 A75E 12A5 BB1C FA2F 1E32 C3DA B7D2 F063
D: PA-RISC port minion, PDC and GSCPS2 drivers, debuglocks and other bits
D: Some bits in an ARM port, S1D13XXX FB driver, random patches here and there
D: AD1889 sound driver
S: Paris, France
N: Heikki Vatiainen N: Heikki Vatiainen
E: hessu@cs.tut.fi E: hessu@cs.tut.fi
D: Co-author of Multi-Protocol Over ATM (MPOA), some LANE hacks D: Co-author of Multi-Protocol Over ATM (MPOA), some LANE hacks
...@@ -3636,11 +3650,9 @@ S: Beaverton, OR 97005 ...@@ -3636,11 +3650,9 @@ S: Beaverton, OR 97005
S: USA S: USA
N: Michal Wronski N: Michal Wronski
E: wrona@mat.uni.torun.pl E: Michal.Wronski@motorola.com
W: http://www.mat.uni.torun.pl/~wrona
D: POSIX message queues fs (with K. Benedyczak) D: POSIX message queues fs (with K. Benedyczak)
S: ul. Teczowa 23/12 S: Krakow
S: 80-680 Gdansk-Sobieszewo
S: Poland S: Poland
N: Frank Xia N: Frank Xia
......
...@@ -24,6 +24,8 @@ DMA-mapping.txt ...@@ -24,6 +24,8 @@ DMA-mapping.txt
- info for PCI drivers using DMA portably across all platforms. - info for PCI drivers using DMA portably across all platforms.
DocBook/ DocBook/
- directory with DocBook templates etc. for kernel documentation. - directory with DocBook templates etc. for kernel documentation.
HOWTO
- The process and procedures of how to do Linux kernel development.
IO-mapping.txt IO-mapping.txt
- how to access I/O mapped memory from within device drivers. - how to access I/O mapped memory from within device drivers.
IPMI.txt IPMI.txt
...@@ -256,6 +258,10 @@ specialix.txt ...@@ -256,6 +258,10 @@ specialix.txt
- info on hardware/driver for specialix IO8+ multiport serial card. - info on hardware/driver for specialix IO8+ multiport serial card.
spinlocks.txt spinlocks.txt
- info on using spinlocks to provide exclusive access in kernel. - info on using spinlocks to provide exclusive access in kernel.
stable_api_nonsense.txt
- info on why the kernel does not have a stable in-kernel api or abi.
stable_kernel_rules.txt
- rules and procedures for the -stable kernel releases.
stallion.txt stallion.txt
- info on using the Stallion multiport serial driver. - info on using the Stallion multiport serial driver.
svga.txt svga.txt
......
...@@ -65,7 +65,7 @@ o isdn4k-utils 3.1pre1 # isdnctrl 2>&1|grep version ...@@ -65,7 +65,7 @@ o isdn4k-utils 3.1pre1 # isdnctrl 2>&1|grep version
o nfs-utils 1.0.5 # showmount --version o nfs-utils 1.0.5 # showmount --version
o procps 3.2.0 # ps --version o procps 3.2.0 # ps --version
o oprofile 0.9 # oprofiled --version o oprofile 0.9 # oprofiled --version
o udev 058 # udevinfo -V o udev 071 # udevinfo -V
Kernel compilation Kernel compilation
================== ==================
...@@ -139,9 +139,14 @@ You'll probably want to upgrade. ...@@ -139,9 +139,14 @@ You'll probably want to upgrade.
Ksymoops Ksymoops
-------- --------
If the unthinkable happens and your kernel oopses, you'll need a 2.4 If the unthinkable happens and your kernel oopses, you may need the
version of ksymoops to decode the report; see REPORTING-BUGS in the ksymoops tool to decode it, but in most cases you don't.
root of the Linux source for more information. In the 2.6 kernel it is generally preferred to build the kernel with
CONFIG_KALLSYMS so that it produces readable dumps that can be used as-is
(this also produces better output than ksymoops).
If for some reason your kernel is not build with CONFIG_KALLSYMS and
you have no way to rebuild and reproduce the Oops with that option, then
you can still decode that Oops with ksymoops.
Module-Init-Tools Module-Init-Tools
----------------- -----------------
...@@ -237,6 +242,12 @@ udev ...@@ -237,6 +242,12 @@ udev
udev is a userspace application for populating /dev dynamically with udev is a userspace application for populating /dev dynamically with
only entries for devices actually present. udev replaces devfs. only entries for devices actually present. udev replaces devfs.
FUSE
----
Needs libfuse 2.4.0 or later. Absolute minimum is 2.3.0 but mount
options 'direct_io' and 'kernel_cache' won't work.
Networking Networking
========== ==========
...@@ -390,6 +401,10 @@ udev ...@@ -390,6 +401,10 @@ udev
---- ----
o <http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html> o <http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html>
FUSE
----
o <http://sourceforge.net/projects/fuse>
Networking Networking
********** **********
......
...@@ -10,7 +10,7 @@ DOCBOOKS := wanbook.xml z8530book.xml mcabook.xml videobook.xml \ ...@@ -10,7 +10,7 @@ DOCBOOKS := wanbook.xml z8530book.xml mcabook.xml videobook.xml \
kernel-hacking.xml kernel-locking.xml deviceiobook.xml \ kernel-hacking.xml kernel-locking.xml deviceiobook.xml \
procfs-guide.xml writing_usb_driver.xml \ procfs-guide.xml writing_usb_driver.xml \
sis900.xml kernel-api.xml journal-api.xml lsm.xml usb.xml \ sis900.xml kernel-api.xml journal-api.xml lsm.xml usb.xml \
gadget.xml libata.xml mtdnand.xml librs.xml gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml
### ###
# The build process is as follows (targets): # The build process is as follows (targets):
...@@ -20,6 +20,12 @@ DOCBOOKS := wanbook.xml z8530book.xml mcabook.xml videobook.xml \ ...@@ -20,6 +20,12 @@ DOCBOOKS := wanbook.xml z8530book.xml mcabook.xml videobook.xml \
# +--> DIR=file (htmldocs) # +--> DIR=file (htmldocs)
# +--> man/ (mandocs) # +--> man/ (mandocs)
# for PDF and PS output you can choose between xmlto and docbook-utils tools
PDF_METHOD = $(prefer-db2x)
PS_METHOD = $(prefer-db2x)
### ###
# The targets that may be used. # The targets that may be used.
.PHONY: xmldocs sgmldocs psdocs pdfdocs htmldocs mandocs installmandocs .PHONY: xmldocs sgmldocs psdocs pdfdocs htmldocs mandocs installmandocs
...@@ -93,27 +99,39 @@ C-procfs-example = procfs_example.xml ...@@ -93,27 +99,39 @@ C-procfs-example = procfs_example.xml
C-procfs-example2 = $(addprefix $(obj)/,$(C-procfs-example)) C-procfs-example2 = $(addprefix $(obj)/,$(C-procfs-example))
$(obj)/procfs-guide.xml: $(C-procfs-example2) $(obj)/procfs-guide.xml: $(C-procfs-example2)
### notfoundtemplate = echo "*** You have to install docbook-utils or xmlto ***"; \
# Rules to generate postscript, PDF and HTML exit 1
# db2html creates a directory. Generate a html file used for timestamp db2xtemplate = db2TYPE -o $(dir $@) $<
xmltotemplate = xmlto TYPE $(XMLTOFLAGS) -o $(dir $@) $<
# determine which methods are available
ifeq ($(shell which db2ps >/dev/null 2>&1 && echo found),found)
use-db2x = db2x
prefer-db2x = db2x
else
use-db2x = notfound
prefer-db2x = $(use-xmlto)
endif
ifeq ($(shell which xmlto >/dev/null 2>&1 && echo found),found)
use-xmlto = xmlto
prefer-xmlto = xmlto
else
use-xmlto = notfound
prefer-xmlto = $(use-db2x)
endif
quiet_cmd_db2ps = XMLTO $@ # the commands, generated from the chosen template
cmd_db2ps = xmlto ps $(XMLTOFLAGS) -o $(dir $@) $< quiet_cmd_db2ps = PS $@
cmd_db2ps = $(subst TYPE,ps, $($(PS_METHOD)template))
%.ps : %.xml %.ps : %.xml
@(which xmlto > /dev/null 2>&1) || \
(echo "*** You need to install xmlto ***"; \
exit 1)
$(call cmd,db2ps) $(call cmd,db2ps)
quiet_cmd_db2pdf = XMLTO $@ quiet_cmd_db2pdf = PDF $@
cmd_db2pdf = xmlto pdf $(XMLTOFLAGS) -o $(dir $@) $< cmd_db2pdf = $(subst TYPE,pdf, $($(PDF_METHOD)template))
%.pdf : %.xml %.pdf : %.xml
@(which xmlto > /dev/null 2>&1) || \
(echo "*** You need to install xmlto ***"; \
exit 1)
$(call cmd,db2pdf) $(call cmd,db2pdf)
quiet_cmd_db2html = XMLTO $@ quiet_cmd_db2html = HTML $@
cmd_db2html = xmlto xhtml $(XMLTOFLAGS) -o $(patsubst %.html,%,$@) $< && \ cmd_db2html = xmlto xhtml $(XMLTOFLAGS) -o $(patsubst %.html,%,$@) $< && \
echo '<a HREF="$(patsubst %.html,%,$(notdir $@))/index.html"> \ echo '<a HREF="$(patsubst %.html,%,$(notdir $@))/index.html"> \
Goto $(patsubst %.html,%,$(notdir $@))</a><p>' > $@ Goto $(patsubst %.html,%,$(notdir $@))</a><p>' > $@
...@@ -127,7 +145,7 @@ quiet_cmd_db2html = XMLTO $@ ...@@ -127,7 +145,7 @@ quiet_cmd_db2html = XMLTO $@
@if [ ! -z "$(PNG-$(basename $(notdir $@)))" ]; then \ @if [ ! -z "$(PNG-$(basename $(notdir $@)))" ]; then \
cp $(PNG-$(basename $(notdir $@))) $(patsubst %.html,%,$@); fi cp $(PNG-$(basename $(notdir $@))) $(patsubst %.html,%,$@); fi
quiet_cmd_db2man = XMLTO $@ quiet_cmd_db2man = MAN $@
cmd_db2man = if grep -q refentry $<; then xmlto man $(XMLTOFLAGS) -o $(obj)/man $< ; gzip -f $(obj)/man/*.9; fi cmd_db2man = if grep -q refentry $<; then xmlto man $(XMLTOFLAGS) -o $(obj)/man $< ; gzip -f $(obj)/man/*.9; fi
%.9 : %.xml %.9 : %.xml
@(which xmlto > /dev/null 2>&1) || \ @(which xmlto > /dev/null 2>&1) || \
......
...@@ -306,7 +306,7 @@ an example. ...@@ -306,7 +306,7 @@ an example.
</para> </para>
<sect1><title>Journal Level</title> <sect1><title>Journal Level</title>
!Efs/jbd/journal.c !Efs/jbd/journal.c
!Efs/jbd/recovery.c !Ifs/jbd/recovery.c
</sect1> </sect1>
<sect1><title>Transasction Level</title> <sect1><title>Transasction Level</title>
!Efs/jbd/transaction.c !Efs/jbd/transaction.c
......
...@@ -68,9 +68,7 @@ X!Iinclude/linux/kobject.h ...@@ -68,9 +68,7 @@ X!Iinclude/linux/kobject.h
<sect1><title>Kernel utility functions</title> <sect1><title>Kernel utility functions</title>
!Iinclude/linux/kernel.h !Iinclude/linux/kernel.h
<!-- This needs to clean up to make kernel-doc happy !Ekernel/printk.c
X!Ekernel/printk.c
-->
!Ekernel/panic.c !Ekernel/panic.c
!Ekernel/sys.c !Ekernel/sys.c
!Ekernel/rcupdate.c !Ekernel/rcupdate.c
...@@ -118,7 +116,7 @@ X!Ilib/string.c ...@@ -118,7 +116,7 @@ X!Ilib/string.c
</sect1> </sect1>
<sect1><title>User Space Memory Access</title> <sect1><title>User Space Memory Access</title>
!Iinclude/asm-i386/uaccess.h !Iinclude/asm-i386/uaccess.h
!Iarch/i386/lib/usercopy.c !Earch/i386/lib/usercopy.c
</sect1> </sect1>
<sect1><title>More Memory Management Functions</title> <sect1><title>More Memory Management Functions</title>
!Iinclude/linux/rmap.h !Iinclude/linux/rmap.h
...@@ -174,7 +172,6 @@ X!Ilib/string.c ...@@ -174,7 +172,6 @@ X!Ilib/string.c
<title>The Linux VFS</title> <title>The Linux VFS</title>
<sect1><title>The Filesystem types</title> <sect1><title>The Filesystem types</title>
!Iinclude/linux/fs.h !Iinclude/linux/fs.h
!Einclude/linux/fs.h
</sect1> </sect1>
<sect1><title>The Directory Cache</title> <sect1><title>The Directory Cache</title>
!Efs/dcache.c !Efs/dcache.c
...@@ -239,9 +236,11 @@ X!Ilib/string.c ...@@ -239,9 +236,11 @@ X!Ilib/string.c
<title>Network device support</title> <title>Network device support</title>
<sect1><title>Driver Support</title> <sect1><title>Driver Support</title>
!Enet/core/dev.c !Enet/core/dev.c
</sect1> !Enet/ethernet/eth.c
<sect1><title>8390 Based Network Cards</title> !Iinclude/linux/etherdevice.h
!Edrivers/net/8390.c <!-- FIXME: Removed for now since no structured comments in source
X!Enet/core/wireless.c
-->
</sect1> </sect1>
<sect1><title>Synchronous PPP</title> <sect1><title>Synchronous PPP</title>
!Edrivers/net/wan/syncppp.c !Edrivers/net/wan/syncppp.c
...@@ -266,7 +265,7 @@ X!Ekernel/module.c ...@@ -266,7 +265,7 @@ X!Ekernel/module.c
<chapter id="hardware"> <chapter id="hardware">
<title>Hardware Interfaces</title> <title>Hardware Interfaces</title>
<sect1><title>Interrupt Handling</title> <sect1><title>Interrupt Handling</title>
!Ikernel/irq/manage.c !Ekernel/irq/manage.c
</sect1> </sect1>
<sect1><title>Resources Management</title> <sect1><title>Resources Management</title>
...@@ -286,7 +285,9 @@ X!Edrivers/pci/search.c ...@@ -286,7 +285,9 @@ X!Edrivers/pci/search.c
--> -->
!Edrivers/pci/msi.c !Edrivers/pci/msi.c
!Edrivers/pci/bus.c !Edrivers/pci/bus.c
!Edrivers/pci/hotplug.c <!-- FIXME: Removed for now since no structured comments in source
X!Edrivers/pci/hotplug.c
-->
!Edrivers/pci/probe.c !Edrivers/pci/probe.c
!Edrivers/pci/rom.c !Edrivers/pci/rom.c
</sect1> </sect1>
...@@ -387,7 +388,7 @@ X!Edrivers/pnp/system.c ...@@ -387,7 +388,7 @@ X!Edrivers/pnp/system.c
<chapter id="blkdev"> <chapter id="blkdev">
<title>Block Devices</title> <title>Block Devices</title>
!Edrivers/block/ll_rw_blk.c !Eblock/ll_rw_blk.c
</chapter> </chapter>
<chapter id="miscdev"> <chapter id="miscdev">
...@@ -499,7 +500,7 @@ KAO --> ...@@ -499,7 +500,7 @@ KAO -->
!Edrivers/video/modedb.c !Edrivers/video/modedb.c
</sect1> </sect1>
<sect1><title>Frame Buffer Macintosh Video Mode Database</title> <sect1><title>Frame Buffer Macintosh Video Mode Database</title>
!Idrivers/video/macmodes.c !Edrivers/video/macmodes.c
</sect1> </sect1>
<sect1><title>Frame Buffer Fonts</title> <sect1><title>Frame Buffer Fonts</title>
<para> <para>
......
此差异已折叠。
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" [
<!ENTITY rapidio SYSTEM "rapidio.xml">
]>
<book id="RapidIO-Guide">
<bookinfo>
<title>RapidIO Subsystem Guide</title>
<authorgroup>
<author>
<firstname>Matt</firstname>
<surname>Porter</surname>
<affiliation>
<address>
<email>mporter@kernel.crashing.org</email>
<email>mporter@mvista.com</email>
</address>
</affiliation>
</author>
</authorgroup>
<copyright>
<year>2005</year>
<holder>MontaVista Software, Inc.</holder>
</copyright>
<legalnotice>
<para>
This documentation is free software; you can redistribute
it and/or modify it under the terms of the GNU General Public
License version 2 as published by the Free Software Foundation.
</para>
<para>
This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
</para>
<para>
You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA
</para>
<para>
For more details see the file COPYING in the source
distribution of Linux.
</para>
</legalnotice>
</bookinfo>
<toc></toc>
<chapter id="intro">
<title>Introduction</title>
<para>
RapidIO is a high speed switched fabric interconnect with
features aimed at the embedded market. RapidIO provides
support for memory-mapped I/O as well as message-based
transactions over the switched fabric network. RapidIO has
a standardized discovery mechanism not unlike the PCI bus
standard that allows simple detection of devices in a
network.
</para>
<para>
This documentation is provided for developers intending
to support RapidIO on new architectures, write new drivers,
or to understand the subsystem internals.
</para>
</chapter>
<chapter id="bugs">
<title>Known Bugs and Limitations</title>
<sect1>
<title>Bugs</title>
<para>None. ;)</para>
</sect1>
<sect1>
<title>Limitations</title>
<para>
<orderedlist>
<listitem><para>Access/management of RapidIO memory regions is not supported</para></listitem>
<listitem><para>Multiple host enumeration is not supported</para></listitem>
</orderedlist>
</para>
</sect1>
</chapter>
<chapter id="drivers">
<title>RapidIO driver interface</title>
<para>
Drivers are provided a set of calls in order
to interface with the subsystem to gather info
on devices, request/map memory region resources,
and manage mailboxes/doorbells.
</para>
<sect1>
<title>Functions</title>
!Iinclude/linux/rio_drv.h
!Edrivers/rapidio/rio-driver.c
!Edrivers/rapidio/rio.c
</sect1>
</chapter>
<chapter id="internals">
<title>Internals</title>
<para>
This chapter contains the autogenerated documentation of the RapidIO
subsystem.
</para>
<sect1><title>Structures</title>
!Iinclude/linux/rio.h
</sect1>
<sect1><title>Enumeration and Discovery</title>
!Idrivers/rapidio/rio-scan.c
</sect1>
<sect1><title>Driver functionality</title>
!Idrivers/rapidio/rio.c
!Idrivers/rapidio/rio-access.c
</sect1>
<sect1><title>Device model support</title>
!Idrivers/rapidio/rio-driver.c
</sect1>
<sect1><title>Sysfs support</title>
!Idrivers/rapidio/rio-sysfs.c
</sect1>
<sect1><title>PPC32 support</title>
!Iarch/ppc/kernel/rio.c
!Earch/ppc/syslib/ppc85xx_rio.c
!Iarch/ppc/syslib/ppc85xx_rio.c
</sect1>
</chapter>
<chapter id="credits">
<title>Credits</title>
<para>
The following people have contributed to the RapidIO
subsystem directly or indirectly:
<orderedlist>
<listitem><para>Matt Porter<email>mporter@kernel.crashing.org</email></para></listitem>
<listitem><para>Randy Vinson<email>rvinson@mvista.com</email></para></listitem>
<listitem><para>Dan Malek<email>dan@embeddedalley.com</email></para></listitem>
</orderedlist>
</para>
<para>
The following people have contributed to this document:
<orderedlist>
<listitem><para>Matt Porter<email>mporter@kernel.crashing.org</email></para></listitem>
</orderedlist>
</para>
</chapter>
</book>
...@@ -3,4 +3,5 @@ ...@@ -3,4 +3,5 @@
<param name="chunk.quietly">1</param> <param name="chunk.quietly">1</param>
<param name="funcsynopsis.style">ansi</param> <param name="funcsynopsis.style">ansi</param>
<param name="funcsynopsis.tabular.threshold">80</param> <param name="funcsynopsis.tabular.threshold">80</param>
<!-- <param name="paper.type">A4</param> -->
</stylesheet> </stylesheet>
...@@ -291,7 +291,7 @@ ...@@ -291,7 +291,7 @@
!Edrivers/usb/core/hcd.c !Edrivers/usb/core/hcd.c
!Edrivers/usb/core/hcd-pci.c !Edrivers/usb/core/hcd-pci.c
!Edrivers/usb/core/buffer.c !Idrivers/usb/core/buffer.c
</chapter> </chapter>
<chapter> <chapter>
......
...@@ -345,8 +345,7 @@ if (!retval) { ...@@ -345,8 +345,7 @@ if (!retval) {
<programlisting> <programlisting>
static inline void skel_delete (struct usb_skel *dev) static inline void skel_delete (struct usb_skel *dev)
{ {
if (dev->bulk_in_buffer != NULL) kfree (dev->bulk_in_buffer);
kfree (dev->bulk_in_buffer);
if (dev->bulk_out_buffer != NULL) if (dev->bulk_out_buffer != NULL)
usb_buffer_free (dev->udev, dev->bulk_out_size, usb_buffer_free (dev->udev, dev->bulk_out_size,
dev->bulk_out_buffer, dev->bulk_out_buffer,
......
此差异已折叠。
此差异已折叠。
RCU Torture Test Operation
CONFIG_RCU_TORTURE_TEST
The CONFIG_RCU_TORTURE_TEST config option is available for all RCU
implementations. It creates an rcutorture kernel module that can
be loaded to run a torture test. The test periodically outputs
status messages via printk(), which can be examined via the dmesg
command (perhaps grepping for "rcutorture"). The test is started
when the module is loaded, and stops when the module is unloaded.
However, actually setting this config option to "y" results in the system
running the test immediately upon boot, and ending only when the system
is taken down. Normally, one will instead want to build the system
with CONFIG_RCU_TORTURE_TEST=m and to use modprobe and rmmod to control
the test, perhaps using a script similar to the one shown at the end of
this document. Note that you will need CONFIG_MODULE_UNLOAD in order
to be able to end the test.
MODULE PARAMETERS
This module has the following parameters:
nreaders This is the number of RCU reading threads supported.
The default is twice the number of CPUs. Why twice?
To properly exercise RCU implementations with preemptible
read-side critical sections.
stat_interval The number of seconds between output of torture
statistics (via printk()). Regardless of the interval,
statistics are printed when the module is unloaded.
Setting the interval to zero causes the statistics to
be printed -only- when the module is unloaded, and this
is the default.
verbose Enable debug printk()s. Default is disabled.
OUTPUT
The statistics output is as follows:
rcutorture: --- Start of test: nreaders=16 stat_interval=0 verbose=0
rcutorture: rtc: 0000000000000000 ver: 1916 tfle: 0 rta: 1916 rtaf: 0 rtf: 1915
rcutorture: Reader Pipe: 1466408 9747 0 0 0 0 0 0 0 0 0
rcutorture: Reader Batch: 1464477 11678 0 0 0 0 0 0 0 0
rcutorture: Free-Block Circulation: 1915 1915 1915 1915 1915 1915 1915 1915 1915 1915 0
rcutorture: --- End of test
The command "dmesg | grep rcutorture:" will extract this information on
most systems. On more esoteric configurations, it may be necessary to
use other commands to access the output of the printk()s used by
the RCU torture test. The printk()s use KERN_ALERT, so they should
be evident. ;-)
The entries are as follows:
o "ggp": The number of counter flips (or batches) since boot.
o "rtc": The hexadecimal address of the structure currently visible
to readers.
o "ver": The number of times since boot that the rcutw writer task
has changed the structure visible to readers.
o "tfle": If non-zero, indicates that the "torture freelist"
containing structure to be placed into the "rtc" area is empty.
This condition is important, since it can fool you into thinking
that RCU is working when it is not. :-/
o "rta": Number of structures allocated from the torture freelist.
o "rtaf": Number of allocations from the torture freelist that have
failed due to the list being empty.
o "rtf": Number of frees into the torture freelist.
o "Reader Pipe": Histogram of "ages" of structures seen by readers.
If any entries past the first two are non-zero, RCU is broken.
And rcutorture prints the error flag string "!!!" to make sure
you notice. The age of a newly allocated structure is zero,
it becomes one when removed from reader visibility, and is
incremented once per grace period subsequently -- and is freed
after passing through (RCU_TORTURE_PIPE_LEN-2) grace periods.
The output displayed above was taken from a correctly working
RCU. If you want to see what it looks like when broken, break
it yourself. ;-)
o "Reader Batch": Another histogram of "ages" of structures seen
by readers, but in terms of counter flips (or batches) rather
than in terms of grace periods. The legal number of non-zero
entries is again two. The reason for this separate view is
that it is easier to get the third entry to show up in the
"Reader Batch" list than in the "Reader Pipe" list.
o "Free-Block Circulation": Shows the number of torture structures
that have reached a given point in the pipeline. The first element
should closely correspond to the number of structures allocated,
the second to the number that have been removed from reader view,
and all but the last remaining to the corresponding number of
passes through a grace period. The last entry should be zero,
as it is only incremented if a torture structure's counter
somehow gets incremented farther than it should.
USAGE
The following script may be used to torture RCU:
#!/bin/sh
modprobe rcutorture
sleep 100
rmmod rcutorture
dmesg | grep rcutorture:
The output can be manually inspected for the error flag of "!!!".
One could of course create a more elaborate script that automatically
checked for such errors.
...@@ -772,8 +772,6 @@ RCU pointer/list traversal: ...@@ -772,8 +772,6 @@ RCU pointer/list traversal:
list_for_each_entry_rcu list_for_each_entry_rcu
list_for_each_continue_rcu (to be deprecated in favor of new list_for_each_continue_rcu (to be deprecated in favor of new
list_for_each_entry_continue_rcu) list_for_each_entry_continue_rcu)
hlist_for_each_rcu (to be deprecated in favor of
hlist_for_each_entry_rcu)
hlist_for_each_entry_rcu hlist_for_each_entry_rcu
RCU pointer update: RCU pointer update:
......
...@@ -301,8 +301,84 @@ now, but you can do this to mark internal company procedures or just ...@@ -301,8 +301,84 @@ now, but you can do this to mark internal company procedures or just
point out some special detail about the sign-off. point out some special detail about the sign-off.
12) The canonical patch format
12) More references for submitting patches The canonical patch subject line is:
Subject: [PATCH 001/123] subsystem: summary phrase
The canonical patch message body contains the following:
- A "from" line specifying the patch author.
- An empty line.
- The body of the explanation, which will be copied to the
permanent changelog to describe this patch.
- The "Signed-off-by:" lines, described above, which will
also go in the changelog.
- A marker line containing simply "---".
- Any additional comments not suitable for the changelog.
- The actual patch (diff output).
The Subject line format makes it very easy to sort the emails
alphabetically by subject line - pretty much any email reader will
support that - since because the sequence number is zero-padded,
the numerical and alphabetic sort is the same.
The "subsystem" in the email's Subject should identify which
area or subsystem of the kernel is being patched.
The "summary phrase" in the email's Subject should concisely
describe the patch which that email contains. The "summary
phrase" should not be a filename. Do not use the same "summary
phrase" for every patch in a whole patch series.
Bear in mind that the "summary phrase" of your email becomes
a globally-unique identifier for that patch. It propagates
all the way into the git changelog. The "summary phrase" may
later be used in developer discussions which refer to the patch.
People will want to google for the "summary phrase" to read
discussion regarding that patch.
A couple of example Subjects:
Subject: [patch 2/5] ext2: improve scalability of bitmap searching
Subject: [PATCHv2 001/207] x86: fix eflags tracking
The "from" line must be the very first line in the message body,
and has the form:
From: Original Author <author@example.com>
The "from" line specifies who will be credited as the author of the
patch in the permanent changelog. If the "from" line is missing,
then the "From:" line from the email header will be used to determine
the patch author in the changelog.
The explanation body will be committed to the permanent source
changelog, so should make sense to a competent reader who has long
since forgotten the immediate details of the discussion that might
have led to this patch.
The "---" marker line serves the essential purpose of marking for patch
handling tools where the changelog message ends.
One good use for the additional comments after the "---" marker is for
a diffstat, to show what files have changed, and the number of inserted
and deleted lines per file. A diffstat is especially useful on bigger
patches. Other comments relevant only to the moment or the maintainer,
not suitable for the permanent changelog, should also go here.
See more details on the proper patch format in the following
references.
13) More references for submitting patches
Andrew Morton, "The perfect patch" (tpp). Andrew Morton, "The perfect patch" (tpp).
<http://www.zip.com.au/~akpm/linux/patches/stuff/tpp.txt> <http://www.zip.com.au/~akpm/linux/patches/stuff/tpp.txt>
...@@ -310,6 +386,14 @@ Andrew Morton, "The perfect patch" (tpp). ...@@ -310,6 +386,14 @@ Andrew Morton, "The perfect patch" (tpp).
Jeff Garzik, "Linux kernel patch submission format." Jeff Garzik, "Linux kernel patch submission format."
<http://linux.yyz.us/patch-format.html> <http://linux.yyz.us/patch-format.html>
Greg KH, "How to piss off a kernel subsystem maintainer"
<http://www.kroah.com/log/2005/03/31/>
Kernel Documentation/CodingStyle
<http://sosdg.org/~coywolf/lxr/source/Documentation/CodingStyle>
Linus Torvald's mail on the canonical patch format:
<http://lkml.org/lkml/2005/4/7/183>
----------------------------------- -----------------------------------
......
...@@ -8,10 +8,9 @@ Compilation of kernel ...@@ -8,10 +8,9 @@ Compilation of kernel
--------------------- ---------------------
In order to compile ARM Linux, you will need a compiler capable of In order to compile ARM Linux, you will need a compiler capable of
generating ARM ELF code with GNU extensions. GCC 2.95.1, EGCS generating ARM ELF code with GNU extensions. GCC 3.3 is known to be
1.1.2, and GCC 3.3 are known to be good compilers. Fortunately, you a good compiler. Fortunately, you needn't guess. The kernel will report
needn't guess. The kernel will report an error if your compiler is an error if your compiler is a recognized offender.
a recognized offender.
To build ARM Linux natively, you shouldn't have to alter the ARCH = line To build ARM Linux natively, you shouldn't have to alter the ARCH = line
in the top level Makefile. However, if you don't have the ARM Linux ELF in the top level Makefile. However, if you don't have the ARM Linux ELF
......
...@@ -81,7 +81,8 @@ Adding New Machines ...@@ -81,7 +81,8 @@ Adding New Machines
Any large scale modifications, or new drivers should be discussed Any large scale modifications, or new drivers should be discussed
on the ARM kernel mailing list (linux-arm-kernel) before being on the ARM kernel mailing list (linux-arm-kernel) before being
attempted. attempted. See http://www.arm.linux.org.uk/mailinglists/ for the
mailing list information.
NAND NAND
...@@ -120,6 +121,43 @@ Clock Management ...@@ -120,6 +121,43 @@ Clock Management
various clock units various clock units
Platform Data
-------------
Whenever a device has platform specific data that is specified
on a per-machine basis, care should be taken to ensure the
following:
1) that default data is not left in the device to confuse the
driver if a machine does not set it at startup
2) the data should (if possible) be marked as __initdata,
to ensure that the data is thrown away if the machine is
not the one currently in use.
The best way of doing this is to make a function that
kmalloc()s an area of memory, and copies the __initdata
and then sets the relevant device's platform data. Making
the function `__init` takes care of ensuring it is discarded
with the rest of the initialisation code
static __init void s3c24xx_xxx_set_platdata(struct xxx_data *pd)
{
struct s3c2410_xxx_mach_info *npd;
npd = kmalloc(sizeof(struct s3c2410_xxx_mach_info), GFP_KERNEL);
if (npd) {
memcpy(npd, pd, sizeof(struct s3c2410_xxx_mach_info));
s3c_device_xxx.dev.platform_data = npd;
} else {
printk(KERN_ERR "no memory for xxx platform data\n");
}
}
Note, since the code is marked as __init, it should not be
exported outside arch/arm/mach-s3c2410/, or exported to
modules via EXPORT_SYMBOL() and related functions.
Port Contributors Port Contributors
----------------- -----------------
...@@ -149,6 +187,7 @@ Document Changes ...@@ -149,6 +187,7 @@ Document Changes
06 Mar 2005 - BJD - Added Christer Weinigel 06 Mar 2005 - BJD - Added Christer Weinigel
08 Mar 2005 - BJD - Added LCVR to list of people, updated introduction 08 Mar 2005 - BJD - Added LCVR to list of people, updated introduction
08 Mar 2005 - BJD - Added section on adding machines 08 Mar 2005 - BJD - Added section on adding machines
09 Sep 2005 - BJD - Added section on platform data
Document Author Document Author
--------------- ---------------
......
...@@ -12,7 +12,7 @@ This release has been validated against the SoftFloat-2b library by ...@@ -12,7 +12,7 @@ This release has been validated against the SoftFloat-2b library by
John R. Hauser using the TestFloat-2a test suite. Details of this John R. Hauser using the TestFloat-2a test suite. Details of this
library and test suite can be found at: library and test suite can be found at:
http://www.cs.berkeley.edu/~jhauser/arithmetic/SoftFloat.html http://www.jhauser.us/arithmetic/SoftFloat.html
The operations which have been tested with this package are: The operations which have been tested with this package are:
......
Kernel Memory Layout on ARM Linux Kernel Memory Layout on ARM Linux
Russell King <rmk@arm.linux.org.uk> Russell King <rmk@arm.linux.org.uk>
May 21, 2004 (2.6.6) November 17, 2005 (2.6.15)
This document describes the virtual memory layout which the Linux This document describes the virtual memory layout which the Linux
kernel uses for ARM processors. It indicates which regions are kernel uses for ARM processors. It indicates which regions are
...@@ -37,6 +37,8 @@ ff000000 ffbfffff Reserved for future expansion of DMA ...@@ -37,6 +37,8 @@ ff000000 ffbfffff Reserved for future expansion of DMA
mapping region. mapping region.
VMALLOC_END feffffff Free for platform use, recommended. VMALLOC_END feffffff Free for platform use, recommended.
VMALLOC_END must be aligned to a 2MB
boundary.
VMALLOC_START VMALLOC_END-1 vmalloc() / ioremap() space. VMALLOC_START VMALLOC_END-1 vmalloc() / ioremap() space.
Memory returned by vmalloc/ioremap will Memory returned by vmalloc/ioremap will
......
...@@ -115,6 +115,33 @@ boolean is return which indicates whether the resulting counter value ...@@ -115,6 +115,33 @@ boolean is return which indicates whether the resulting counter value
is negative. It requires explicit memory barrier semantics around the is negative. It requires explicit memory barrier semantics around the
operation. operation.
Then:
int atomic_cmpxchg(atomic_t *v, int old, int new);
This performs an atomic compare exchange operation on the atomic value v,
with the given old and new values. Like all atomic_xxx operations,
atomic_cmpxchg will only satisfy its atomicity semantics as long as all
other accesses of *v are performed through atomic_xxx operations.
atomic_cmpxchg requires explicit memory barriers around the operation.
The semantics for atomic_cmpxchg are the same as those defined for 'cas'
below.
Finally:
int atomic_add_unless(atomic_t *v, int a, int u);
If the atomic value v is not equal to u, this function adds a to v, and
returns non zero. If v is equal to u then it returns zero. This is done as
an atomic operation.
atomic_add_unless requires explicit memory barriers around the operation.
atomic_inc_not_zero, equivalent to atomic_add_unless(v, 1, 0)
If a caller requires memory barrier semantics around an atomic_t If a caller requires memory barrier semantics around an atomic_t
operation which does not return a value, a set of interfaces are operation which does not return a value, a set of interfaces are
defined which accomplish this: defined which accomplish this:
......
...@@ -906,9 +906,20 @@ Aside: ...@@ -906,9 +906,20 @@ Aside:
4. The I/O scheduler 4. The I/O scheduler
I/O schedulers are now per queue. They should be runtime switchable and modular I/O scheduler, a.k.a. elevator, is implemented in two layers. Generic dispatch
but aren't yet. Jens has most bits to do this, but the sysfs implementation is queue and specific I/O schedulers. Unless stated otherwise, elevator is used
missing. to refer to both parts and I/O scheduler to specific I/O schedulers.
Block layer implements generic dispatch queue in ll_rw_blk.c and elevator.c.
The generic dispatch queue is responsible for properly ordering barrier
requests, requeueing, handling non-fs requests and all other subtleties.
Specific I/O schedulers are responsible for ordering normal filesystem
requests. They can also choose to delay certain requests to improve
throughput or whatever purpose. As the plural form indicates, there are
multiple I/O schedulers. They can be built as modules but at least one should
be built inside the kernel. Each queue can choose different one and can also
change to another one dynamically.
A block layer call to the i/o scheduler follows the convention elv_xxx(). This A block layer call to the i/o scheduler follows the convention elv_xxx(). This
calls elevator_xxx_fn in the elevator switch (drivers/block/elevator.c). Oh, calls elevator_xxx_fn in the elevator switch (drivers/block/elevator.c). Oh,
...@@ -921,44 +932,36 @@ keeping work. ...@@ -921,44 +932,36 @@ keeping work.
The functions an elevator may implement are: (* are mandatory) The functions an elevator may implement are: (* are mandatory)
elevator_merge_fn called to query requests for merge with a bio elevator_merge_fn called to query requests for merge with a bio
elevator_merge_req_fn " " " with another request elevator_merge_req_fn called when two requests get merged. the one
which gets merged into the other one will be
never seen by I/O scheduler again. IOW, after
being merged, the request is gone.
elevator_merged_fn called when a request in the scheduler has been elevator_merged_fn called when a request in the scheduler has been
involved in a merge. It is used in the deadline involved in a merge. It is used in the deadline
scheduler for example, to reposition the request scheduler for example, to reposition the request
if its sorting order has changed. if its sorting order has changed.
*elevator_next_req_fn returns the next scheduled request, or NULL elevator_dispatch_fn fills the dispatch queue with ready requests.
if there are none (or none are ready). I/O schedulers are free to postpone requests by
not filling the dispatch queue unless @force
is non-zero. Once dispatched, I/O schedulers
are not allowed to manipulate the requests -
they belong to generic dispatch queue.
*elevator_add_req_fn called to add a new request into the scheduler elevator_add_req_fn called to add a new request into the scheduler
elevator_queue_empty_fn returns true if the merge queue is empty. elevator_queue_empty_fn returns true if the merge queue is empty.
Drivers shouldn't use this, but rather check Drivers shouldn't use this, but rather check
if elv_next_request is NULL (without losing the if elv_next_request is NULL (without losing the
request if one exists!) request if one exists!)
elevator_remove_req_fn This is called when a driver claims ownership of
the target request - it now belongs to the
driver. It must not be modified or merged.
Drivers must not lose the request! A subsequent
call of elevator_next_req_fn must return the
_next_ request.
elevator_requeue_req_fn called to add a request to the scheduler. This
is used when the request has alrnadebeen
returned by elv_next_request, but hasn't
completed. If this is not implemented then
elevator_add_req_fn is called instead.
elevator_former_req_fn elevator_former_req_fn
elevator_latter_req_fn These return the request before or after the elevator_latter_req_fn These return the request before or after the
one specified in disk sort order. Used by the one specified in disk sort order. Used by the
block layer to find merge possibilities. block layer to find merge possibilities.
elevator_completed_req_fn called when a request is completed. This might elevator_completed_req_fn called when a request is completed.
come about due to being merged with another or
when the device completes the request.
elevator_may_queue_fn returns true if the scheduler wants to allow the elevator_may_queue_fn returns true if the scheduler wants to allow the
current context to queue a new request even if current context to queue a new request even if
...@@ -967,13 +970,33 @@ elevator_may_queue_fn returns true if the scheduler wants to allow the ...@@ -967,13 +970,33 @@ elevator_may_queue_fn returns true if the scheduler wants to allow the
elevator_set_req_fn elevator_set_req_fn
elevator_put_req_fn Must be used to allocate and free any elevator elevator_put_req_fn Must be used to allocate and free any elevator
specific storate for a request. specific storage for a request.
elevator_activate_req_fn Called when device driver first sees a request.
I/O schedulers can use this callback to
determine when actual execution of a request
starts.
elevator_deactivate_req_fn Called when device driver decides to delay
a request by requeueing it.
elevator_init_fn elevator_init_fn
elevator_exit_fn Allocate and free any elevator specific storage elevator_exit_fn Allocate and free any elevator specific storage
for a queue. for a queue.
4.2 I/O scheduler implementation 4.2 Request flows seen by I/O schedulers
All requests seens by I/O schedulers strictly follow one of the following three
flows.
set_req_fn ->
i. add_req_fn -> (merged_fn ->)* -> dispatch_fn -> activate_req_fn ->
(deactivate_req_fn -> activate_req_fn ->)* -> completed_req_fn
ii. add_req_fn -> (merged_fn ->)* -> merge_req_fn
iii. [none]
-> put_req_fn
4.3 I/O scheduler implementation
The generic i/o scheduler algorithm attempts to sort/merge/batch requests for The generic i/o scheduler algorithm attempts to sort/merge/batch requests for
optimal disk scan and request servicing performance (based on generic optimal disk scan and request servicing performance (based on generic
principles and device capabilities), optimized for: principles and device capabilities), optimized for:
...@@ -993,18 +1016,7 @@ request in sort order to prevent binary tree lookups. ...@@ -993,18 +1016,7 @@ request in sort order to prevent binary tree lookups.
This arrangement is not a generic block layer characteristic however, so This arrangement is not a generic block layer characteristic however, so
elevators may implement queues as they please. elevators may implement queues as they please.
ii. Last merge hint ii. Merge hash
The last merge hint is part of the generic queue layer. I/O schedulers must do
some management on it. For the most part, the most important thing is to make
sure q->last_merge is cleared (set to NULL) when the request on it is no longer
a candidate for merging (for example if it has been sent to the driver).
The last merge performed is cached as a hint for the subsequent request. If
sequential data is being submitted, the hint is used to perform merges without
any scanning. This is not sufficient when there are multiple processes doing
I/O though, so a "merge hash" is used by some schedulers.
iii. Merge hash
AS and deadline use a hash table indexed by the last sector of a request. This AS and deadline use a hash table indexed by the last sector of a request. This
enables merging code to quickly look up "back merge" candidates, even when enables merging code to quickly look up "back merge" candidates, even when
multiple I/O streams are being performed at once on one disk. multiple I/O streams are being performed at once on one disk.
...@@ -1013,29 +1025,8 @@ multiple I/O streams are being performed at once on one disk. ...@@ -1013,29 +1025,8 @@ multiple I/O streams are being performed at once on one disk.
are far less common than "back merges" due to the nature of most I/O patterns. are far less common than "back merges" due to the nature of most I/O patterns.
Front merges are handled by the binary trees in AS and deadline schedulers. Front merges are handled by the binary trees in AS and deadline schedulers.
iv. Handling barrier cases iii. Plugging the queue to batch requests in anticipation of opportunities for
A request with flags REQ_HARDBARRIER or REQ_SOFTBARRIER must not be ordered merge/sort optimizations
around. That is, they must be processed after all older requests, and before
any newer ones. This includes merges!
In AS and deadline schedulers, barriers have the effect of flushing the reorder
queue. The performance cost of this will vary from nothing to a lot depending
on i/o patterns and device characteristics. Obviously they won't improve
performance, so their use should be kept to a minimum.
v. Handling insertion position directives
A request may be inserted with a position directive. The directives are one of
ELEVATOR_INSERT_BACK, ELEVATOR_INSERT_FRONT, ELEVATOR_INSERT_SORT.
ELEVATOR_INSERT_SORT is a general directive for non-barrier requests.
ELEVATOR_INSERT_BACK is used to insert a barrier to the back of the queue.
ELEVATOR_INSERT_FRONT is used to insert a barrier to the front of the queue, and
overrides the ordering requested by any previous barriers. In practice this is
harmless and required, because it is used for SCSI requeueing. This does not
require flushing the reorder queue, so does not impose a performance penalty.
vi. Plugging the queue to batch requests in anticipation of opportunities for
merge/sort optimizations
This is just the same as in 2.4 so far, though per-device unplugging This is just the same as in 2.4 so far, though per-device unplugging
support is anticipated for 2.5. Also with a priority-based i/o scheduler, support is anticipated for 2.5. Also with a priority-based i/o scheduler,
...@@ -1069,11 +1060,11 @@ Aside: ...@@ -1069,11 +1060,11 @@ Aside:
blk_kick_queue() to unplug a specific queue (right away ?) blk_kick_queue() to unplug a specific queue (right away ?)
or optionally, all queues, is in the plan. or optionally, all queues, is in the plan.
4.3 I/O contexts 4.4 I/O contexts
I/O contexts provide a dynamically allocated per process data area. They may I/O contexts provide a dynamically allocated per process data area. They may
be used in I/O schedulers, and in the block layer (could be used for IO statis, be used in I/O schedulers, and in the block layer (could be used for IO statis,
priorities for example). See *io_context in drivers/block/ll_rw_blk.c, and priorities for example). See *io_context in block/ll_rw_blk.c, and as-iosched.c
as-iosched.c for an example of usage in an i/o scheduler. for an example of usage in an i/o scheduler.
5. Scalability related changes 5. Scalability related changes
......
...@@ -49,9 +49,6 @@ changes occur: ...@@ -49,9 +49,6 @@ changes occur:
page table operations such as what happens during page table operations such as what happens during
fork, and exec. fork, and exec.
Platform developers note that generic code will always
invoke this interface without mm->page_table_lock held.
3) void flush_tlb_range(struct vm_area_struct *vma, 3) void flush_tlb_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end) unsigned long start, unsigned long end)
...@@ -72,9 +69,6 @@ changes occur: ...@@ -72,9 +69,6 @@ changes occur:
call flush_tlb_page (see below) for each entry which may be call flush_tlb_page (see below) for each entry which may be
modified. modified.
Platform developers note that generic code will always
invoke this interface with mm->page_table_lock held.
4) void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr) 4) void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr)
This time we need to remove the PAGE_SIZE sized translation This time we need to remove the PAGE_SIZE sized translation
...@@ -93,9 +87,6 @@ changes occur: ...@@ -93,9 +87,6 @@ changes occur:
This is used primarily during fault processing. This is used primarily during fault processing.
Platform developers note that generic code will always
invoke this interface with mm->page_table_lock held.
5) void flush_tlb_pgtables(struct mm_struct *mm, 5) void flush_tlb_pgtables(struct mm_struct *mm,
unsigned long start, unsigned long end) unsigned long start, unsigned long end)
......
...@@ -133,3 +133,32 @@ hardware and it is important to prevent the kernel from attempting to directly ...@@ -133,3 +133,32 @@ hardware and it is important to prevent the kernel from attempting to directly
access these devices too, as if the array controller were merely a SCSI access these devices too, as if the array controller were merely a SCSI
controller in the same way that we are allowing it to access SCSI tape drives. controller in the same way that we are allowing it to access SCSI tape drives.
SCSI error handling for tape drives and medium changers
-------------------------------------------------------
The linux SCSI mid layer provides an error handling protocol which
kicks into gear whenever a SCSI command fails to complete within a
certain amount of time (which can vary depending on the command).
The cciss driver participates in this protocol to some extent. The
normal protocol is a four step process. First the device is told
to abort the command. If that doesn't work, the device is reset.
If that doesn't work, the SCSI bus is reset. If that doesn't work
the host bus adapter is reset. Because the cciss driver is a block
driver as well as a SCSI driver and only the tape drives and medium
changers are presented to the SCSI mid layer, and unlike more
straightforward SCSI drivers, disk i/o continues through the block
side during the SCSI error recovery process, the cciss driver only
implements the first two of these actions, aborting the command, and
resetting the device. Additionally, most tape drives will not oblige
in aborting commands, and sometimes it appears they will not even
obey a reset coommand, though in most circumstances they will. In
the case that the command cannot be aborted and the device cannot be
reset, the device will be set offline.
In the event the error handling code is triggered and a tape drive is
successfully reset or the tardy command is successfully aborted, the
tape drive may still not allow i/o to continue until some command
is issued which positions the tape to a known position. Typically you
must rewind the tape (by issuing "mt -f /dev/st0 rewind" for example)
before i/o can proceed again to a tape drive which was reset.
...@@ -25,7 +25,7 @@ ...@@ -25,7 +25,7 @@
#include <linux/skbuff.h> #include <linux/skbuff.h>
#include <linux/timer.h> #include <linux/timer.h>
#include "connector.h" #include <linux/connector.h>
static struct cb_id cn_test_id = { 0x123, 0x456 }; static struct cb_id cn_test_id = { 0x123, 0x456 };
static char cn_test_name[] = "cn_test"; static char cn_test_name[] = "cn_test";
...@@ -104,7 +104,7 @@ static int cn_test_want_notify(void) ...@@ -104,7 +104,7 @@ static int cn_test_want_notify(void)
req->first = cn_test_id.val + 20; req->first = cn_test_id.val + 20;
req->range = 10; req->range = 10;
NETLINK_CB(skb).dst_groups = ctl->group; NETLINK_CB(skb).dst_group = ctl->group;
//netlink_broadcast(nls, skb, 0, ctl->group, GFP_ATOMIC); //netlink_broadcast(nls, skb, 0, ctl->group, GFP_ATOMIC);
netlink_unicast(nls, skb, 0, 0); netlink_unicast(nls, skb, 0, 0);
......
...@@ -131,3 +131,47 @@ Netlink itself is not reliable protocol, that means that messages can ...@@ -131,3 +131,47 @@ Netlink itself is not reliable protocol, that means that messages can
be lost due to memory pressure or process' receiving queue overflowed, be lost due to memory pressure or process' receiving queue overflowed,
so caller is warned must be prepared. That is why struct cn_msg [main so caller is warned must be prepared. That is why struct cn_msg [main
connector's message header] contains u32 seq and u32 ack fields. connector's message header] contains u32 seq and u32 ack fields.
/*****************************************/
Userspace usage.
/*****************************************/
2.6.14 has a new netlink socket implementation, which by default does not
allow to send data to netlink groups other than 1.
So, if to use netlink socket (for example using connector)
with different group number userspace application must subscribe to
that group. It can be achieved by following pseudocode:
s = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_CONNECTOR);
l_local.nl_family = AF_NETLINK;
l_local.nl_groups = 12345;
l_local.nl_pid = 0;
if (bind(s, (struct sockaddr *)&l_local, sizeof(struct sockaddr_nl)) == -1) {
perror("bind");
close(s);
return -1;
}
{
int on = l_local.nl_groups;
setsockopt(s, 270, 1, &on, sizeof(on));
}
Where 270 above is SOL_NETLINK, and 1 is a NETLINK_ADD_MEMBERSHIP socket
option. To drop multicast subscription one should call above socket option
with NETLINK_DROP_MEMBERSHIP parameter which is defined as 0.
2.6.14 netlink code only allows to select a group which is less or equal to
the maximum group number, which is used at netlink_kernel_create() time.
In case of connector it is CN_NETLINK_USERS + 0xf, so if you want to use
group number 12345, you must increment CN_NETLINK_USERS to that number.
Additional 0xf numbers are allocated to be used by non-in-kernel users.
Due to this limitation, group 0xffffffff does not work now, so one can
not use add/remove connector's group notifications, but as far as I know,
only cn_test.c test module used it.
Some work in netlink area is still being done, so things can be changed in
2.6.15 timeframe, if it will happen, documentation will be updated for that
kernel.
...@@ -94,7 +94,7 @@ the available CPU and Memory resources amongst the requesting tasks. ...@@ -94,7 +94,7 @@ the available CPU and Memory resources amongst the requesting tasks.
But larger systems, which benefit more from careful processor and But larger systems, which benefit more from careful processor and
memory placement to reduce memory access times and contention, memory placement to reduce memory access times and contention,
and which typically represent a larger investment for the customer, and which typically represent a larger investment for the customer,
can benefit from explictly placing jobs on properly sized subsets of can benefit from explicitly placing jobs on properly sized subsets of
the system. the system.
This can be especially valuable on: This can be especially valuable on:
......
...@@ -35,6 +35,7 @@ The driver load creates the following directories under the /sys file system. ...@@ -35,6 +35,7 @@ The driver load creates the following directories under the /sys file system.
/sys/class/firmware/dell_rbu/data /sys/class/firmware/dell_rbu/data
/sys/devices/platform/dell_rbu/image_type /sys/devices/platform/dell_rbu/image_type
/sys/devices/platform/dell_rbu/data /sys/devices/platform/dell_rbu/data
/sys/devices/platform/dell_rbu/packet_size
The driver supports two types of update mechanism; monolithic and packetized. The driver supports two types of update mechanism; monolithic and packetized.
These update mechanism depends upon the BIOS currently running on the system. These update mechanism depends upon the BIOS currently running on the system.
...@@ -47,8 +48,26 @@ By default the driver uses monolithic memory for the update type. This can be ...@@ -47,8 +48,26 @@ By default the driver uses monolithic memory for the update type. This can be
changed to packets during the driver load time by specifying the load changed to packets during the driver load time by specifying the load
parameter image_type=packet. This can also be changed later as below parameter image_type=packet. This can also be changed later as below
echo packet > /sys/devices/platform/dell_rbu/image_type echo packet > /sys/devices/platform/dell_rbu/image_type
Also echoing either mono ,packet or init in to image_type will free up the
memory allocated by the driver. In packet update mode the packet size has to be given before any packets can
be downloaded. It is done as below
echo XXXX > /sys/devices/platform/dell_rbu/packet_size
In the packet update mechanism, the user neesd to create a new file having
packets of data arranged back to back. It can be done as follows
The user creates packets header, gets the chunk of the BIOS image and
placs it next to the packetheader; now, the packetheader + BIOS image chunk
added to geather should match the specified packet_size. This makes one
packet, the user needs to create more such packets out of the entire BIOS
image file and then arrange all these packets back to back in to one single
file.
This file is then copied to /sys/class/firmware/dell_rbu/data.
Once this file gets to the driver, the driver extracts packet_size data from
the file and spreads it accross the physical memory in contiguous packet_sized
space.
This method makes sure that all the packets get to the driver in a single operation.
In monolithic update the user simply get the BIOS image (.hdr file) and copies
to the data file as is without any change to the BIOS image itself.
Do the steps below to download the BIOS image. Do the steps below to download the BIOS image.
1) echo 1 > /sys/class/firmware/dell_rbu/loading 1) echo 1 > /sys/class/firmware/dell_rbu/loading
...@@ -58,7 +77,10 @@ Do the steps below to download the BIOS image. ...@@ -58,7 +77,10 @@ Do the steps below to download the BIOS image.
The /sys/class/firmware/dell_rbu/ entries will remain till the following is The /sys/class/firmware/dell_rbu/ entries will remain till the following is
done. done.
echo -1 > /sys/class/firmware/dell_rbu/loading. echo -1 > /sys/class/firmware/dell_rbu/loading.
Until this step is completed the drivr cannot be unloaded. Until this step is completed the driver cannot be unloaded.
Also echoing either mono ,packet or init in to image_type will free up the
memory allocated by the driver.
If an user by accident executes steps 1 and 3 above without executing step 2; If an user by accident executes steps 1 and 3 above without executing step 2;
it will make the /sys/class/firmware/dell_rbu/ entries to disappear. it will make the /sys/class/firmware/dell_rbu/ entries to disappear.
The entries can be recreated by doing the following The entries can be recreated by doing the following
...@@ -66,15 +88,11 @@ echo init > /sys/devices/platform/dell_rbu/image_type ...@@ -66,15 +88,11 @@ echo init > /sys/devices/platform/dell_rbu/image_type
NOTE: echoing init in image_type does not change it original value. NOTE: echoing init in image_type does not change it original value.
Also the driver provides /sys/devices/platform/dell_rbu/data readonly file to Also the driver provides /sys/devices/platform/dell_rbu/data readonly file to
read back the image downloaded. This is useful in case of packet update read back the image downloaded.
mechanism where the above steps 1,2,3 will repeated for every packet.
By reading the /sys/devices/platform/dell_rbu/data file all packet data
downloaded can be verified in a single file.
The packets are arranged in this file one after the other in a FIFO order.
NOTE: NOTE:
This driver requires a patch for firmware_class.c which has the addition This driver requires a patch for firmware_class.c which has the modified
of request_firmware_nowait_nohotplug function to wortk request_firmware_nowait function.
Also after updating the BIOS image an user mdoe application neeeds to execute Also after updating the BIOS image an user mdoe application neeeds to execute
code which message the BIOS update request to the BIOS. So on the next reboot code which message the BIOS update request to the BIOS. So on the next reboot
the BIOS knows about the new image downloaded and it updates it self. the BIOS knows about the new image downloaded and it updates it self.
......
Device-mapper snapshot support
==============================
Device-mapper allows you, without massive data copying:
*) To create snapshots of any block device i.e. mountable, saved states of
the block device which are also writable without interfering with the
original content;
*) To create device "forks", i.e. multiple different versions of the
same data stream.
In both cases, dm copies only the chunks of data that get changed and
uses a separate copy-on-write (COW) block device for storage.
There are two dm targets available: snapshot and snapshot-origin.
*) snapshot-origin <origin>
which will normally have one or more snapshots based on it.
Reads will be mapped directly to the backing device. For each write, the
original data will be saved in the <COW device> of each snapshot to keep
its visible content unchanged, at least until the <COW device> fills up.
*) snapshot <origin> <COW device> <persistent?> <chunksize>
A snapshot of the <origin> block device is created. Changed chunks of
<chunksize> sectors will be stored on the <COW device>. Writes will
only go to the <COW device>. Reads will come from the <COW device> or
from <origin> for unchanged data. <COW device> will often be
smaller than the origin and if it fills up the snapshot will become
useless and be disabled, returning errors. So it is important to monitor
the amount of free space and expand the <COW device> before it fills up.
<persistent?> is P (Persistent) or N (Not persistent - will not survive
after reboot).
The difference is that for transient snapshots less metadata must be
saved on disk - they can be kept in memory by the kernel.
How this is used by LVM2
========================
When you create the first LVM2 snapshot of a volume, four dm devices are used:
1) a device containing the original mapping table of the source volume;
2) a device used as the <COW device>;
3) a "snapshot" device, combining #1 and #2, which is the visible snapshot
volume;
4) the "original" volume (which uses the device number used by the original
source volume), whose table is replaced by a "snapshot-origin" mapping
from device #1.
A fixed naming scheme is used, so with the following commands:
lvcreate -L 1G -n base volumeGroup
lvcreate -L 100M --snapshot -n snap volumeGroup/base
we'll have this situation (with volumes in above order):
# dmsetup table|grep volumeGroup
volumeGroup-base-real: 0 2097152 linear 8:19 384
volumeGroup-snap-cow: 0 204800 linear 8:19 2097536
volumeGroup-snap: 0 2097152 snapshot 254:11 254:12 P 16
volumeGroup-base: 0 2097152 snapshot-origin 254:11
# ls -lL /dev/mapper/volumeGroup-*
brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-real
brw------- 1 root root 254, 12 29 ago 18:15 /dev/mapper/volumeGroup-snap-cow
brw------- 1 root root 254, 13 29 ago 18:15 /dev/mapper/volumeGroup-snap
brw------- 1 root root 254, 10 29 ago 18:14 /dev/mapper/volumeGroup-base
...@@ -2903,14 +2903,14 @@ Your cooperation is appreciated. ...@@ -2903,14 +2903,14 @@ Your cooperation is appreciated.
196 = /dev/dvb/adapter3/video0 first video decoder of fourth card 196 = /dev/dvb/adapter3/video0 first video decoder of fourth card
216 char USB BlueTooth devices 216 char Bluetooth RFCOMM TTY devices
0 = /dev/ttyUB0 First USB BlueTooth device 0 = /dev/rfcomm0 First Bluetooth RFCOMM TTY device
1 = /dev/ttyUB1 Second USB BlueTooth device 1 = /dev/rfcomm1 Second Bluetooth RFCOMM TTY device
... ...
217 char USB BlueTooth devices (alternate devices) 217 char Bluetooth RFCOMM TTY devices (alternate devices)
0 = /dev/cuub0 Callout device for ttyUB0 0 = /dev/curf0 Callout device for rfcomm0
1 = /dev/cuub1 Callout device for ttyUB1 1 = /dev/curf1 Callout device for rfcomm1
... ...
218 char The Logical Company bus Unibus/Qbus adapters 218 char The Logical Company bus Unibus/Qbus adapters
......
...@@ -14,8 +14,8 @@ struct device_driver { ...@@ -14,8 +14,8 @@ struct device_driver {
int (*probe) (struct device * dev); int (*probe) (struct device * dev);
int (*remove) (struct device * dev); int (*remove) (struct device * dev);
int (*suspend) (struct device * dev, pm_message_t state, u32 level); int (*suspend) (struct device * dev, pm_message_t state);
int (*resume) (struct device * dev, u32 level); int (*resume) (struct device * dev);
}; };
...@@ -194,69 +194,13 @@ device; i.e. anything in the device's driver_data field. ...@@ -194,69 +194,13 @@ device; i.e. anything in the device's driver_data field.
If the device is still present, it should quiesce the device and place If the device is still present, it should quiesce the device and place
it into a supported low-power state. it into a supported low-power state.
int (*suspend) (struct device * dev, pm_message_t state, u32 level); int (*suspend) (struct device * dev, pm_message_t state);
suspend is called to put the device in a low power state. There are suspend is called to put the device in a low power state.
several stages to successfully suspending a device, which is denoted in
the @level parameter. Breaking the suspend transition into several
stages affords the platform flexibility in performing device power
management based on the requirements of the system and the
user-defined policy.
SUSPEND_NOTIFY notifies the device that a suspend transition is about int (*resume) (struct device * dev);
to happen. This happens on system power state transitions to verify
that all devices can successfully suspend.
A driver may choose to fail on this call, which should cause the Resume is used to bring a device back from a low power state.
entire suspend transition to fail. A driver should fail only if it
knows that the device will not be able to be resumed properly when the
system wakes up again. It could also fail if it somehow determines it
is in the middle of an operation too important to stop.
SUSPEND_DISABLE tells the device to stop I/O transactions. When it
stops transactions, or what it should do with unfinished transactions
is a policy of the driver. After this call, the driver should not
accept any other I/O requests.
SUSPEND_SAVE_STATE tells the device to save the context of the
hardware. This includes any bus-specific hardware state and
device-specific hardware state. A pointer to this saved state can be
stored in the device's saved_state field.
SUSPEND_POWER_DOWN tells the driver to place the device in the low
power state requested.
Whether suspend is called with a given level is a policy of the
platform. Some levels may be omitted; drivers must not assume the
reception of any level. However, all levels must be called in the
order above; i.e. notification will always come before disabling;
disabling the device will come before suspending the device.
All calls are made with interrupts enabled, except for the
SUSPEND_POWER_DOWN level.
int (*resume) (struct device * dev, u32 level);
Resume is used to bring a device back from a low power state. Like the
suspend transition, it happens in several stages.
RESUME_POWER_ON tells the driver to set the power state to the state
before the suspend call (The device could have already been in a low
power state before the suspend call to put in a lower power state).
RESUME_RESTORE_STATE tells the driver to restore the state saved by
the SUSPEND_SAVE_STATE suspend call.
RESUME_ENABLE tells the driver to start accepting I/O transactions
again. Depending on driver policy, the device may already have pending
I/O requests.
RESUME_POWER_ON is called with interrupts disabled. The other resume
levels are called with interrupts enabled.
As with the various suspend stages, the driver must not assume that
any other resume calls have been or will be made. Each call should be
self-contained and not dependent on any external state.
Attributes Attributes
......
...@@ -350,7 +350,7 @@ When a driver is registered, the bus's list of devices is iterated ...@@ -350,7 +350,7 @@ When a driver is registered, the bus's list of devices is iterated
over. bus->match() is called for each device that is not already over. bus->match() is called for each device that is not already
claimed by a driver. claimed by a driver.
When a device is successfully bound to a device, device->driver is When a device is successfully bound to a driver, device->driver is
set, the device is added to a per-driver list of devices, and a set, the device is added to a per-driver list of devices, and a
symlink is created in the driver's sysfs directory that points to the symlink is created in the driver's sysfs directory that points to the
device's physical directory: device's physical directory:
......
How to get the Nebula, PCTV and Twinhan DST cards working How to get the Nebula, PCTV, FusionHDTV Lite and Twinhan DST cards working
========================================================= ==========================================================================
This class of cards has a bt878a as the PCI interface, and This class of cards has a bt878a as the PCI interface, and
require the bttv driver. require the bttv driver.
...@@ -26,27 +26,31 @@ Furthermore you need to enable ...@@ -26,27 +26,31 @@ Furthermore you need to enable
In general you need to load the bttv driver, which will handle the gpio and In general you need to load the bttv driver, which will handle the gpio and
i2c communication for us, plus the common dvb-bt8xx device driver. i2c communication for us, plus the common dvb-bt8xx device driver.
The frontends for Nebula (nxt6000), Pinnacle PCTV (cx24110) and The frontends for Nebula (nxt6000), Pinnacle PCTV (cx24110), TwinHan (dst),
TwinHan (dst) are loaded automatically by the dvb-bt8xx device driver. FusionHDTV DVB-T Lite (mt352) and FusionHDTV5 Lite (lgdt330x) are loaded
automatically by the dvb-bt8xx device driver.
3a) Nebula / Pinnacle PCTV 3a) Nebula / Pinnacle PCTV / FusionHDTV Lite
-------------------------- ---------------------------------------------
$ modprobe bttv (normally bttv is being loaded automatically by kmod) $ modprobe bttv (normally bttv is being loaded automatically by kmod)
$ modprobe dvb-bt8xx (or just place dvb-bt8xx in /etc/modules for automatic loading) $ modprobe dvb-bt8xx
(or just place dvb-bt8xx in /etc/modules for automatic loading)
3b) TwinHan and Clones 3b) TwinHan and Clones
-------------------------- --------------------------
$ modprobe bttv i2c_hw=1 card=0x71 $ modprobe bttv card=0x71
$ modprobe dvb-bt8xx $ modprobe dvb-bt8xx
$ modprobe dst $ modprobe dst
The value 0x71 will override the PCI type detection for dvb-bt8xx, The value 0x71 will override the PCI type detection for dvb-bt8xx,
which is necessary for TwinHan cards. which is necessary for TwinHan cards. Omission of this parameter might result
in a system lockup.
If you're having an older card (blue color circuit) and card=0x71 locks If you're having an older card (blue color PCB) and card=0x71 locks up
your machine, try using 0x68, too. If that does not work, ask on the your machine, try using 0x68, too. If that does not work, ask on the
mailing list. mailing list.
...@@ -64,11 +68,47 @@ verbose=0 means complete disabling of messages ...@@ -64,11 +68,47 @@ verbose=0 means complete disabling of messages
dst_addons takes values 0 and 0x20. A value of 0 means it is a FTA card. dst_addons takes values 0 and 0x20. A value of 0 means it is a FTA card.
0x20 means it has a Conditional Access slot. 0x20 means it has a Conditional Access slot.
The autodected values are determined bythe cards 'response The autodetected values are determined by the cards 'response string'
string' which you can see in your logs e.g. which you can see in your logs e.g.
dst_get_device_id: Recognise [DSTMCI] dst_get_device_id: Recognise [DSTMCI]
If you need to sent in bug reports on the dst, please do send in a complete
log with the verbose=4 module parameter. For general usage, the default setting
of verbose=1 is ideal.
4) Multiple cards
--------------------------
If you happen to be running multiple cards, it would be advisable to load
the bttv module with the card id. This would help to solve any module loading
problems that you might face.
For example, if you have a Twinhan and Clones card along with a FusionHDTV5 Lite
$ modprobe bttv card=0x71 card=0x87
Here the order of the card id is important and should be the same as that of the
physical order of the cards. Here card=0x71 represents the Twinhan and clones
and card=0x87 represents Fusion HDTV5 Lite. These arguments can also be
specified in decimal, rather than hex:
$ modprobe bttv card=113 card=135
Some examples of card-id's
Pinnacle Sat 0x5e (94)
Nebula Digi TV 0x68 (104)
PC HDTV 0x70 (112)
Twinhan 0x71 (113)
FusionHDTV DVB-T Lite 0x80 (128)
FusionHDTV5 Lite 0x87 (135)
For a full list of card-id's, see the V4L Documentation within the kernel
source: linux/Documentation/video4linux/CARDLIST.bttv
If you have problems with this please do ask on the mailing list.
-- --
Authors: Richard Walker, Jamie Honan, Michael Hunold, Manu Abraham Authors: Richard Walker, Jamie Honan, Michael Hunold, Manu Abraham
...@@ -41,6 +41,12 @@ o Frontends drivers: ...@@ -41,6 +41,12 @@ o Frontends drivers:
- dib3000mb : DiBcom 3000-MB demodulator - dib3000mb : DiBcom 3000-MB demodulator
DVB-S/C/T: DVB-S/C/T:
- dst : TwinHan DST Frontend - dst : TwinHan DST Frontend
ATSC:
- nxt200x : Nxtwave NXT2002 & NXT2004
- or51211 : or51211 based (pcHDTV HD2000 card)
- or51132 : or51132 based (pcHDTV HD3000 card)
- bcm3510 : Broadcom BCM3510
- lgdt330x : LG Electronics DT3302 & DT3303
o Cards based on the Phillips saa7146 multimedia PCI bridge chip: o Cards based on the Phillips saa7146 multimedia PCI bridge chip:
...@@ -62,6 +68,10 @@ o Cards based on the Conexant Bt8xx PCI bridge: ...@@ -62,6 +68,10 @@ o Cards based on the Conexant Bt8xx PCI bridge:
- Nebula Electronics DigiTV - Nebula Electronics DigiTV
- TwinHan DST - TwinHan DST
- Avermedia DVB-T - Avermedia DVB-T
- ChainTech digitop DST-1000 DVB-S
- pcHDTV HD-2000 TV
- DViCO FusionHDTV DVB-T Lite
- DViCO FusionHDTV5 Lite
o Technotrend / Hauppauge DVB USB devices: o Technotrend / Hauppauge DVB USB devices:
- Nova USB - Nova USB
...@@ -83,3 +93,30 @@ o DiBcom DVB-T USB based devices: ...@@ -83,3 +93,30 @@ o DiBcom DVB-T USB based devices:
- DiBcom USB2.0 DVB-T reference device (non-public) - DiBcom USB2.0 DVB-T reference device (non-public)
o Experimental support for the analog module of the Siemens DVB-C PCI card o Experimental support for the analog module of the Siemens DVB-C PCI card
o Cards based on the Conexant cx2388x PCI bridge:
- ADS Tech Instant TV DVB-T PCI
- ATI HDTV Wonder
- digitalnow DNTV Live! DVB-T
- DViCO FusionHDTV DVB-T1
- DViCO FusionHDTV DVB-T Plus
- DViCO FusionHDTV3 Gold-Q
- DViCO FusionHDTV3 Gold-T
- DViCO FusionHDTV5 Gold
- Hauppauge Nova-T DVB-T
- KWorld/VStream XPert DVB-T
- pcHDTV HD3000 HDTV
- TerraTec Cinergy 1400 DVB-T
- WinFast DTV1000-T
o Cards based on the Phillips saa7134 PCI bridge:
- Medion 7134
- Pinnacle PCTV 300i DVB-T + PAL
- LifeView FlyDVB-T DUO
- Typhoon DVB-T Duo Digital/Analog Cardbus
- Philips TOUGH DVB-T reference design
- Philips EUROPA V3 reference design
- Compro Videomate DVB-T300
- Compro Videomate DVB-T200
- AVerMedia AVerTVHD MCE A180
...@@ -75,5 +75,22 @@ Ernst Peinlich <e.peinlich@inode.at> ...@@ -75,5 +75,22 @@ Ernst Peinlich <e.peinlich@inode.at>
Peter Beutner <p.beutner@gmx.net> Peter Beutner <p.beutner@gmx.net>
for the IR code for the ttusb-dec driver for the IR code for the ttusb-dec driver
Wilson Michaels <wilsonmichaels@earthlink.net>
for the lgdt330x frontend driver, and various bugfixes
Michael Krufky <mkrufky@m1k.net>
for maintaining v4l/dvb inter-tree dependencies
Taylor Jacob <rtjacob@earthlink.net>
for the nxt2002 frontend driver
Jean-Francois Thibert <jeanfrancois@sagetv.com>
for the nxt2004 frontend driver
Kirk Lapray <kirk.lapray@gmail.com>
for the or51211 and or51132 frontend drivers, and
for merging the nxt2002 and nxt2004 modules into a
single nxt200x frontend driver.
(If you think you should be in this list, but you are not, drop a (If you think you should be in this list, but you are not, drop a
line to the DVB mailing list) line to the DVB mailing list)
...@@ -60,7 +60,6 @@ Some very frequently asked questions about linuxtv-dvb ...@@ -60,7 +60,6 @@ Some very frequently asked questions about linuxtv-dvb
Metzler Bros. DVB development; alternate drivers and Metzler Bros. DVB development; alternate drivers and
DVB utilities, include dvb-mpegtools and tuxzap. DVB utilities, include dvb-mpegtools and tuxzap.
http://www.linuxstb.org/
http://sourceforge.net/projects/dvbtools/ http://sourceforge.net/projects/dvbtools/
Dave Chapman's dvbtools package, including Dave Chapman's dvbtools package, including
dvbstream and dvbtune dvbstream and dvbtune
......
...@@ -22,7 +22,7 @@ use File::Temp qw/ tempdir /; ...@@ -22,7 +22,7 @@ use File::Temp qw/ tempdir /;
use IO::Handle; use IO::Handle;
@components = ( "sp8870", "sp887x", "tda10045", "tda10046", "av7110", "dec2000t", @components = ( "sp8870", "sp887x", "tda10045", "tda10046", "av7110", "dec2000t",
"dec2540t", "dec3000s", "vp7041", "dibusb", "nxt2002", "dec2540t", "dec3000s", "vp7041", "dibusb", "nxt2002", "nxt2004",
"or51211", "or51132_qam", "or51132_vsb"); "or51211", "or51132_qam", "or51132_vsb");
# Check args # Check args
...@@ -252,6 +252,23 @@ sub nxt2002 { ...@@ -252,6 +252,23 @@ sub nxt2002 {
$outfile; $outfile;
} }
sub nxt2004 {
my $sourcefile = "AVerTVHD_MCE_A180_Drv_v1.2.2.16.zip";
my $url = "http://www.aver.com/support/Drivers/$sourcefile";
my $hash = "111cb885b1e009188346d72acfed024c";
my $outfile = "dvb-fe-nxt2004.fw";
my $tmpdir = tempdir(DIR => "/tmp", CLEANUP => 1);
checkstandard();
wgetfile($sourcefile, $url);
unzip($sourcefile, $tmpdir);
verify("$tmpdir/3xHybrid.sys", $hash);
extract("$tmpdir/3xHybrid.sys", 465304, 9584, $outfile);
$outfile;
}
sub or51211 { sub or51211 {
my $fwfile = "dvb-fe-or51211.fw"; my $fwfile = "dvb-fe-or51211.fw";
my $url = "http://linuxtv.org/downloads/firmware/$fwfile"; my $url = "http://linuxtv.org/downloads/firmware/$fwfile";
......
...@@ -28,7 +28,7 @@ the image from specifications. ...@@ -28,7 +28,7 @@ the image from specifications.
CPIO ARCHIVE method CPIO ARCHIVE method
You can create a cpio archive that contains the early userspace image. You can create a cpio archive that contains the early userspace image.
Youre cpio archive should be specified in CONFIG_INITRAMFS_SOURCE and it Your cpio archive should be specified in CONFIG_INITRAMFS_SOURCE and it
will be used directly. Only a single cpio file may be specified in will be used directly. Only a single cpio file may be specified in
CONFIG_INITRAMFS_SOURCE and directory and file names are not allowed in CONFIG_INITRAMFS_SOURCE and directory and file names are not allowed in
combination with a cpio archive. combination with a cpio archive.
......
The Framebuffer Console
=======================
The framebuffer console (fbcon), as its name implies, is a text
console running on top of the framebuffer device. It has the functionality of
any standard text console driver, such as the VGA console, with the added
features that can be attributed to the graphical nature of the framebuffer.
In the x86 architecture, the framebuffer console is optional, and
some even treat it as a toy. For other architectures, it is the only available
display device, text or graphical.
What are the features of fbcon? The framebuffer console supports
high resolutions, varying font types, display rotation, primitive multihead,
etc. Theoretically, multi-colored fonts, blending, aliasing, and any feature
made available by the underlying graphics card are also possible.
A. Configuration
The framebuffer console can be enabled by using your favorite kernel
configuration tool. It is under Device Drivers->Graphics Support->Support for
framebuffer devices->Framebuffer Console Support. Select 'y' to compile
support statically, or 'm' for module support. The module will be fbcon.
In order for fbcon to activate, at least one framebuffer driver is
required, so choose from any of the numerous drivers available. For x86
systems, they almost universally have VGA cards, so vga16fb and vesafb will
always be available. However, using a chipset-specific driver will give you
more speed and features, such as the ability to change the video mode
dynamically.
To display the penguin logo, choose any logo available in Logo
Configuration->Boot up logo.
Also, you will need to select at least one compiled-in fonts, but if
you don't do anything, the kernel configuration tool will select one for you,
usually an 8x16 font.
GOTCHA: A common bug report is enabling the framebuffer without enabling the
framebuffer console. Depending on the driver, you may get a blanked or
garbled display, but the system still boots to completion. If you are
fortunate to have a driver that does not alter the graphics chip, then you
will still get a VGA console.
B. Loading
Possible scenarios:
1. Driver and fbcon are compiled statically
Usually, fbcon will automatically take over your console. The notable
exception is vesafb. It needs to be explicitly activated with the
vga= boot option parameter.
2. Driver is compiled statically, fbcon is compiled as a module
Depending on the driver, you either get a standard console, or a
garbled display, as mentioned above. To get a framebuffer console,
do a 'modprobe fbcon'.
3. Driver is compiled as a module, fbcon is compiled statically
You get your standard console. Once the driver is loaded with
'modprobe xxxfb', fbcon automatically takes over the console with
the possible exception of using the fbcon=map:n option. See below.
4. Driver and fbcon are compiled as a module.
You can load them in any order. Once both are loaded, fbcon will take
over the console.
C. Boot options
The framebuffer console has several, largely unknown, boot options
that can change its behavior.
1. fbcon=font:<name>
Select the initial font to use. The value 'name' can be any of the
compiled-in fonts: VGA8x16, 7x14, 10x18, VGA8x8, MINI4x6, RomanLarge,
SUN8x16, SUN12x22, ProFont6x11, Acorn8x8, PEARL8x8.
Note, not all drivers can handle font with widths not divisible by 8,
such as vga16fb.
2. fbcon=scrollback:<value>[k]
The scrollback buffer is memory that is used to preserve display
contents that has already scrolled past your view. This is accessed
by using the Shift-PageUp key combination. The value 'value' is any
integer. It defaults to 32KB. The 'k' suffix is optional, and will
multiply the 'value' by 1024.
3. fbcon=map:<0123>
This is an interesting option. It tells which driver gets mapped to
which console. The value '0123' is a sequence that gets repeated until
the total length is 64 which is the number of consoles available. In
the above example, it is expanded to 012301230123... and the mapping
will be:
tty | 1 2 3 4 5 6 7 8 9 ...
fb | 0 1 2 3 0 1 2 3 0 ...
('cat /proc/fb' should tell you what the fb numbers are)
One side effect that may be useful is using a map value that exceeds
the number of loaded fb drivers. For example, if only one driver is
available, fb0, adding fbcon=map:1 tells fbcon not to take over the
console.
Later on, when you want to map the console the to the framebuffer
device, you can use the con2fbmap utility.
4. fbcon=vc:<n1>-<n2>
This option tells fbcon to take over only a range of consoles as
specified by the values 'n1' and 'n2'. The rest of the consoles
outside the given range will still be controlled by the standard
console driver.
NOTE: For x86 machines, the standard console is the VGA console which
is typically located on the same video card. Thus, the consoles that
are controlled by the VGA console will be garbled.
4. fbcon=rotate:<n>
This option changes the orientation angle of the console display. The
value 'n' accepts the following:
0 - normal orientation (0 degree)
1 - clockwise orientation (90 degrees)
2 - upside down orientation (180 degrees)
3 - counterclockwise orientation (270 degrees)
The angle can be changed anytime afterwards by 'echoing' the same
numbers to any one of the 2 attributes found in
/sys/class/graphics/fb{x}
con_rotate - rotate the display of the active console
con_rotate_all - rotate the display of all consoles
Console rotation will only become available if Console Rotation
Support is compiled in your kernel.
NOTE: This is purely console rotation. Any other applications that
use the framebuffer will remain at their 'normal'orientation.
Actually, the underlying fb driver is totally ignorant of console
rotation.
---
Antonino Daplas <adaplas@pol.net>
...@@ -146,10 +146,10 @@ pmipal Use the protected mode interface for palette changes. ...@@ -146,10 +146,10 @@ pmipal Use the protected mode interface for palette changes.
mtrr:n setup memory type range registers for the vesafb framebuffer mtrr:n setup memory type range registers for the vesafb framebuffer
where n: where n:
0 - disabled (equivalent to nomtrr) 0 - disabled (equivalent to nomtrr) (default)
1 - uncachable 1 - uncachable
2 - write-back 2 - write-back
3 - write-combining (default) 3 - write-combining
4 - write-through 4 - write-through
If you see the following in dmesg, choose the type that matches the If you see the following in dmesg, choose the type that matches the
......
...@@ -25,6 +25,13 @@ Who: Adrian Bunk <bunk@stusta.de> ...@@ -25,6 +25,13 @@ Who: Adrian Bunk <bunk@stusta.de>
--------------------------- ---------------------------
What: drivers depending on OBSOLETE_OSS_DRIVER
When: January 2006
Why: OSS drivers with ALSA replacements
Who: Adrian Bunk <bunk@stusta.de>
---------------------------
What: RCU API moves to EXPORT_SYMBOL_GPL What: RCU API moves to EXPORT_SYMBOL_GPL
When: April 2006 When: April 2006
Files: include/linux/rcupdate.h, kernel/rcupdate.c Files: include/linux/rcupdate.h, kernel/rcupdate.c
...@@ -60,6 +67,21 @@ Who: Jody McIntyre <scjody@steamballoon.com> ...@@ -60,6 +67,21 @@ Who: Jody McIntyre <scjody@steamballoon.com>
--------------------------- ---------------------------
What: Video4Linux API 1 ioctls and video_decoder.h from Video devices.
When: July 2006
Why: V4L1 AP1 was replaced by V4L2 API. during migration from 2.4 to 2.6
series. The old API have lots of drawbacks and don't provide enough
means to work with all video and audio standards. The newer API is
already available on the main drivers and should be used instead.
Newer drivers should use v4l_compat_translate_ioctl function to handle
old calls, replacing to newer ones.
Decoder iocts are using internally to allow video drivers to
communicate with video decoders. This should also be improved to allow
V4L2 calls being translated into compatible internal ioctls.
Who: Mauro Carvalho Chehab <mchehab@brturbo.com.br>
---------------------------
What: i2c sysfs name change: in1_ref, vid deprecated in favour of cpu0_vid What: i2c sysfs name change: in1_ref, vid deprecated in favour of cpu0_vid
When: November 2005 When: November 2005
Files: drivers/i2c/chips/adm1025.c, drivers/i2c/chips/adm1026.c Files: drivers/i2c/chips/adm1025.c, drivers/i2c/chips/adm1026.c
...@@ -69,6 +91,22 @@ Who: Grant Coady <gcoady@gmail.com> ...@@ -69,6 +91,22 @@ Who: Grant Coady <gcoady@gmail.com>
--------------------------- ---------------------------
What: remove EXPORT_SYMBOL(panic_timeout)
When: April 2006
Files: kernel/panic.c
Why: No modular usage in the kernel.
Who: Adrian Bunk <bunk@stusta.de>
---------------------------
What: remove EXPORT_SYMBOL(insert_resource)
When: April 2006
Files: kernel/resource.c
Why: No modular usage in the kernel.
Who: Adrian Bunk <bunk@stusta.de>
---------------------------
What: PCMCIA control ioctl (needed for pcmcia-cs [cardmgr, cardctl]) What: PCMCIA control ioctl (needed for pcmcia-cs [cardmgr, cardctl])
When: November 2005 When: November 2005
Files: drivers/pcmcia/: pcmcia_ioctl.c Files: drivers/pcmcia/: pcmcia_ioctl.c
...@@ -95,3 +133,29 @@ Why: This interface has been obsoleted by the new layer3-independent ...@@ -95,3 +133,29 @@ Why: This interface has been obsoleted by the new layer3-independent
to link against API-compatible library on top of libnfnetlink_queue to link against API-compatible library on top of libnfnetlink_queue
instead of the current 'libipq'. instead of the current 'libipq'.
Who: Harald Welte <laforge@netfilter.org> Who: Harald Welte <laforge@netfilter.org>
---------------------------
What: EXPORT_SYMBOL(lookup_hash)
When: January 2006
Why: Too low-level interface. Use lookup_one_len or lookup_create instead.
Who: Christoph Hellwig <hch@lst.de>
---------------------------
What: START_ARRAY ioctl for md
When: July 2006
Files: drivers/md/md.c
Why: Not reliable by design - can fail when most needed.
Alternatives exist
Who: NeilBrown <neilb@suse.de>
---------------------------
What: au1x00_uart driver
When: January 2006
Why: The 8250 serial driver now has the ability to deal with the differences
between the standard 8250 family of UARTs and their slightly strange
brother on Alchemy SOCs. The loss of features is not considered an
issue.
Who: Ralf Baechle <ralf@linux-mips.org>
...@@ -216,4 +216,4 @@ due to an incompatibility with the Amiga floppy controller. ...@@ -216,4 +216,4 @@ due to an incompatibility with the Amiga floppy controller.
If you are interested in an Amiga Emulator for Linux, look at If you are interested in an Amiga Emulator for Linux, look at
http://www-users.informatik.rwth-aachen.de/~crux/uae.html http://www.freiburg.linux.de/~uae/
RCU-based dcache locking model
==============================
On many workloads, the most common operation on dcache is to look up a
dentry, given a parent dentry and the name of the child. Typically,
for every open(), stat() etc., the dentry corresponding to the
pathname will be looked up by walking the tree starting with the first
component of the pathname and using that dentry along with the next
component to look up the next level and so on. Since it is a frequent
operation for workloads like multiuser environments and web servers,
it is important to optimize this path.
Prior to 2.5.10, dcache_lock was acquired in d_lookup and thus in
every component during path look-up. Since 2.5.10 onwards, fast-walk
algorithm changed this by holding the dcache_lock at the beginning and
walking as many cached path component dentries as possible. This
significantly decreases the number of acquisition of
dcache_lock. However it also increases the lock hold time
significantly and affects performance in large SMP machines. Since
2.5.62 kernel, dcache has been using a new locking model that uses RCU
to make dcache look-up lock-free.
The current dcache locking model is not very different from the
existing dcache locking model. Prior to 2.5.62 kernel, dcache_lock
protected the hash chain, d_child, d_alias, d_lru lists as well as
d_inode and several other things like mount look-up. RCU-based changes
affect only the way the hash chain is protected. For everything else
the dcache_lock must be taken for both traversing as well as
updating. The hash chain updates too take the dcache_lock. The
significant change is the way d_lookup traverses the hash chain, it
doesn't acquire the dcache_lock for this and rely on RCU to ensure
that the dentry has not been *freed*.
Dcache locking details
======================
For many multi-user workloads, open() and stat() on files are very
frequently occurring operations. Both involve walking of path names to
find the dentry corresponding to the concerned file. In 2.4 kernel,
dcache_lock was held during look-up of each path component. Contention
and cache-line bouncing of this global lock caused significant
scalability problems. With the introduction of RCU in Linux kernel,
this was worked around by making the look-up of path components during
path walking lock-free.
Safe lock-free look-up of dcache hash table
===========================================
Dcache is a complex data structure with the hash table entries also
linked together in other lists. In 2.4 kernel, dcache_lock protected
all the lists. We applied RCU only on hash chain walking. The rest of
the lists are still protected by dcache_lock. Some of the important
changes are :
1. The deletion from hash chain is done using hlist_del_rcu() macro
which doesn't initialize next pointer of the deleted dentry and
this allows us to walk safely lock-free while a deletion is
happening.
2. Insertion of a dentry into the hash table is done using
hlist_add_head_rcu() which take care of ordering the writes - the
writes to the dentry must be visible before the dentry is
inserted. This works in conjunction with hlist_for_each_rcu() while
walking the hash chain. The only requirement is that all
initialization to the dentry must be done before
hlist_add_head_rcu() since we don't have dcache_lock protection
while traversing the hash chain. This isn't different from the
existing code.
3. The dentry looked up without holding dcache_lock by cannot be
returned for walking if it is unhashed. It then may have a NULL
d_inode or other bogosity since RCU doesn't protect the other
fields in the dentry. We therefore use a flag DCACHE_UNHASHED to
indicate unhashed dentries and use this in conjunction with a
per-dentry lock (d_lock). Once looked up without the dcache_lock,
we acquire the per-dentry lock (d_lock) and check if the dentry is
unhashed. If so, the look-up is failed. If not, the reference count
of the dentry is increased and the dentry is returned.
4. Once a dentry is looked up, it must be ensured during the path walk
for that component it doesn't go away. In pre-2.5.10 code, this was
done holding a reference to the dentry. dcache_rcu does the same.
In some sense, dcache_rcu path walking looks like the pre-2.5.10
version.
5. All dentry hash chain updates must take the dcache_lock as well as
the per-dentry lock in that order. dput() does this to ensure that
a dentry that has just been looked up in another CPU doesn't get
deleted before dget() can be done on it.
6. There are several ways to do reference counting of RCU protected
objects. One such example is in ipv4 route cache where deferred
freeing (using call_rcu()) is done as soon as the reference count
goes to zero. This cannot be done in the case of dentries because
tearing down of dentries require blocking (dentry_iput()) which
isn't supported from RCU callbacks. Instead, tearing down of
dentries happen synchronously in dput(), but actual freeing happens
later when RCU grace period is over. This allows safe lock-free
walking of the hash chains, but a matched dentry may have been
partially torn down. The checking of DCACHE_UNHASHED flag with
d_lock held detects such dentries and prevents them from being
returned from look-up.
Maintaining POSIX rename semantics
==================================
Since look-up of dentries is lock-free, it can race against a
concurrent rename operation. For example, during rename of file A to
B, look-up of either A or B must succeed. So, if look-up of B happens
after A has been removed from the hash chain but not added to the new
hash chain, it may fail. Also, a comparison while the name is being
written concurrently by a rename may result in false positive matches
violating rename semantics. Issues related to race with rename are
handled as described below :
1. Look-up can be done in two ways - d_lookup() which is safe from
simultaneous renames and __d_lookup() which is not. If
__d_lookup() fails, it must be followed up by a d_lookup() to
correctly determine whether a dentry is in the hash table or
not. d_lookup() protects look-ups using a sequence lock
(rename_lock).
2. The name associated with a dentry (d_name) may be changed if a
rename is allowed to happen simultaneously. To avoid memcmp() in
__d_lookup() go out of bounds due to a rename and false positive
comparison, the name comparison is done while holding the
per-dentry lock. This prevents concurrent renames during this
operation.
3. Hash table walking during look-up may move to a different bucket as
the current dentry is moved to a different bucket due to rename.
But we use hlists in dcache hash table and they are
null-terminated. So, even if a dentry moves to a different bucket,
hash chain walk will terminate. [with a list_head list, it may not
since termination is when the list_head in the original bucket is
reached]. Since we redo the d_parent check and compare name while
holding d_lock, lock-free look-up will not race against d_move().
4. There can be a theoretical race when a dentry keeps coming back to
original bucket due to double moves. Due to this look-up may
consider that it has never moved and can end up in a infinite loop.
But this is not any worse that theoretical livelocks we already
have in the kernel.
Important guidelines for filesystem developers related to dcache_rcu
====================================================================
1. Existing dcache interfaces (pre-2.5.62) exported to filesystem
don't change. Only dcache internal implementation changes. However
filesystems *must not* delete from the dentry hash chains directly
using the list macros like allowed earlier. They must use dcache
APIs like d_drop() or __d_drop() depending on the situation.
2. d_flags is now protected by a per-dentry lock (d_lock). All access
to d_flags must be protected by it.
3. For a hashed dentry, checking of d_count needs to be protected by
d_lock.
Papers and other documentation on dcache locking
================================================
1. Scaling dcache with RCU (http://linuxjournal.com/article.php?sid=7124).
2. http://lse.sourceforge.net/locking/dcache/dcache.html
...@@ -1812,11 +1812,6 @@ it may overflow the messages buffer, but try to get as much of it as ...@@ -1812,11 +1812,6 @@ it may overflow the messages buffer, but try to get as much of it as
you can you can
if you get an Oops, run ksymoops to decode it so that the
names of the offending functions are provided. A non-decoded Oops is
pretty useless
send a copy of your devfsd configuration file(s) send a copy of your devfsd configuration file(s)
send the bug report to me first. send the bug report to me first.
......
...@@ -17,8 +17,6 @@ set using tune2fs(8). Kernel-determined defaults are indicated by (*). ...@@ -17,8 +17,6 @@ set using tune2fs(8). Kernel-determined defaults are indicated by (*).
bsddf (*) Makes `df' act like BSD. bsddf (*) Makes `df' act like BSD.
minixdf Makes `df' act like Minix. minixdf Makes `df' act like Minix.
check Check block and inode bitmaps at mount time
(requires CONFIG_EXT2_CHECK).
check=none, nocheck (*) Don't do extra checking of bitmaps on mount check=none, nocheck (*) Don't do extra checking of bitmaps on mount
(check=normal and check=strict options removed) (check=normal and check=strict options removed)
...@@ -371,9 +369,8 @@ The kernel source file:/usr/src/linux/fs/ext2/ ...@@ -371,9 +369,8 @@ The kernel source file:/usr/src/linux/fs/ext2/
e2fsprogs (e2fsck) http://e2fsprogs.sourceforge.net/ e2fsprogs (e2fsck) http://e2fsprogs.sourceforge.net/
Design & Implementation http://e2fsprogs.sourceforge.net/ext2intro.html Design & Implementation http://e2fsprogs.sourceforge.net/ext2intro.html
Journaling (ext3) ftp://ftp.uk.linux.org/pub/linux/sct/fs/jfs/ Journaling (ext3) ftp://ftp.uk.linux.org/pub/linux/sct/fs/jfs/
Hashed Directories http://kernelnewbies.org/~phillips/htree/
Filesystem Resizing http://ext2resize.sourceforge.net/ Filesystem Resizing http://ext2resize.sourceforge.net/
Compression (*) http://www.netspace.net.au/~reiter/e2compr/ Compression (*) http://e2compr.sourceforge.net/
Implementations for: Implementations for:
Windows 95/98/NT/2000 http://uranus.it.swin.edu.au/~jn/linux/Explore2fs.htm Windows 95/98/NT/2000 http://uranus.it.swin.edu.au/~jn/linux/Explore2fs.htm
......
...@@ -50,9 +50,14 @@ userspace utilities, etc. ...@@ -50,9 +50,14 @@ userspace utilities, etc.
Features Features
======== ========
- This is a complete rewrite of the NTFS driver that used to be in the kernel. - This is a complete rewrite of the NTFS driver that used to be in the 2.4 and
This new driver implements NTFS read support and is functionally equivalent earlier kernels. This new driver implements NTFS read support and is
to the old ntfs driver. functionally equivalent to the old ntfs driver and it also implements limited
write support. The biggest limitation at present is that files/directories
cannot be created or deleted. See below for the list of write features that
are so far supported. Another limitation is that writing to compressed files
is not implemented at all. Also, neither read nor write access to encrypted
files is so far implemented.
- The new driver has full support for sparse files on NTFS 3.x volumes which - The new driver has full support for sparse files on NTFS 3.x volumes which
the old driver isn't happy with. the old driver isn't happy with.
- The new driver supports execution of binaries due to mmap() now being - The new driver supports execution of binaries due to mmap() now being
...@@ -78,7 +83,20 @@ Features ...@@ -78,7 +83,20 @@ Features
- The new driver supports fsync(2), fdatasync(2), and msync(2). - The new driver supports fsync(2), fdatasync(2), and msync(2).
- The new driver supports readv(2) and writev(2). - The new driver supports readv(2) and writev(2).
- The new driver supports access time updates (including mtime and ctime). - The new driver supports access time updates (including mtime and ctime).
- The new driver supports truncate(2) and open(2) with O_TRUNC. But at present
only very limited support for highly fragmented files, i.e. ones which have
their data attribute split across multiple extents, is included. Another
limitation is that at present truncate(2) will never create sparse files,
since to mark a file sparse we need to modify the directory entry for the
file and we do not implement directory modifications yet.
- The new driver supports write(2) which can both overwrite existing data and
extend the file size so that you can write beyond the existing data. Also,
writing into sparse regions is supported and the holes are filled in with
clusters. But at present only limited support for highly fragmented files,
i.e. ones which have their data attribute split across multiple extents, is
included. Another limitation is that write(2) will never create sparse
files, since to mark a file sparse we need to modify the directory entry for
the file and we do not implement directory modifications yet.
Supported mount options Supported mount options
======================= =======================
...@@ -439,6 +457,22 @@ ChangeLog ...@@ -439,6 +457,22 @@ ChangeLog
Note, a technical ChangeLog aimed at kernel hackers is in fs/ntfs/ChangeLog. Note, a technical ChangeLog aimed at kernel hackers is in fs/ntfs/ChangeLog.
2.1.25:
- Write support is now extended with write(2) being able to both
overwrite existing file data and to extend files. Also, if a write
to a sparse region occurs, write(2) will fill in the hole. Note,
mmap(2) based writes still do not support writing into holes or
writing beyond the initialized size.
- Write support has a new feature and that is that truncate(2) and
open(2) with O_TRUNC are now implemented thus files can be both made
smaller and larger.
- Note: Both write(2) and truncate(2)/open(2) with O_TRUNC still have
limitations in that they
- only provide limited support for highly fragmented files.
- only work on regular, i.e. uncompressed and unencrypted files.
- never create sparse files although this will change once directory
operations are implemented.
- Lots of bug fixes and enhancements across the board.
2.1.24: 2.1.24:
- Support journals ($LogFile) which have been modified by chkdsk. This - Support journals ($LogFile) which have been modified by chkdsk. This
means users can boot into Windows after we marked the volume dirty. means users can boot into Windows after we marked the volume dirty.
......
ramfs, rootfs and initramfs
October 17, 2005
Rob Landley <rob@landley.net>
=============================
What is ramfs?
--------------
Ramfs is a very simple filesystem that exports Linux's disk caching
mechanisms (the page cache and dentry cache) as a dynamically resizable
ram-based filesystem.
Normally all files are cached in memory by Linux. Pages of data read from
backing store (usually the block device the filesystem is mounted on) are kept
around in case it's needed again, but marked as clean (freeable) in case the
Virtual Memory system needs the memory for something else. Similarly, data
written to files is marked clean as soon as it has been written to backing
store, but kept around for caching purposes until the VM reallocates the
memory. A similar mechanism (the dentry cache) greatly speeds up access to
directories.
With ramfs, there is no backing store. Files written into ramfs allocate
dentries and page cache as usual, but there's nowhere to write them to.
This means the pages are never marked clean, so they can't be freed by the
VM when it's looking to recycle memory.
The amount of code required to implement ramfs is tiny, because all the
work is done by the existing Linux caching infrastructure. Basically,
you're mounting the disk cache as a filesystem. Because of this, ramfs is not
an optional component removable via menuconfig, since there would be negligible
space savings.
ramfs and ramdisk:
------------------
The older "ram disk" mechanism created a synthetic block device out of
an area of ram and used it as backing store for a filesystem. This block
device was of fixed size, so the filesystem mounted on it was of fixed
size. Using a ram disk also required unnecessarily copying memory from the
fake block device into the page cache (and copying changes back out), as well
as creating and destroying dentries. Plus it needed a filesystem driver
(such as ext2) to format and interpret this data.
Compared to ramfs, this wastes memory (and memory bus bandwidth), creates
unnecessary work for the CPU, and pollutes the CPU caches. (There are tricks
to avoid this copying by playing with the page tables, but they're unpleasantly
complicated and turn out to be about as expensive as the copying anyway.)
More to the point, all the work ramfs is doing has to happen _anyway_,
since all file access goes through the page and dentry caches. The ram
disk is simply unnecessary, ramfs is internally much simpler.
Another reason ramdisks are semi-obsolete is that the introduction of
loopback devices offered a more flexible and convenient way to create
synthetic block devices, now from files instead of from chunks of memory.
See losetup (8) for details.
ramfs and tmpfs:
----------------
One downside of ramfs is you can keep writing data into it until you fill
up all memory, and the VM can't free it because the VM thinks that files
should get written to backing store (rather than swap space), but ramfs hasn't
got any backing store. Because of this, only root (or a trusted user) should
be allowed write access to a ramfs mount.
A ramfs derivative called tmpfs was created to add size limits, and the ability
to write the data to swap space. Normal users can be allowed write access to
tmpfs mounts. See Documentation/filesystems/tmpfs.txt for more information.
What is rootfs?
---------------
Rootfs is a special instance of ramfs, which is always present in 2.6 systems.
(It's used internally as the starting and stopping point for searches of the
kernel's doubly-linked list of mount points.)
Most systems just mount another filesystem over it and ignore it. The
amount of space an empty instance of ramfs takes up is tiny.
What is initramfs?
------------------
All 2.6 Linux kernels contain a gzipped "cpio" format archive, which is
extracted into rootfs when the kernel boots up. After extracting, the kernel
checks to see if rootfs contains a file "init", and if so it executes it as PID
1. If found, this init process is responsible for bringing the system the
rest of the way up, including locating and mounting the real root device (if
any). If rootfs does not contain an init program after the embedded cpio
archive is extracted into it, the kernel will fall through to the older code
to locate and mount a root partition, then exec some variant of /sbin/init
out of that.
All this differs from the old initrd in several ways:
- The old initrd was a separate file, while the initramfs archive is linked
into the linux kernel image. (The directory linux-*/usr is devoted to
generating this archive during the build.)
- The old initrd file was a gzipped filesystem image (in some file format,
such as ext2, that had to be built into the kernel), while the new
initramfs archive is a gzipped cpio archive (like tar only simpler,
see cpio(1) and Documentation/early-userspace/buffer-format.txt).
- The program run by the old initrd (which was called /initrd, not /init) did
some setup and then returned to the kernel, while the init program from
initramfs is not expected to return to the kernel. (If /init needs to hand
off control it can overmount / with a new root device and exec another init
program. See the switch_root utility, below.)
- When switching another root device, initrd would pivot_root and then
umount the ramdisk. But initramfs is rootfs: you can neither pivot_root
rootfs, nor unmount it. Instead delete everything out of rootfs to
free up the space (find -xdev / -exec rm '{}' ';'), overmount rootfs
with the new root (cd /newmount; mount --move . /; chroot .), attach
stdin/stdout/stderr to the new /dev/console, and exec the new init.
Since this is a remarkably persnickity process (and involves deleting
commands before you can run them), the klibc package introduced a helper
program (utils/run_init.c) to do all this for you. Most other packages
(such as busybox) have named this command "switch_root".
Populating initramfs:
---------------------
The 2.6 kernel build process always creates a gzipped cpio format initramfs
archive and links it into the resulting kernel binary. By default, this
archive is empty (consuming 134 bytes on x86). The config option
CONFIG_INITRAMFS_SOURCE (for some reason buried under devices->block devices
in menuconfig, and living in usr/Kconfig) can be used to specify a source for
the initramfs archive, which will automatically be incorporated into the
resulting binary. This option can point to an existing gzipped cpio archive, a
directory containing files to be archived, or a text file specification such
as the following example:
dir /dev 755 0 0
nod /dev/console 644 0 0 c 5 1
nod /dev/loop0 644 0 0 b 7 0
dir /bin 755 1000 1000
slink /bin/sh busybox 777 0 0
file /bin/busybox initramfs/busybox 755 0 0
dir /proc 755 0 0
dir /sys 755 0 0
dir /mnt 755 0 0
file /init initramfs/init.sh 755 0 0
One advantage of the text file is that root access is not required to
set permissions or create device nodes in the new archive. (Note that those
two example "file" entries expect to find files named "init.sh" and "busybox" in
a directory called "initramfs", under the linux-2.6.* directory. See
Documentation/early-userspace/README for more details.)
If you don't already understand what shared libraries, devices, and paths
you need to get a minimal root filesystem up and running, here are some
references:
http://www.tldp.org/HOWTO/Bootdisk-HOWTO/
http://www.tldp.org/HOWTO/From-PowerUp-To-Bash-Prompt-HOWTO.html
http://www.linuxfromscratch.org/lfs/view/stable/
The "klibc" package (http://www.kernel.org/pub/linux/libs/klibc) is
designed to be a tiny C library to statically link early userspace
code against, along with some related utilities. It is BSD licensed.
I use uClibc (http://www.uclibc.org) and busybox (http://www.busybox.net)
myself. These are LGPL and GPL, respectively.
In theory you could use glibc, but that's not well suited for small embedded
uses like this. (A "hello world" program statically linked against glibc is
over 400k. With uClibc it's 7k. Also note that glibc dlopens libnss to do
name lookups, even when otherwise statically linked.)
Future directions:
------------------
Today (2.6.14), initramfs is always compiled in, but not always used. The
kernel falls back to legacy boot code that is reached only if initramfs does
not contain an /init program. The fallback is legacy code, there to ensure a
smooth transition and allowing early boot functionality to gradually move to
"early userspace" (I.E. initramfs).
The move to early userspace is necessary because finding and mounting the real
root device is complex. Root partitions can span multiple devices (raid or
separate journal). They can be out on the network (requiring dhcp, setting a
specific mac address, logging into a server, etc). They can live on removable
media, with dynamically allocated major/minor numbers and persistent naming
issues requiring a full udev implementation to sort out. They can be
compressed, encrypted, copy-on-write, loopback mounted, strangely partitioned,
and so on.
This kind of complexity (which inevitably includes policy) is rightly handled
in userspace. Both klibc and busybox/uClibc are working on simple initramfs
packages to drop into a kernel build, and when standard solutions are ready
and widely deployed, the kernel's legacy early boot code will become obsolete
and a candidate for the feature removal schedule.
But that's a while off yet.
此差异已折叠。
此差异已折叠。
...@@ -13,6 +13,7 @@ ...@@ -13,6 +13,7 @@
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/init.h> #include <linux/init.h>
#include <linux/device.h> #include <linux/device.h>
#include <linux/string.h>
#include "linux/firmware.h" #include "linux/firmware.h"
......
...@@ -14,6 +14,8 @@ ...@@ -14,6 +14,8 @@
#include <linux/module.h> #include <linux/module.h>
#include <linux/init.h> #include <linux/init.h>
#include <linux/timer.h> #include <linux/timer.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/firmware.h> #include <linux/firmware.h>
......
...@@ -4,7 +4,7 @@ FAQ list: ...@@ -4,7 +4,7 @@ FAQ list:
========= =========
A FAQ list may be found in the fdutils package (see below), and also A FAQ list may be found in the fdutils package (see below), and also
at http://fdutils.linux.lu/FAQ.html at <http://fdutils.linux.lu/faq.html>.
LILO configuration options (Thinkpad users, read this) LILO configuration options (Thinkpad users, read this)
...@@ -217,10 +217,10 @@ It also contains additional documentation about the floppy driver. ...@@ -217,10 +217,10 @@ It also contains additional documentation about the floppy driver.
The latest version can be found at fdutils homepage: The latest version can be found at fdutils homepage:
http://fdutils.linux.lu http://fdutils.linux.lu
The fdutils-5.4 release can be found at: The fdutils releases can be found at:
http://fdutils.linux.lu/fdutils-5.4.src.tar.gz http://fdutils.linux.lu/download.html
http://www.tux.org/pub/knaff/fdutils/fdutils-5.4.src.tar.gz http://www.tux.org/pub/knaff/fdutils/
ftp://metalab.unc.edu/pub/Linux/utils/disk-management/fdutils-5.4.src.tar.gz ftp://metalab.unc.edu/pub/Linux/utils/disk-management/
Reporting problems about the floppy driver Reporting problems about the floppy driver
========================================== ==========================================
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册