提交 330a1eb7 编写于 作者: M Michael Ellerman 提交者: Benjamin Herrenschmidt

powerpc/perf: Core EBB support for 64-bit book3s

Add support for EBB (Event Based Branches) on 64-bit book3s. See the
included documentation for more details.

EBBs are a feature which allows the hardware to branch directly to a
specified user space address when a PMU event overflows. This can be
used by programs for self-monitoring with no kernel involvement in the
inner loop.

Most of the logic is in the generic book3s code, primarily to avoid a
proliferation of PMU callbacks.
Signed-off-by: NMichael Ellerman <michael@ellerman.id.au>
Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
上级 2ac138ca
...@@ -14,6 +14,8 @@ hvcs.txt ...@@ -14,6 +14,8 @@ hvcs.txt
- IBM "Hypervisor Virtual Console Server" Installation Guide - IBM "Hypervisor Virtual Console Server" Installation Guide
mpc52xx.txt mpc52xx.txt
- Linux 2.6.x on MPC52xx family - Linux 2.6.x on MPC52xx family
pmu-ebb.txt
- Description of the API for using the PMU with Event Based Branches.
qe_firmware.txt qe_firmware.txt
- describes the layout of firmware binaries for the Freescale QUICC - describes the layout of firmware binaries for the Freescale QUICC
Engine and the code that parses and uploads the microcode therein. Engine and the code that parses and uploads the microcode therein.
PMU Event Based Branches
========================
Event Based Branches (EBBs) are a feature which allows the hardware to
branch directly to a specified user space address when certain events occur.
The full specification is available in Power ISA v2.07:
https://www.power.org/documentation/power-isa-version-2-07/
One type of event for which EBBs can be configured is PMU exceptions. This
document describes the API for configuring the Power PMU to generate EBBs,
using the Linux perf_events API.
Terminology
-----------
Throughout this document we will refer to an "EBB event" or "EBB events". This
just refers to a struct perf_event which has set the "EBB" flag in its
attr.config. All events which can be configured on the hardware PMU are
possible "EBB events".
Background
----------
When a PMU EBB occurs it is delivered to the currently running process. As such
EBBs can only sensibly be used by programs for self-monitoring.
It is a feature of the perf_events API that events can be created on other
processes, subject to standard permission checks. This is also true of EBB
events, however unless the target process enables EBBs (via mtspr(BESCR)) no
EBBs will ever be delivered.
This makes it possible for a process to enable EBBs for itself, but not
actually configure any events. At a later time another process can come along
and attach an EBB event to the process, which will then cause EBBs to be
delivered to the first process. It's not clear if this is actually useful.
When the PMU is configured for EBBs, all PMU interrupts are delivered to the
user process. This means once an EBB event is scheduled on the PMU, no non-EBB
events can be configured. This means that EBB events can not be run
concurrently with regular 'perf' commands, or any other perf events.
It is however safe to run 'perf' commands on a process which is using EBBs. The
kernel will in general schedule the EBB event, and perf will be notified that
its events could not run.
The exclusion between EBB events and regular events is implemented using the
existing "pinned" and "exclusive" attributes of perf_events. This means EBB
events will be given priority over other events, unless they are also pinned.
If an EBB event and a regular event are both pinned, then whichever is enabled
first will be scheduled and the other will be put in error state. See the
section below titled "Enabling an EBB event" for more information.
Creating an EBB event
---------------------
To request that an event is counted using EBB, the event code should have bit
63 set.
EBB events must be created with a particular, and restrictive, set of
attributes - this is so that they interoperate correctly with the rest of the
perf_events subsystem.
An EBB event must be created with the "pinned" and "exclusive" attributes set.
Note that if you are creating a group of EBB events, only the leader can have
these attributes set.
An EBB event must NOT set any of the "inherit", "sample_period", "freq" or
"enable_on_exec" attributes.
An EBB event must be attached to a task. This is specified to perf_event_open()
by passing a pid value, typically 0 indicating the current task.
All events in a group must agree on whether they want EBB. That is all events
must request EBB, or none may request EBB.
EBB events must specify the PMC they are to be counted on. This ensures
userspace is able to reliably determine which PMC the event is scheduled on.
Enabling an EBB event
---------------------
Once an EBB event has been successfully opened, it must be enabled with the
perf_events API. This can be achieved either via the ioctl() interface, or the
prctl() interface.
However, due to the design of the perf_events API, enabling an event does not
guarantee that it has been scheduled on the PMU. To ensure that the EBB event
has been scheduled on the PMU, you must perform a read() on the event. If the
read() returns EOF, then the event has not been scheduled and EBBs are not
enabled.
This behaviour occurs because the EBB event is pinned and exclusive. When the
EBB event is enabled it will force all other non-pinned events off the PMU. In
this case the enable will be successful. However if there is already an event
pinned on the PMU then the enable will not be successful.
Reading an EBB event
--------------------
It is possible to read() from an EBB event. However the results are
meaningless. Because interrupts are being delivered to the user process the
kernel is not able to count the event, and so will return a junk value.
Closing an EBB event
--------------------
When an EBB event is finished with, you can close it using close() as for any
regular event. If this is the last EBB event the PMU will be deconfigured and
no further PMU EBBs will be delivered.
EBB Handler
-----------
The EBB handler is just regular userspace code, however it must be written in
the style of an interrupt handler. When the handler is entered all registers
are live (possibly) and so must be saved somehow before the handler can invoke
other code.
It's up to the program how to handle this. For C programs a relatively simple
option is to create an interrupt frame on the stack and save registers there.
Fork
----
EBB events are not inherited across fork. If the child process wishes to use
EBBs it should open a new event for itself. Similarly the EBB state in
BESCR/EBBHR/EBBRR is cleared across fork().
...@@ -60,6 +60,7 @@ struct power_pmu { ...@@ -60,6 +60,7 @@ struct power_pmu {
#define PPMU_HAS_SSLOT 0x00000020 /* Has sampled slot in MMCRA */ #define PPMU_HAS_SSLOT 0x00000020 /* Has sampled slot in MMCRA */
#define PPMU_HAS_SIER 0x00000040 /* Has SIER */ #define PPMU_HAS_SIER 0x00000040 /* Has SIER */
#define PPMU_BHRB 0x00000080 /* has BHRB feature enabled */ #define PPMU_BHRB 0x00000080 /* has BHRB feature enabled */
#define PPMU_EBB 0x00000100 /* supports event based branch */
/* /*
* Values for flags to get_alternatives() * Values for flags to get_alternatives()
...@@ -68,6 +69,11 @@ struct power_pmu { ...@@ -68,6 +69,11 @@ struct power_pmu {
#define PPMU_LIMITED_PMC_REQD 2 /* have to put this on a limited PMC */ #define PPMU_LIMITED_PMC_REQD 2 /* have to put this on a limited PMC */
#define PPMU_ONLY_COUNT_RUN 4 /* only counting in run state */ #define PPMU_ONLY_COUNT_RUN 4 /* only counting in run state */
/*
* We use the event config bit 63 as a flag to request EBB.
*/
#define EVENT_CONFIG_EBB_SHIFT 63
extern int register_power_pmu(struct power_pmu *); extern int register_power_pmu(struct power_pmu *);
struct pt_regs; struct pt_regs;
......
...@@ -287,8 +287,9 @@ struct thread_struct { ...@@ -287,8 +287,9 @@ struct thread_struct {
unsigned long siar; unsigned long siar;
unsigned long sdar; unsigned long sdar;
unsigned long sier; unsigned long sier;
unsigned long mmcr0;
unsigned long mmcr2; unsigned long mmcr2;
unsigned mmcr0;
unsigned used_ebb;
#endif #endif
}; };
......
...@@ -621,6 +621,9 @@ ...@@ -621,6 +621,9 @@
#define MMCR0_PMXE 0x04000000UL /* performance monitor exception enable */ #define MMCR0_PMXE 0x04000000UL /* performance monitor exception enable */
#define MMCR0_FCECE 0x02000000UL /* freeze ctrs on enabled cond or event */ #define MMCR0_FCECE 0x02000000UL /* freeze ctrs on enabled cond or event */
#define MMCR0_TBEE 0x00400000UL /* time base exception enable */ #define MMCR0_TBEE 0x00400000UL /* time base exception enable */
#define MMCR0_EBE 0x00100000UL /* Event based branch enable */
#define MMCR0_PMCC 0x000c0000UL /* PMC control */
#define MMCR0_PMCC_U6 0x00080000UL /* PMC1-6 are R/W by user (PR) */
#define MMCR0_PMC1CE 0x00008000UL /* PMC1 count enable*/ #define MMCR0_PMC1CE 0x00008000UL /* PMC1 count enable*/
#define MMCR0_PMCjCE 0x00004000UL /* PMCj count enable*/ #define MMCR0_PMCjCE 0x00004000UL /* PMCj count enable*/
#define MMCR0_TRIGGER 0x00002000UL /* TRIGGER enable */ #define MMCR0_TRIGGER 0x00002000UL /* TRIGGER enable */
...@@ -674,6 +677,11 @@ ...@@ -674,6 +677,11 @@
#define SIER_SIAR_VALID 0x0400000 /* SIAR contents valid */ #define SIER_SIAR_VALID 0x0400000 /* SIAR contents valid */
#define SIER_SDAR_VALID 0x0200000 /* SDAR contents valid */ #define SIER_SDAR_VALID 0x0200000 /* SDAR contents valid */
/* When EBB is enabled, some of MMCR0/MMCR2/SIER are user accessible */
#define MMCR0_USER_MASK (MMCR0_FC | MMCR0_PMXE | MMCR0_PMAO)
#define MMCR2_USER_MASK 0x4020100804020000UL /* (FC1P|FC2P|FC3P|FC4P|FC5P|FC6P) */
#define SIER_USER_MASK 0x7fffffUL
#define SPRN_PA6T_MMCR0 795 #define SPRN_PA6T_MMCR0 795
#define PA6T_MMCR0_EN0 0x0000000000000001UL #define PA6T_MMCR0_EN0 0x0000000000000001UL
#define PA6T_MMCR0_EN1 0x0000000000000002UL #define PA6T_MMCR0_EN1 0x0000000000000002UL
......
...@@ -67,4 +67,18 @@ static inline void flush_spe_to_thread(struct task_struct *t) ...@@ -67,4 +67,18 @@ static inline void flush_spe_to_thread(struct task_struct *t)
} }
#endif #endif
static inline void clear_task_ebb(struct task_struct *t)
{
#ifdef CONFIG_PPC_BOOK3S_64
/* EBB perf events are not inherited, so clear all EBB state. */
t->thread.bescr = 0;
t->thread.mmcr2 = 0;
t->thread.mmcr0 = 0;
t->thread.siar = 0;
t->thread.sdar = 0;
t->thread.sier = 0;
t->thread.used_ebb = 0;
#endif
}
#endif /* _ASM_POWERPC_SWITCH_TO_H */ #endif /* _ASM_POWERPC_SWITCH_TO_H */
...@@ -916,7 +916,11 @@ int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) ...@@ -916,7 +916,11 @@ int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
flush_altivec_to_thread(src); flush_altivec_to_thread(src);
flush_vsx_to_thread(src); flush_vsx_to_thread(src);
flush_spe_to_thread(src); flush_spe_to_thread(src);
*dst = *src; *dst = *src;
clear_task_ebb(dst);
return 0; return 0;
} }
......
...@@ -77,6 +77,9 @@ static unsigned int freeze_events_kernel = MMCR0_FCS; ...@@ -77,6 +77,9 @@ static unsigned int freeze_events_kernel = MMCR0_FCS;
#define MMCR0_PMCjCE MMCR0_PMCnCE #define MMCR0_PMCjCE MMCR0_PMCnCE
#define MMCR0_FC56 0 #define MMCR0_FC56 0
#define MMCR0_PMAO 0 #define MMCR0_PMAO 0
#define MMCR0_EBE 0
#define MMCR0_PMCC 0
#define MMCR0_PMCC_U6 0
#define SPRN_MMCRA SPRN_MMCR2 #define SPRN_MMCRA SPRN_MMCR2
#define MMCRA_SAMPLE_ENABLE 0 #define MMCRA_SAMPLE_ENABLE 0
...@@ -104,6 +107,15 @@ static inline int siar_valid(struct pt_regs *regs) ...@@ -104,6 +107,15 @@ static inline int siar_valid(struct pt_regs *regs)
return 1; return 1;
} }
static bool is_ebb_event(struct perf_event *event) { return false; }
static int ebb_event_check(struct perf_event *event) { return 0; }
static void ebb_event_add(struct perf_event *event) { }
static void ebb_switch_out(unsigned long mmcr0) { }
static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
{
return mmcr0;
}
static inline void power_pmu_bhrb_enable(struct perf_event *event) {} static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
static inline void power_pmu_bhrb_disable(struct perf_event *event) {} static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
void power_pmu_flush_branch_stack(void) {} void power_pmu_flush_branch_stack(void) {}
...@@ -464,6 +476,89 @@ void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) ...@@ -464,6 +476,89 @@ void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
return; return;
} }
static bool is_ebb_event(struct perf_event *event)
{
/*
* This could be a per-PMU callback, but we'd rather avoid the cost. We
* check that the PMU supports EBB, meaning those that don't can still
* use bit 63 of the event code for something else if they wish.
*/
return (ppmu->flags & PPMU_EBB) &&
((event->attr.config >> EVENT_CONFIG_EBB_SHIFT) & 1);
}
static int ebb_event_check(struct perf_event *event)
{
struct perf_event *leader = event->group_leader;
/* Event and group leader must agree on EBB */
if (is_ebb_event(leader) != is_ebb_event(event))
return -EINVAL;
if (is_ebb_event(event)) {
if (!(event->attach_state & PERF_ATTACH_TASK))
return -EINVAL;
if (!leader->attr.pinned || !leader->attr.exclusive)
return -EINVAL;
if (event->attr.inherit || event->attr.sample_period ||
event->attr.enable_on_exec || event->attr.freq)
return -EINVAL;
}
return 0;
}
static void ebb_event_add(struct perf_event *event)
{
if (!is_ebb_event(event) || current->thread.used_ebb)
return;
/*
* IFF this is the first time we've added an EBB event, set
* PMXE in the user MMCR0 so we can detect when it's cleared by
* userspace. We need this so that we can context switch while
* userspace is in the EBB handler (where PMXE is 0).
*/
current->thread.used_ebb = 1;
current->thread.mmcr0 |= MMCR0_PMXE;
}
static void ebb_switch_out(unsigned long mmcr0)
{
if (!(mmcr0 & MMCR0_EBE))
return;
current->thread.siar = mfspr(SPRN_SIAR);
current->thread.sier = mfspr(SPRN_SIER);
current->thread.sdar = mfspr(SPRN_SDAR);
current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
}
static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
{
if (!ebb)
goto out;
/* Enable EBB and read/write to all 6 PMCs for userspace */
mmcr0 |= MMCR0_EBE | MMCR0_PMCC_U6;
/* Add any bits from the user reg, FC or PMAO */
mmcr0 |= current->thread.mmcr0;
/* Be careful not to set PMXE if userspace had it cleared */
if (!(current->thread.mmcr0 & MMCR0_PMXE))
mmcr0 &= ~MMCR0_PMXE;
mtspr(SPRN_SIAR, current->thread.siar);
mtspr(SPRN_SIER, current->thread.sier);
mtspr(SPRN_SDAR, current->thread.sdar);
mtspr(SPRN_MMCR2, current->thread.mmcr2);
out:
return mmcr0;
}
#endif /* CONFIG_PPC64 */ #endif /* CONFIG_PPC64 */
static void perf_event_interrupt(struct pt_regs *regs); static void perf_event_interrupt(struct pt_regs *regs);
...@@ -734,6 +829,13 @@ static void power_pmu_read(struct perf_event *event) ...@@ -734,6 +829,13 @@ static void power_pmu_read(struct perf_event *event)
if (!event->hw.idx) if (!event->hw.idx)
return; return;
if (is_ebb_event(event)) {
val = read_pmc(event->hw.idx);
local64_set(&event->hw.prev_count, val);
return;
}
/* /*
* Performance monitor interrupts come even when interrupts * Performance monitor interrupts come even when interrupts
* are soft-disabled, as long as interrupts are hard-enabled. * are soft-disabled, as long as interrupts are hard-enabled.
...@@ -854,7 +956,7 @@ static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) ...@@ -854,7 +956,7 @@ static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
static void power_pmu_disable(struct pmu *pmu) static void power_pmu_disable(struct pmu *pmu)
{ {
struct cpu_hw_events *cpuhw; struct cpu_hw_events *cpuhw;
unsigned long flags, val; unsigned long flags, mmcr0, val;
if (!ppmu) if (!ppmu)
return; return;
...@@ -871,11 +973,11 @@ static void power_pmu_disable(struct pmu *pmu) ...@@ -871,11 +973,11 @@ static void power_pmu_disable(struct pmu *pmu)
} }
/* /*
* Set the 'freeze counters' bit, clear PMAO/FC56. * Set the 'freeze counters' bit, clear EBE/PMCC/PMAO/FC56.
*/ */
val = mfspr(SPRN_MMCR0); val = mmcr0 = mfspr(SPRN_MMCR0);
val |= MMCR0_FC; val |= MMCR0_FC;
val &= ~(MMCR0_PMAO | MMCR0_FC56); val &= ~(MMCR0_EBE | MMCR0_PMCC | MMCR0_PMAO | MMCR0_FC56);
/* /*
* The barrier is to make sure the mtspr has been * The barrier is to make sure the mtspr has been
...@@ -896,7 +998,10 @@ static void power_pmu_disable(struct pmu *pmu) ...@@ -896,7 +998,10 @@ static void power_pmu_disable(struct pmu *pmu)
cpuhw->disabled = 1; cpuhw->disabled = 1;
cpuhw->n_added = 0; cpuhw->n_added = 0;
ebb_switch_out(mmcr0);
} }
local_irq_restore(flags); local_irq_restore(flags);
} }
...@@ -911,15 +1016,15 @@ static void power_pmu_enable(struct pmu *pmu) ...@@ -911,15 +1016,15 @@ static void power_pmu_enable(struct pmu *pmu)
struct cpu_hw_events *cpuhw; struct cpu_hw_events *cpuhw;
unsigned long flags; unsigned long flags;
long i; long i;
unsigned long val; unsigned long val, mmcr0;
s64 left; s64 left;
unsigned int hwc_index[MAX_HWEVENTS]; unsigned int hwc_index[MAX_HWEVENTS];
int n_lim; int n_lim;
int idx; int idx;
bool ebb;
if (!ppmu) if (!ppmu)
return; return;
local_irq_save(flags); local_irq_save(flags);
cpuhw = &__get_cpu_var(cpu_hw_events); cpuhw = &__get_cpu_var(cpu_hw_events);
...@@ -933,6 +1038,13 @@ static void power_pmu_enable(struct pmu *pmu) ...@@ -933,6 +1038,13 @@ static void power_pmu_enable(struct pmu *pmu)
cpuhw->disabled = 0; cpuhw->disabled = 0;
/*
* EBB requires an exclusive group and all events must have the EBB
* flag set, or not set, so we can just check a single event. Also we
* know we have at least one event.
*/
ebb = is_ebb_event(cpuhw->event[0]);
/* /*
* If we didn't change anything, or only removed events, * If we didn't change anything, or only removed events,
* no need to recalculate MMCR* settings and reset the PMCs. * no need to recalculate MMCR* settings and reset the PMCs.
...@@ -1008,25 +1120,34 @@ static void power_pmu_enable(struct pmu *pmu) ...@@ -1008,25 +1120,34 @@ static void power_pmu_enable(struct pmu *pmu)
++n_lim; ++n_lim;
continue; continue;
} }
val = 0;
if (event->hw.sample_period) { if (ebb)
left = local64_read(&event->hw.period_left); val = local64_read(&event->hw.prev_count);
if (left < 0x80000000L) else {
val = 0x80000000L - left; val = 0;
if (event->hw.sample_period) {
left = local64_read(&event->hw.period_left);
if (left < 0x80000000L)
val = 0x80000000L - left;
}
local64_set(&event->hw.prev_count, val);
} }
local64_set(&event->hw.prev_count, val);
event->hw.idx = idx; event->hw.idx = idx;
if (event->hw.state & PERF_HES_STOPPED) if (event->hw.state & PERF_HES_STOPPED)
val = 0; val = 0;
write_pmc(idx, val); write_pmc(idx, val);
perf_event_update_userpage(event); perf_event_update_userpage(event);
} }
cpuhw->n_limited = n_lim; cpuhw->n_limited = n_lim;
cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
out_enable: out_enable:
mmcr0 = ebb_switch_in(ebb, cpuhw->mmcr[0]);
mb(); mb();
write_mmcr0(cpuhw, cpuhw->mmcr[0]); write_mmcr0(cpuhw, mmcr0);
/* /*
* Enable instruction sampling if necessary * Enable instruction sampling if necessary
...@@ -1124,6 +1245,8 @@ static int power_pmu_add(struct perf_event *event, int ef_flags) ...@@ -1124,6 +1245,8 @@ static int power_pmu_add(struct perf_event *event, int ef_flags)
event->hw.config = cpuhw->events[n0]; event->hw.config = cpuhw->events[n0];
nocheck: nocheck:
ebb_event_add(event);
++cpuhw->n_events; ++cpuhw->n_events;
++cpuhw->n_added; ++cpuhw->n_added;
...@@ -1484,6 +1607,11 @@ static int power_pmu_event_init(struct perf_event *event) ...@@ -1484,6 +1607,11 @@ static int power_pmu_event_init(struct perf_event *event)
} }
} }
/* Extra checks for EBB */
err = ebb_event_check(event);
if (err)
return err;
/* /*
* If this is in a group, check if it can go on with all the * If this is in a group, check if it can go on with all the
* other hardware events in the group. We assume the event * other hardware events in the group. We assume the event
...@@ -1522,6 +1650,13 @@ static int power_pmu_event_init(struct perf_event *event) ...@@ -1522,6 +1650,13 @@ static int power_pmu_event_init(struct perf_event *event)
event->hw.last_period = event->hw.sample_period; event->hw.last_period = event->hw.sample_period;
local64_set(&event->hw.period_left, event->hw.last_period); local64_set(&event->hw.period_left, event->hw.last_period);
/*
* For EBB events we just context switch the PMC value, we don't do any
* of the sample_period logic. We use hw.prev_count for this.
*/
if (is_ebb_event(event))
local64_set(&event->hw.prev_count, 0);
/* /*
* See if we need to reserve the PMU. * See if we need to reserve the PMU.
* If no events are currently in use, then we have to take a * If no events are currently in use, then we have to take a
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册