提交 32faa34d 编写于 作者: D Dave Airlie

drm/Merge branch 'drm-ttm-glisse' of ../drm-radeon-next into drm-core-next

Merge topic branch containing Jerome's TTM changes, contains one change from
Konrad to swiotlb export.

* 'drm-ttm-glisse' of ../drm-radeon-next:
  drm/ttm: callback move_notify any time bo placement change v4
  drm/ttm: simplify memory accounting for ttm user v2
  drm/ttm: isolate dma data from ttm_tt V4
  drm/nouveau: enable the ttm dma pool when swiotlb is active V3
  drm/radeon/kms: enable the ttm dma pool if swiotlb is on V4
  drm/ttm: provide dma aware ttm page pool code V9
  drm/ttm: introduce callback for ttm_tt populate & unpopulate V4
  drm/ttm: merge ttm_backend and ttm_tt V5
  drm/ttm: page allocation use page array instead of list
  drm/ttm: test for dma_address array allocation failure
  drm/ttm: use ttm put pages function to properly restore cache attribute
  drm/ttm: remove unused backend flags field
  drm/ttm: remove split btw highmen and lowmem page
  drm/ttm: remove userspace backed ttm object support
  swiotlb: Expose swiotlb_nr_tlb function to modules
......@@ -28,6 +28,7 @@
*/
#include "drmP.h"
#include "ttm/ttm_page_alloc.h"
#include "nouveau_drm.h"
#include "nouveau_drv.h"
......@@ -92,6 +93,7 @@ nouveau_bo_new(struct drm_device *dev, int size, int align,
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_bo *nvbo;
size_t acc_size;
int ret;
nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
......@@ -114,9 +116,12 @@ nouveau_bo_new(struct drm_device *dev, int size, int align,
nvbo->bo.mem.num_pages = size >> PAGE_SHIFT;
nouveau_bo_placement_set(nvbo, flags, 0);
acc_size = ttm_bo_dma_acc_size(&dev_priv->ttm.bdev, size,
sizeof(struct nouveau_bo));
ret = ttm_bo_init(&dev_priv->ttm.bdev, &nvbo->bo, size,
ttm_bo_type_device, &nvbo->placement,
align >> PAGE_SHIFT, 0, false, NULL, size,
align >> PAGE_SHIFT, 0, false, NULL, acc_size,
nouveau_bo_del_ttm);
if (ret) {
/* ttm will call nouveau_bo_del_ttm if it fails.. */
......@@ -343,8 +348,10 @@ nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
*mem = val;
}
static struct ttm_backend *
nouveau_bo_create_ttm_backend_entry(struct ttm_bo_device *bdev)
static struct ttm_tt *
nouveau_ttm_tt_create(struct ttm_bo_device *bdev,
unsigned long size, uint32_t page_flags,
struct page *dummy_read_page)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(bdev);
struct drm_device *dev = dev_priv->dev;
......@@ -352,11 +359,13 @@ nouveau_bo_create_ttm_backend_entry(struct ttm_bo_device *bdev)
switch (dev_priv->gart_info.type) {
#if __OS_HAS_AGP
case NOUVEAU_GART_AGP:
return ttm_agp_backend_init(bdev, dev->agp->bridge);
return ttm_agp_tt_create(bdev, dev->agp->bridge,
size, page_flags, dummy_read_page);
#endif
case NOUVEAU_GART_PDMA:
case NOUVEAU_GART_HW:
return nouveau_sgdma_init_ttm(dev);
return nouveau_sgdma_create_ttm(bdev, size, page_flags,
dummy_read_page);
default:
NV_ERROR(dev, "Unknown GART type %d\n",
dev_priv->gart_info.type);
......@@ -806,10 +815,10 @@ nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem)
struct nouveau_vma *vma;
list_for_each_entry(vma, &nvbo->vma_list, head) {
if (new_mem->mem_type == TTM_PL_VRAM) {
if (new_mem && new_mem->mem_type == TTM_PL_VRAM) {
nouveau_vm_map(vma, new_mem->mm_node);
} else
if (new_mem->mem_type == TTM_PL_TT &&
if (new_mem && new_mem->mem_type == TTM_PL_TT &&
nvbo->page_shift == vma->vm->spg_shift) {
nouveau_vm_map_sg(vma, 0, new_mem->
num_pages << PAGE_SHIFT,
......@@ -1044,8 +1053,81 @@ nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence)
nouveau_fence_unref(&old_fence);
}
static int
nouveau_ttm_tt_populate(struct ttm_tt *ttm)
{
struct ttm_dma_tt *ttm_dma = (void *)ttm;
struct drm_nouveau_private *dev_priv;
struct drm_device *dev;
unsigned i;
int r;
if (ttm->state != tt_unpopulated)
return 0;
dev_priv = nouveau_bdev(ttm->bdev);
dev = dev_priv->dev;
#ifdef CONFIG_SWIOTLB
if (swiotlb_nr_tbl()) {
return ttm_dma_populate((void *)ttm, dev->dev);
}
#endif
r = ttm_pool_populate(ttm);
if (r) {
return r;
}
for (i = 0; i < ttm->num_pages; i++) {
ttm_dma->dma_address[i] = pci_map_page(dev->pdev, ttm->pages[i],
0, PAGE_SIZE,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(dev->pdev, ttm_dma->dma_address[i])) {
while (--i) {
pci_unmap_page(dev->pdev, ttm_dma->dma_address[i],
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
ttm_dma->dma_address[i] = 0;
}
ttm_pool_unpopulate(ttm);
return -EFAULT;
}
}
return 0;
}
static void
nouveau_ttm_tt_unpopulate(struct ttm_tt *ttm)
{
struct ttm_dma_tt *ttm_dma = (void *)ttm;
struct drm_nouveau_private *dev_priv;
struct drm_device *dev;
unsigned i;
dev_priv = nouveau_bdev(ttm->bdev);
dev = dev_priv->dev;
#ifdef CONFIG_SWIOTLB
if (swiotlb_nr_tbl()) {
ttm_dma_unpopulate((void *)ttm, dev->dev);
return;
}
#endif
for (i = 0; i < ttm->num_pages; i++) {
if (ttm_dma->dma_address[i]) {
pci_unmap_page(dev->pdev, ttm_dma->dma_address[i],
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
}
}
ttm_pool_unpopulate(ttm);
}
struct ttm_bo_driver nouveau_bo_driver = {
.create_ttm_backend_entry = nouveau_bo_create_ttm_backend_entry,
.ttm_tt_create = &nouveau_ttm_tt_create,
.ttm_tt_populate = &nouveau_ttm_tt_populate,
.ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
.invalidate_caches = nouveau_bo_invalidate_caches,
.init_mem_type = nouveau_bo_init_mem_type,
.evict_flags = nouveau_bo_evict_flags,
......
......@@ -178,6 +178,7 @@ static struct drm_info_list nouveau_debugfs_list[] = {
{ "memory", nouveau_debugfs_memory_info, 0, NULL },
{ "vbios.rom", nouveau_debugfs_vbios_image, 0, NULL },
{ "ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL },
{ "ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL },
};
#define NOUVEAU_DEBUGFS_ENTRIES ARRAY_SIZE(nouveau_debugfs_list)
......
......@@ -1000,7 +1000,10 @@ extern int nouveau_sgdma_init(struct drm_device *);
extern void nouveau_sgdma_takedown(struct drm_device *);
extern uint32_t nouveau_sgdma_get_physical(struct drm_device *,
uint32_t offset);
extern struct ttm_backend *nouveau_sgdma_init_ttm(struct drm_device *);
extern struct ttm_tt *nouveau_sgdma_create_ttm(struct ttm_bo_device *bdev,
unsigned long size,
uint32_t page_flags,
struct page *dummy_read_page);
/* nouveau_debugfs.c */
#if defined(CONFIG_DRM_NOUVEAU_DEBUG)
......
......@@ -407,6 +407,12 @@ nouveau_mem_vram_init(struct drm_device *dev)
ret = pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(dma_bits));
if (ret)
return ret;
ret = pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(dma_bits));
if (ret) {
/* Reset to default value. */
pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(32));
}
ret = nouveau_ttm_global_init(dev_priv);
if (ret)
......
......@@ -8,88 +8,30 @@
#define NV_CTXDMA_PAGE_MASK (NV_CTXDMA_PAGE_SIZE - 1)
struct nouveau_sgdma_be {
struct ttm_backend backend;
/* this has to be the first field so populate/unpopulated in
* nouve_bo.c works properly, otherwise have to move them here
*/
struct ttm_dma_tt ttm;
struct drm_device *dev;
dma_addr_t *pages;
unsigned nr_pages;
bool unmap_pages;
u64 offset;
bool bound;
};
static int
nouveau_sgdma_populate(struct ttm_backend *be, unsigned long num_pages,
struct page **pages, struct page *dummy_read_page,
dma_addr_t *dma_addrs)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct drm_device *dev = nvbe->dev;
int i;
NV_DEBUG(nvbe->dev, "num_pages = %ld\n", num_pages);
nvbe->pages = dma_addrs;
nvbe->nr_pages = num_pages;
nvbe->unmap_pages = true;
/* this code path isn't called and is incorrect anyways */
if (0) { /* dma_addrs[0] != DMA_ERROR_CODE) { */
nvbe->unmap_pages = false;
return 0;
}
for (i = 0; i < num_pages; i++) {
nvbe->pages[i] = pci_map_page(dev->pdev, pages[i], 0,
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(dev->pdev, nvbe->pages[i])) {
nvbe->nr_pages = --i;
be->func->clear(be);
return -EFAULT;
}
}
return 0;
}
static void
nouveau_sgdma_clear(struct ttm_backend *be)
nouveau_sgdma_destroy(struct ttm_tt *ttm)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct drm_device *dev = nvbe->dev;
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)ttm;
if (nvbe->bound)
be->func->unbind(be);
if (nvbe->unmap_pages) {
while (nvbe->nr_pages--) {
pci_unmap_page(dev->pdev, nvbe->pages[nvbe->nr_pages],
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
}
}
}
static void
nouveau_sgdma_destroy(struct ttm_backend *be)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
if (be) {
if (ttm) {
NV_DEBUG(nvbe->dev, "\n");
if (nvbe) {
if (nvbe->pages)
be->func->clear(be);
kfree(nvbe);
}
ttm_dma_tt_fini(&nvbe->ttm);
kfree(nvbe);
}
}
static int
nv04_sgdma_bind(struct ttm_backend *be, struct ttm_mem_reg *mem)
nv04_sgdma_bind(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)ttm;
struct drm_device *dev = nvbe->dev;
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_gpuobj *gpuobj = dev_priv->gart_info.sg_ctxdma;
......@@ -99,8 +41,8 @@ nv04_sgdma_bind(struct ttm_backend *be, struct ttm_mem_reg *mem)
nvbe->offset = mem->start << PAGE_SHIFT;
pte = (nvbe->offset >> NV_CTXDMA_PAGE_SHIFT) + 2;
for (i = 0; i < nvbe->nr_pages; i++) {
dma_addr_t dma_offset = nvbe->pages[i];
for (i = 0; i < ttm->num_pages; i++) {
dma_addr_t dma_offset = nvbe->ttm.dma_address[i];
uint32_t offset_l = lower_32_bits(dma_offset);
for (j = 0; j < PAGE_SIZE / NV_CTXDMA_PAGE_SIZE; j++, pte++) {
......@@ -109,14 +51,13 @@ nv04_sgdma_bind(struct ttm_backend *be, struct ttm_mem_reg *mem)
}
}
nvbe->bound = true;
return 0;
}
static int
nv04_sgdma_unbind(struct ttm_backend *be)
nv04_sgdma_unbind(struct ttm_tt *ttm)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)ttm;
struct drm_device *dev = nvbe->dev;
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_gpuobj *gpuobj = dev_priv->gart_info.sg_ctxdma;
......@@ -124,22 +65,19 @@ nv04_sgdma_unbind(struct ttm_backend *be)
NV_DEBUG(dev, "\n");
if (!nvbe->bound)
if (ttm->state != tt_bound)
return 0;
pte = (nvbe->offset >> NV_CTXDMA_PAGE_SHIFT) + 2;
for (i = 0; i < nvbe->nr_pages; i++) {
for (i = 0; i < ttm->num_pages; i++) {
for (j = 0; j < PAGE_SIZE / NV_CTXDMA_PAGE_SIZE; j++, pte++)
nv_wo32(gpuobj, (pte * 4) + 0, 0x00000000);
}
nvbe->bound = false;
return 0;
}
static struct ttm_backend_func nv04_sgdma_backend = {
.populate = nouveau_sgdma_populate,
.clear = nouveau_sgdma_clear,
.bind = nv04_sgdma_bind,
.unbind = nv04_sgdma_unbind,
.destroy = nouveau_sgdma_destroy
......@@ -158,14 +96,14 @@ nv41_sgdma_flush(struct nouveau_sgdma_be *nvbe)
}
static int
nv41_sgdma_bind(struct ttm_backend *be, struct ttm_mem_reg *mem)
nv41_sgdma_bind(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)ttm;
struct drm_nouveau_private *dev_priv = nvbe->dev->dev_private;
struct nouveau_gpuobj *pgt = dev_priv->gart_info.sg_ctxdma;
dma_addr_t *list = nvbe->pages;
dma_addr_t *list = nvbe->ttm.dma_address;
u32 pte = mem->start << 2;
u32 cnt = nvbe->nr_pages;
u32 cnt = ttm->num_pages;
nvbe->offset = mem->start << PAGE_SHIFT;
......@@ -175,18 +113,17 @@ nv41_sgdma_bind(struct ttm_backend *be, struct ttm_mem_reg *mem)
}
nv41_sgdma_flush(nvbe);
nvbe->bound = true;
return 0;
}
static int
nv41_sgdma_unbind(struct ttm_backend *be)
nv41_sgdma_unbind(struct ttm_tt *ttm)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)ttm;
struct drm_nouveau_private *dev_priv = nvbe->dev->dev_private;
struct nouveau_gpuobj *pgt = dev_priv->gart_info.sg_ctxdma;
u32 pte = (nvbe->offset >> 12) << 2;
u32 cnt = nvbe->nr_pages;
u32 cnt = ttm->num_pages;
while (cnt--) {
nv_wo32(pgt, pte, 0x00000000);
......@@ -194,24 +131,22 @@ nv41_sgdma_unbind(struct ttm_backend *be)
}
nv41_sgdma_flush(nvbe);
nvbe->bound = false;
return 0;
}
static struct ttm_backend_func nv41_sgdma_backend = {
.populate = nouveau_sgdma_populate,
.clear = nouveau_sgdma_clear,
.bind = nv41_sgdma_bind,
.unbind = nv41_sgdma_unbind,
.destroy = nouveau_sgdma_destroy
};
static void
nv44_sgdma_flush(struct nouveau_sgdma_be *nvbe)
nv44_sgdma_flush(struct ttm_tt *ttm)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)ttm;
struct drm_device *dev = nvbe->dev;
nv_wr32(dev, 0x100814, (nvbe->nr_pages - 1) << 12);
nv_wr32(dev, 0x100814, (ttm->num_pages - 1) << 12);
nv_wr32(dev, 0x100808, nvbe->offset | 0x20);
if (!nv_wait(dev, 0x100808, 0x00000001, 0x00000001))
NV_ERROR(dev, "gart flush timeout: 0x%08x\n",
......@@ -270,14 +205,14 @@ nv44_sgdma_fill(struct nouveau_gpuobj *pgt, dma_addr_t *list, u32 base, u32 cnt)
}
static int
nv44_sgdma_bind(struct ttm_backend *be, struct ttm_mem_reg *mem)
nv44_sgdma_bind(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)ttm;
struct drm_nouveau_private *dev_priv = nvbe->dev->dev_private;
struct nouveau_gpuobj *pgt = dev_priv->gart_info.sg_ctxdma;
dma_addr_t *list = nvbe->pages;
dma_addr_t *list = nvbe->ttm.dma_address;
u32 pte = mem->start << 2, tmp[4];
u32 cnt = nvbe->nr_pages;
u32 cnt = ttm->num_pages;
int i;
nvbe->offset = mem->start << PAGE_SHIFT;
......@@ -305,19 +240,18 @@ nv44_sgdma_bind(struct ttm_backend *be, struct ttm_mem_reg *mem)
if (cnt)
nv44_sgdma_fill(pgt, list, pte, cnt);
nv44_sgdma_flush(nvbe);
nvbe->bound = true;
nv44_sgdma_flush(ttm);
return 0;
}
static int
nv44_sgdma_unbind(struct ttm_backend *be)
nv44_sgdma_unbind(struct ttm_tt *ttm)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)ttm;
struct drm_nouveau_private *dev_priv = nvbe->dev->dev_private;
struct nouveau_gpuobj *pgt = dev_priv->gart_info.sg_ctxdma;
u32 pte = (nvbe->offset >> 12) << 2;
u32 cnt = nvbe->nr_pages;
u32 cnt = ttm->num_pages;
if (pte & 0x0000000c) {
u32 max = 4 - ((pte >> 2) & 0x3);
......@@ -339,55 +273,47 @@ nv44_sgdma_unbind(struct ttm_backend *be)
if (cnt)
nv44_sgdma_fill(pgt, NULL, pte, cnt);
nv44_sgdma_flush(nvbe);
nvbe->bound = false;
nv44_sgdma_flush(ttm);
return 0;
}
static struct ttm_backend_func nv44_sgdma_backend = {
.populate = nouveau_sgdma_populate,
.clear = nouveau_sgdma_clear,
.bind = nv44_sgdma_bind,
.unbind = nv44_sgdma_unbind,
.destroy = nouveau_sgdma_destroy
};
static int
nv50_sgdma_bind(struct ttm_backend *be, struct ttm_mem_reg *mem)
nv50_sgdma_bind(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)ttm;
struct nouveau_mem *node = mem->mm_node;
/* noop: bound in move_notify() */
node->pages = nvbe->pages;
nvbe->pages = (dma_addr_t *)node;
nvbe->bound = true;
node->pages = nvbe->ttm.dma_address;
return 0;
}
static int
nv50_sgdma_unbind(struct ttm_backend *be)
nv50_sgdma_unbind(struct ttm_tt *ttm)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct nouveau_mem *node = (struct nouveau_mem *)nvbe->pages;
/* noop: unbound in move_notify() */
nvbe->pages = node->pages;
node->pages = NULL;
nvbe->bound = false;
return 0;
}
static struct ttm_backend_func nv50_sgdma_backend = {
.populate = nouveau_sgdma_populate,
.clear = nouveau_sgdma_clear,
.bind = nv50_sgdma_bind,
.unbind = nv50_sgdma_unbind,
.destroy = nouveau_sgdma_destroy
};
struct ttm_backend *
nouveau_sgdma_init_ttm(struct drm_device *dev)
struct ttm_tt *
nouveau_sgdma_create_ttm(struct ttm_bo_device *bdev,
unsigned long size, uint32_t page_flags,
struct page *dummy_read_page)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct drm_nouveau_private *dev_priv = nouveau_bdev(bdev);
struct drm_device *dev = dev_priv->dev;
struct nouveau_sgdma_be *nvbe;
nvbe = kzalloc(sizeof(*nvbe), GFP_KERNEL);
......@@ -395,9 +321,13 @@ nouveau_sgdma_init_ttm(struct drm_device *dev)
return NULL;
nvbe->dev = dev;
nvbe->ttm.ttm.func = dev_priv->gart_info.func;
nvbe->backend.func = dev_priv->gart_info.func;
return &nvbe->backend;
if (ttm_dma_tt_init(&nvbe->ttm, bdev, size, page_flags, dummy_read_page)) {
kfree(nvbe);
return NULL;
}
return &nvbe->ttm.ttm;
}
int
......
......@@ -320,7 +320,6 @@ struct radeon_gart {
unsigned table_size;
struct page **pages;
dma_addr_t *pages_addr;
bool *ttm_alloced;
bool ready;
};
......
......@@ -765,8 +765,14 @@ int radeon_device_init(struct radeon_device *rdev,
r = pci_set_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits));
if (r) {
rdev->need_dma32 = true;
dma_bits = 32;
printk(KERN_WARNING "radeon: No suitable DMA available.\n");
}
r = pci_set_consistent_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits));
if (r) {
pci_set_consistent_dma_mask(rdev->pdev, DMA_BIT_MASK(32));
printk(KERN_WARNING "radeon: No coherent DMA available.\n");
}
/* Registers mapping */
/* TODO: block userspace mapping of io register */
......
......@@ -157,9 +157,6 @@ void radeon_gart_unbind(struct radeon_device *rdev, unsigned offset,
p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE);
for (i = 0; i < pages; i++, p++) {
if (rdev->gart.pages[p]) {
if (!rdev->gart.ttm_alloced[p])
pci_unmap_page(rdev->pdev, rdev->gart.pages_addr[p],
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
rdev->gart.pages[p] = NULL;
rdev->gart.pages_addr[p] = rdev->dummy_page.addr;
page_base = rdev->gart.pages_addr[p];
......@@ -191,23 +188,7 @@ int radeon_gart_bind(struct radeon_device *rdev, unsigned offset,
p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE);
for (i = 0; i < pages; i++, p++) {
/* we reverted the patch using dma_addr in TTM for now but this
* code stops building on alpha so just comment it out for now */
if (0) { /*dma_addr[i] != DMA_ERROR_CODE) */
rdev->gart.ttm_alloced[p] = true;
rdev->gart.pages_addr[p] = dma_addr[i];
} else {
/* we need to support large memory configurations */
/* assume that unbind have already been call on the range */
rdev->gart.pages_addr[p] = pci_map_page(rdev->pdev, pagelist[i],
0, PAGE_SIZE,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(rdev->pdev, rdev->gart.pages_addr[p])) {
/* FIXME: failed to map page (return -ENOMEM?) */
radeon_gart_unbind(rdev, offset, pages);
return -ENOMEM;
}
}
rdev->gart.pages_addr[p] = dma_addr[i];
rdev->gart.pages[p] = pagelist[i];
if (rdev->gart.ptr) {
page_base = rdev->gart.pages_addr[p];
......@@ -274,12 +255,6 @@ int radeon_gart_init(struct radeon_device *rdev)
radeon_gart_fini(rdev);
return -ENOMEM;
}
rdev->gart.ttm_alloced = kzalloc(sizeof(bool) *
rdev->gart.num_cpu_pages, GFP_KERNEL);
if (rdev->gart.ttm_alloced == NULL) {
radeon_gart_fini(rdev);
return -ENOMEM;
}
/* set GART entry to point to the dummy page by default */
for (i = 0; i < rdev->gart.num_cpu_pages; i++) {
rdev->gart.pages_addr[i] = rdev->dummy_page.addr;
......@@ -296,10 +271,8 @@ void radeon_gart_fini(struct radeon_device *rdev)
rdev->gart.ready = false;
kfree(rdev->gart.pages);
kfree(rdev->gart.pages_addr);
kfree(rdev->gart.ttm_alloced);
rdev->gart.pages = NULL;
rdev->gart.pages_addr = NULL;
rdev->gart.ttm_alloced = NULL;
radeon_dummy_page_fini(rdev);
}
......@@ -95,6 +95,7 @@ int radeon_bo_create(struct radeon_device *rdev,
enum ttm_bo_type type;
unsigned long page_align = roundup(byte_align, PAGE_SIZE) >> PAGE_SHIFT;
unsigned long max_size = 0;
size_t acc_size;
int r;
size = ALIGN(size, PAGE_SIZE);
......@@ -117,6 +118,9 @@ int radeon_bo_create(struct radeon_device *rdev,
return -ENOMEM;
}
acc_size = ttm_bo_dma_acc_size(&rdev->mman.bdev, size,
sizeof(struct radeon_bo));
retry:
bo = kzalloc(sizeof(struct radeon_bo), GFP_KERNEL);
if (bo == NULL)
......@@ -134,8 +138,8 @@ int radeon_bo_create(struct radeon_device *rdev,
/* Kernel allocation are uninterruptible */
mutex_lock(&rdev->vram_mutex);
r = ttm_bo_init(&rdev->mman.bdev, &bo->tbo, size, type,
&bo->placement, page_align, 0, !kernel, NULL, size,
&radeon_ttm_bo_destroy);
&bo->placement, page_align, 0, !kernel, NULL,
acc_size, &radeon_ttm_bo_destroy);
mutex_unlock(&rdev->vram_mutex);
if (unlikely(r != 0)) {
if (r != -ERESTARTSYS) {
......
......@@ -114,24 +114,6 @@ static void radeon_ttm_global_fini(struct radeon_device *rdev)
}
}
struct ttm_backend *radeon_ttm_backend_create(struct radeon_device *rdev);
static struct ttm_backend*
radeon_create_ttm_backend_entry(struct ttm_bo_device *bdev)
{
struct radeon_device *rdev;
rdev = radeon_get_rdev(bdev);
#if __OS_HAS_AGP
if (rdev->flags & RADEON_IS_AGP) {
return ttm_agp_backend_init(bdev, rdev->ddev->agp->bridge);
} else
#endif
{
return radeon_ttm_backend_create(rdev);
}
}
static int radeon_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
{
return 0;
......@@ -515,8 +497,155 @@ static bool radeon_sync_obj_signaled(void *sync_obj, void *sync_arg)
return radeon_fence_signaled((struct radeon_fence *)sync_obj);
}
/*
* TTM backend functions.
*/
struct radeon_ttm_tt {
struct ttm_dma_tt ttm;
struct radeon_device *rdev;
u64 offset;
};
static int radeon_ttm_backend_bind(struct ttm_tt *ttm,
struct ttm_mem_reg *bo_mem)
{
struct radeon_ttm_tt *gtt = (void*)ttm;
int r;
gtt->offset = (unsigned long)(bo_mem->start << PAGE_SHIFT);
if (!ttm->num_pages) {
WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
ttm->num_pages, bo_mem, ttm);
}
r = radeon_gart_bind(gtt->rdev, gtt->offset,
ttm->num_pages, ttm->pages, gtt->ttm.dma_address);
if (r) {
DRM_ERROR("failed to bind %lu pages at 0x%08X\n",
ttm->num_pages, (unsigned)gtt->offset);
return r;
}
return 0;
}
static int radeon_ttm_backend_unbind(struct ttm_tt *ttm)
{
struct radeon_ttm_tt *gtt = (void *)ttm;
radeon_gart_unbind(gtt->rdev, gtt->offset, ttm->num_pages);
return 0;
}
static void radeon_ttm_backend_destroy(struct ttm_tt *ttm)
{
struct radeon_ttm_tt *gtt = (void *)ttm;
ttm_dma_tt_fini(&gtt->ttm);
kfree(gtt);
}
static struct ttm_backend_func radeon_backend_func = {
.bind = &radeon_ttm_backend_bind,
.unbind = &radeon_ttm_backend_unbind,
.destroy = &radeon_ttm_backend_destroy,
};
struct ttm_tt *radeon_ttm_tt_create(struct ttm_bo_device *bdev,
unsigned long size, uint32_t page_flags,
struct page *dummy_read_page)
{
struct radeon_device *rdev;
struct radeon_ttm_tt *gtt;
rdev = radeon_get_rdev(bdev);
#if __OS_HAS_AGP
if (rdev->flags & RADEON_IS_AGP) {
return ttm_agp_tt_create(bdev, rdev->ddev->agp->bridge,
size, page_flags, dummy_read_page);
}
#endif
gtt = kzalloc(sizeof(struct radeon_ttm_tt), GFP_KERNEL);
if (gtt == NULL) {
return NULL;
}
gtt->ttm.ttm.func = &radeon_backend_func;
gtt->rdev = rdev;
if (ttm_dma_tt_init(&gtt->ttm, bdev, size, page_flags, dummy_read_page)) {
kfree(gtt);
return NULL;
}
return &gtt->ttm.ttm;
}
static int radeon_ttm_tt_populate(struct ttm_tt *ttm)
{
struct radeon_device *rdev;
struct radeon_ttm_tt *gtt = (void *)ttm;
unsigned i;
int r;
if (ttm->state != tt_unpopulated)
return 0;
rdev = radeon_get_rdev(ttm->bdev);
#ifdef CONFIG_SWIOTLB
if (swiotlb_nr_tbl()) {
return ttm_dma_populate(&gtt->ttm, rdev->dev);
}
#endif
r = ttm_pool_populate(ttm);
if (r) {
return r;
}
for (i = 0; i < ttm->num_pages; i++) {
gtt->ttm.dma_address[i] = pci_map_page(rdev->pdev, ttm->pages[i],
0, PAGE_SIZE,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(rdev->pdev, gtt->ttm.dma_address[i])) {
while (--i) {
pci_unmap_page(rdev->pdev, gtt->ttm.dma_address[i],
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
gtt->ttm.dma_address[i] = 0;
}
ttm_pool_unpopulate(ttm);
return -EFAULT;
}
}
return 0;
}
static void radeon_ttm_tt_unpopulate(struct ttm_tt *ttm)
{
struct radeon_device *rdev;
struct radeon_ttm_tt *gtt = (void *)ttm;
unsigned i;
rdev = radeon_get_rdev(ttm->bdev);
#ifdef CONFIG_SWIOTLB
if (swiotlb_nr_tbl()) {
ttm_dma_unpopulate(&gtt->ttm, rdev->dev);
return;
}
#endif
for (i = 0; i < ttm->num_pages; i++) {
if (gtt->ttm.dma_address[i]) {
pci_unmap_page(rdev->pdev, gtt->ttm.dma_address[i],
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
}
}
ttm_pool_unpopulate(ttm);
}
static struct ttm_bo_driver radeon_bo_driver = {
.create_ttm_backend_entry = &radeon_create_ttm_backend_entry,
.ttm_tt_create = &radeon_ttm_tt_create,
.ttm_tt_populate = &radeon_ttm_tt_populate,
.ttm_tt_unpopulate = &radeon_ttm_tt_unpopulate,
.invalidate_caches = &radeon_invalidate_caches,
.init_mem_type = &radeon_init_mem_type,
.evict_flags = &radeon_evict_flags,
......@@ -680,124 +809,6 @@ int radeon_mmap(struct file *filp, struct vm_area_struct *vma)
}
/*
* TTM backend functions.
*/
struct radeon_ttm_backend {
struct ttm_backend backend;
struct radeon_device *rdev;
unsigned long num_pages;
struct page **pages;
struct page *dummy_read_page;
dma_addr_t *dma_addrs;
bool populated;
bool bound;
unsigned offset;
};
static int radeon_ttm_backend_populate(struct ttm_backend *backend,
unsigned long num_pages,
struct page **pages,
struct page *dummy_read_page,
dma_addr_t *dma_addrs)
{
struct radeon_ttm_backend *gtt;
gtt = container_of(backend, struct radeon_ttm_backend, backend);
gtt->pages = pages;
gtt->dma_addrs = dma_addrs;
gtt->num_pages = num_pages;
gtt->dummy_read_page = dummy_read_page;
gtt->populated = true;
return 0;
}
static void radeon_ttm_backend_clear(struct ttm_backend *backend)
{
struct radeon_ttm_backend *gtt;
gtt = container_of(backend, struct radeon_ttm_backend, backend);
gtt->pages = NULL;
gtt->dma_addrs = NULL;
gtt->num_pages = 0;
gtt->dummy_read_page = NULL;
gtt->populated = false;
gtt->bound = false;
}
static int radeon_ttm_backend_bind(struct ttm_backend *backend,
struct ttm_mem_reg *bo_mem)
{
struct radeon_ttm_backend *gtt;
int r;
gtt = container_of(backend, struct radeon_ttm_backend, backend);
gtt->offset = bo_mem->start << PAGE_SHIFT;
if (!gtt->num_pages) {
WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
gtt->num_pages, bo_mem, backend);
}
r = radeon_gart_bind(gtt->rdev, gtt->offset,
gtt->num_pages, gtt->pages, gtt->dma_addrs);
if (r) {
DRM_ERROR("failed to bind %lu pages at 0x%08X\n",
gtt->num_pages, gtt->offset);
return r;
}
gtt->bound = true;
return 0;
}
static int radeon_ttm_backend_unbind(struct ttm_backend *backend)
{
struct radeon_ttm_backend *gtt;
gtt = container_of(backend, struct radeon_ttm_backend, backend);
radeon_gart_unbind(gtt->rdev, gtt->offset, gtt->num_pages);
gtt->bound = false;
return 0;
}
static void radeon_ttm_backend_destroy(struct ttm_backend *backend)
{
struct radeon_ttm_backend *gtt;
gtt = container_of(backend, struct radeon_ttm_backend, backend);
if (gtt->bound) {
radeon_ttm_backend_unbind(backend);
}
kfree(gtt);
}
static struct ttm_backend_func radeon_backend_func = {
.populate = &radeon_ttm_backend_populate,
.clear = &radeon_ttm_backend_clear,
.bind = &radeon_ttm_backend_bind,
.unbind = &radeon_ttm_backend_unbind,
.destroy = &radeon_ttm_backend_destroy,
};
struct ttm_backend *radeon_ttm_backend_create(struct radeon_device *rdev)
{
struct radeon_ttm_backend *gtt;
gtt = kzalloc(sizeof(struct radeon_ttm_backend), GFP_KERNEL);
if (gtt == NULL) {
return NULL;
}
gtt->backend.bdev = &rdev->mman.bdev;
gtt->backend.flags = 0;
gtt->backend.func = &radeon_backend_func;
gtt->rdev = rdev;
gtt->pages = NULL;
gtt->num_pages = 0;
gtt->dummy_read_page = NULL;
gtt->populated = false;
gtt->bound = false;
return &gtt->backend;
}
#define RADEON_DEBUGFS_MEM_TYPES 2
#if defined(CONFIG_DEBUG_FS)
......@@ -820,8 +831,8 @@ static int radeon_mm_dump_table(struct seq_file *m, void *data)
static int radeon_ttm_debugfs_init(struct radeon_device *rdev)
{
#if defined(CONFIG_DEBUG_FS)
static struct drm_info_list radeon_mem_types_list[RADEON_DEBUGFS_MEM_TYPES+1];
static char radeon_mem_types_names[RADEON_DEBUGFS_MEM_TYPES+1][32];
static struct drm_info_list radeon_mem_types_list[RADEON_DEBUGFS_MEM_TYPES+2];
static char radeon_mem_types_names[RADEON_DEBUGFS_MEM_TYPES+2][32];
unsigned i;
for (i = 0; i < RADEON_DEBUGFS_MEM_TYPES; i++) {
......@@ -843,8 +854,17 @@ static int radeon_ttm_debugfs_init(struct radeon_device *rdev)
radeon_mem_types_list[i].name = radeon_mem_types_names[i];
radeon_mem_types_list[i].show = &ttm_page_alloc_debugfs;
radeon_mem_types_list[i].driver_features = 0;
radeon_mem_types_list[i].data = NULL;
return radeon_debugfs_add_files(rdev, radeon_mem_types_list, RADEON_DEBUGFS_MEM_TYPES+1);
radeon_mem_types_list[i++].data = NULL;
#ifdef CONFIG_SWIOTLB
if (swiotlb_nr_tbl()) {
sprintf(radeon_mem_types_names[i], "ttm_dma_page_pool");
radeon_mem_types_list[i].name = radeon_mem_types_names[i];
radeon_mem_types_list[i].show = &ttm_dma_page_alloc_debugfs;
radeon_mem_types_list[i].driver_features = 0;
radeon_mem_types_list[i++].data = NULL;
}
#endif
return radeon_debugfs_add_files(rdev, radeon_mem_types_list, i);
#endif
return 0;
......
......@@ -7,4 +7,8 @@ ttm-y := ttm_agp_backend.o ttm_memory.o ttm_tt.o ttm_bo.o \
ttm_object.o ttm_lock.o ttm_execbuf_util.o ttm_page_alloc.o \
ttm_bo_manager.o
ifeq ($(CONFIG_SWIOTLB),y)
ttm-y += ttm_page_alloc_dma.o
endif
obj-$(CONFIG_DRM_TTM) += ttm.o
......@@ -40,45 +40,33 @@
#include <asm/agp.h>
struct ttm_agp_backend {
struct ttm_backend backend;
struct ttm_tt ttm;
struct agp_memory *mem;
struct agp_bridge_data *bridge;
};
static int ttm_agp_populate(struct ttm_backend *backend,
unsigned long num_pages, struct page **pages,
struct page *dummy_read_page,
dma_addr_t *dma_addrs)
static int ttm_agp_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
{
struct ttm_agp_backend *agp_be =
container_of(backend, struct ttm_agp_backend, backend);
struct page **cur_page, **last_page = pages + num_pages;
struct ttm_agp_backend *agp_be = container_of(ttm, struct ttm_agp_backend, ttm);
struct drm_mm_node *node = bo_mem->mm_node;
struct agp_memory *mem;
int ret, cached = (bo_mem->placement & TTM_PL_FLAG_CACHED);
unsigned i;
mem = agp_allocate_memory(agp_be->bridge, num_pages, AGP_USER_MEMORY);
mem = agp_allocate_memory(agp_be->bridge, ttm->num_pages, AGP_USER_MEMORY);
if (unlikely(mem == NULL))
return -ENOMEM;
mem->page_count = 0;
for (cur_page = pages; cur_page < last_page; ++cur_page) {
struct page *page = *cur_page;
for (i = 0; i < ttm->num_pages; i++) {
struct page *page = ttm->pages[i];
if (!page)
page = dummy_read_page;
page = ttm->dummy_read_page;
mem->pages[mem->page_count++] = page;
}
agp_be->mem = mem;
return 0;
}
static int ttm_agp_bind(struct ttm_backend *backend, struct ttm_mem_reg *bo_mem)
{
struct ttm_agp_backend *agp_be =
container_of(backend, struct ttm_agp_backend, backend);
struct drm_mm_node *node = bo_mem->mm_node;
struct agp_memory *mem = agp_be->mem;
int cached = (bo_mem->placement & TTM_PL_FLAG_CACHED);
int ret;
mem->is_flushed = 1;
mem->type = (cached) ? AGP_USER_CACHED_MEMORY : AGP_USER_MEMORY;
......@@ -90,50 +78,38 @@ static int ttm_agp_bind(struct ttm_backend *backend, struct ttm_mem_reg *bo_mem)
return ret;
}
static int ttm_agp_unbind(struct ttm_backend *backend)
static int ttm_agp_unbind(struct ttm_tt *ttm)
{
struct ttm_agp_backend *agp_be =
container_of(backend, struct ttm_agp_backend, backend);
if (agp_be->mem->is_bound)
return agp_unbind_memory(agp_be->mem);
else
return 0;
}
struct ttm_agp_backend *agp_be = container_of(ttm, struct ttm_agp_backend, ttm);
static void ttm_agp_clear(struct ttm_backend *backend)
{
struct ttm_agp_backend *agp_be =
container_of(backend, struct ttm_agp_backend, backend);
struct agp_memory *mem = agp_be->mem;
if (mem) {
ttm_agp_unbind(backend);
agp_free_memory(mem);
if (agp_be->mem) {
if (agp_be->mem->is_bound)
return agp_unbind_memory(agp_be->mem);
agp_free_memory(agp_be->mem);
agp_be->mem = NULL;
}
agp_be->mem = NULL;
return 0;
}
static void ttm_agp_destroy(struct ttm_backend *backend)
static void ttm_agp_destroy(struct ttm_tt *ttm)
{
struct ttm_agp_backend *agp_be =
container_of(backend, struct ttm_agp_backend, backend);
struct ttm_agp_backend *agp_be = container_of(ttm, struct ttm_agp_backend, ttm);
if (agp_be->mem)
ttm_agp_clear(backend);
ttm_agp_unbind(ttm);
kfree(agp_be);
}
static struct ttm_backend_func ttm_agp_func = {
.populate = ttm_agp_populate,
.clear = ttm_agp_clear,
.bind = ttm_agp_bind,
.unbind = ttm_agp_unbind,
.destroy = ttm_agp_destroy,
};
struct ttm_backend *ttm_agp_backend_init(struct ttm_bo_device *bdev,
struct agp_bridge_data *bridge)
struct ttm_tt *ttm_agp_tt_create(struct ttm_bo_device *bdev,
struct agp_bridge_data *bridge,
unsigned long size, uint32_t page_flags,
struct page *dummy_read_page)
{
struct ttm_agp_backend *agp_be;
......@@ -143,10 +119,14 @@ struct ttm_backend *ttm_agp_backend_init(struct ttm_bo_device *bdev,
agp_be->mem = NULL;
agp_be->bridge = bridge;
agp_be->backend.func = &ttm_agp_func;
agp_be->backend.bdev = bdev;
return &agp_be->backend;
agp_be->ttm.func = &ttm_agp_func;
if (ttm_tt_init(&agp_be->ttm, bdev, size, page_flags, dummy_read_page)) {
return NULL;
}
return &agp_be->ttm;
}
EXPORT_SYMBOL(ttm_agp_backend_init);
EXPORT_SYMBOL(ttm_agp_tt_create);
#endif
......@@ -137,6 +137,7 @@ static void ttm_bo_release_list(struct kref *list_kref)
struct ttm_buffer_object *bo =
container_of(list_kref, struct ttm_buffer_object, list_kref);
struct ttm_bo_device *bdev = bo->bdev;
size_t acc_size = bo->acc_size;
BUG_ON(atomic_read(&bo->list_kref.refcount));
BUG_ON(atomic_read(&bo->kref.refcount));
......@@ -152,9 +153,9 @@ static void ttm_bo_release_list(struct kref *list_kref)
if (bo->destroy)
bo->destroy(bo);
else {
ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size);
kfree(bo);
}
ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
}
int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
......@@ -337,27 +338,11 @@ static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
if (zero_alloc)
page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
case ttm_bo_type_kernel:
bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
page_flags, glob->dummy_read_page);
bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
page_flags, glob->dummy_read_page);
if (unlikely(bo->ttm == NULL))
ret = -ENOMEM;
break;
case ttm_bo_type_user:
bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
page_flags | TTM_PAGE_FLAG_USER,
glob->dummy_read_page);
if (unlikely(bo->ttm == NULL)) {
ret = -ENOMEM;
break;
}
ret = ttm_tt_set_user(bo->ttm, current,
bo->buffer_start, bo->num_pages);
if (unlikely(ret != 0)) {
ttm_tt_destroy(bo->ttm);
bo->ttm = NULL;
}
break;
default:
printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
ret = -EINVAL;
......@@ -419,9 +404,6 @@ static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
}
}
if (bdev->driver->move_notify)
bdev->driver->move_notify(bo, mem);
if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
......@@ -434,6 +416,9 @@ static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
if (ret)
goto out_err;
if (bdev->driver->move_notify)
bdev->driver->move_notify(bo, mem);
moved:
if (bo->evicted) {
ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
......@@ -472,6 +457,9 @@ static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
{
if (bo->bdev->driver->move_notify)
bo->bdev->driver->move_notify(bo, NULL);
if (bo->ttm) {
ttm_tt_unbind(bo->ttm);
ttm_tt_destroy(bo->ttm);
......@@ -907,16 +895,12 @@ static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
}
static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
bool disallow_fixed,
uint32_t mem_type,
uint32_t proposed_placement,
uint32_t *masked_placement)
{
uint32_t cur_flags = ttm_bo_type_flags(mem_type);
if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
return false;
if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
return false;
......@@ -961,7 +945,6 @@ int ttm_bo_mem_space(struct ttm_buffer_object *bo,
man = &bdev->man[mem_type];
type_ok = ttm_bo_mt_compatible(man,
bo->type == ttm_bo_type_user,
mem_type,
placement->placement[i],
&cur_flags);
......@@ -1009,7 +992,6 @@ int ttm_bo_mem_space(struct ttm_buffer_object *bo,
if (!man->has_type)
continue;
if (!ttm_bo_mt_compatible(man,
bo->type == ttm_bo_type_user,
mem_type,
placement->busy_placement[i],
&cur_flags))
......@@ -1179,6 +1161,17 @@ int ttm_bo_init(struct ttm_bo_device *bdev,
{
int ret = 0;
unsigned long num_pages;
struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
if (ret) {
printk(KERN_ERR TTM_PFX "Out of kernel memory.\n");
if (destroy)
(*destroy)(bo);
else
kfree(bo);
return -ENOMEM;
}
size += buffer_start & ~PAGE_MASK;
num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
......@@ -1249,14 +1242,34 @@ int ttm_bo_init(struct ttm_bo_device *bdev,
}
EXPORT_SYMBOL(ttm_bo_init);
static inline size_t ttm_bo_size(struct ttm_bo_global *glob,
unsigned long num_pages)
size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
unsigned long bo_size,
unsigned struct_size)
{
size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
PAGE_MASK;
unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
size_t size = 0;
return glob->ttm_bo_size + 2 * page_array_size;
size += ttm_round_pot(struct_size);
size += PAGE_ALIGN(npages * sizeof(void *));
size += ttm_round_pot(sizeof(struct ttm_tt));
return size;
}
EXPORT_SYMBOL(ttm_bo_acc_size);
size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
unsigned long bo_size,
unsigned struct_size)
{
unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
size_t size = 0;
size += ttm_round_pot(struct_size);
size += PAGE_ALIGN(npages * sizeof(void *));
size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
size += ttm_round_pot(sizeof(struct ttm_dma_tt));
return size;
}
EXPORT_SYMBOL(ttm_bo_dma_acc_size);
int ttm_bo_create(struct ttm_bo_device *bdev,
unsigned long size,
......@@ -1270,10 +1283,10 @@ int ttm_bo_create(struct ttm_bo_device *bdev,
{
struct ttm_buffer_object *bo;
struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
size_t acc_size;
int ret;
size_t acc_size =
ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
if (unlikely(ret != 0))
return ret;
......@@ -1459,13 +1472,6 @@ int ttm_bo_global_init(struct drm_global_reference *ref)
goto out_no_shrink;
}
glob->ttm_bo_extra_size =
ttm_round_pot(sizeof(struct ttm_tt)) +
ttm_round_pot(sizeof(struct ttm_backend));
glob->ttm_bo_size = glob->ttm_bo_extra_size +
ttm_round_pot(sizeof(struct ttm_buffer_object));
atomic_set(&glob->bo_count, 0);
ret = kobject_init_and_add(
......
......@@ -244,7 +244,7 @@ static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
unsigned long page,
pgprot_t prot)
{
struct page *d = ttm_tt_get_page(ttm, page);
struct page *d = ttm->pages[page];
void *dst;
if (!d)
......@@ -281,7 +281,7 @@ static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
unsigned long page,
pgprot_t prot)
{
struct page *s = ttm_tt_get_page(ttm, page);
struct page *s = ttm->pages[page];
void *src;
if (!s)
......@@ -342,6 +342,12 @@ int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
if (old_iomap == NULL && ttm == NULL)
goto out2;
if (ttm->state == tt_unpopulated) {
ret = ttm->bdev->driver->ttm_tt_populate(ttm);
if (ret)
goto out1;
}
add = 0;
dir = 1;
......@@ -439,6 +445,7 @@ static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
kref_init(&fbo->list_kref);
kref_init(&fbo->kref);
fbo->destroy = &ttm_transfered_destroy;
fbo->acc_size = 0;
*new_obj = fbo;
return 0;
......@@ -502,10 +509,16 @@ static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
{
struct ttm_mem_reg *mem = &bo->mem; pgprot_t prot;
struct ttm_tt *ttm = bo->ttm;
struct page *d;
int i;
int ret;
BUG_ON(!ttm);
if (ttm->state == tt_unpopulated) {
ret = ttm->bdev->driver->ttm_tt_populate(ttm);
if (ret)
return ret;
}
if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
/*
* We're mapping a single page, and the desired
......@@ -513,18 +526,9 @@ static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
*/
map->bo_kmap_type = ttm_bo_map_kmap;
map->page = ttm_tt_get_page(ttm, start_page);
map->page = ttm->pages[start_page];
map->virtual = kmap(map->page);
} else {
/*
* Populate the part we're mapping;
*/
for (i = start_page; i < start_page + num_pages; ++i) {
d = ttm_tt_get_page(ttm, i);
if (!d)
return -ENOMEM;
}
/*
* We need to use vmap to get the desired page protection
* or to make the buffer object look contiguous.
......
......@@ -174,18 +174,23 @@ static int ttm_bo_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
vma->vm_page_prot = (bo->mem.placement & TTM_PL_FLAG_CACHED) ?
vm_get_page_prot(vma->vm_flags) :
ttm_io_prot(bo->mem.placement, vma->vm_page_prot);
/* Allocate all page at once, most common usage */
if (ttm->bdev->driver->ttm_tt_populate(ttm)) {
retval = VM_FAULT_OOM;
goto out_io_unlock;
}
}
/*
* Speculatively prefault a number of pages. Only error on
* first page.
*/
for (i = 0; i < TTM_BO_VM_NUM_PREFAULT; ++i) {
if (bo->mem.bus.is_iomem)
pfn = ((bo->mem.bus.base + bo->mem.bus.offset) >> PAGE_SHIFT) + page_offset;
else {
page = ttm_tt_get_page(ttm, page_offset);
page = ttm->pages[page_offset];
if (unlikely(!page && i == 0)) {
retval = VM_FAULT_OOM;
goto out_io_unlock;
......
......@@ -395,6 +395,7 @@ int ttm_mem_global_init(struct ttm_mem_global *glob)
zone->name, (unsigned long long) zone->max_mem >> 10);
}
ttm_page_alloc_init(glob, glob->zone_kernel->max_mem/(2*PAGE_SIZE));
ttm_dma_page_alloc_init(glob, glob->zone_kernel->max_mem/(2*PAGE_SIZE));
return 0;
out_no_zone:
ttm_mem_global_release(glob);
......@@ -409,6 +410,7 @@ void ttm_mem_global_release(struct ttm_mem_global *glob)
/* let the page allocator first stop the shrink work. */
ttm_page_alloc_fini();
ttm_dma_page_alloc_fini();
flush_workqueue(glob->swap_queue);
destroy_workqueue(glob->swap_queue);
......
......@@ -619,8 +619,10 @@ static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool,
* @return count of pages still required to fulfill the request.
*/
static unsigned ttm_page_pool_get_pages(struct ttm_page_pool *pool,
struct list_head *pages, int ttm_flags,
enum ttm_caching_state cstate, unsigned count)
struct list_head *pages,
int ttm_flags,
enum ttm_caching_state cstate,
unsigned count)
{
unsigned long irq_flags;
struct list_head *p;
......@@ -660,17 +662,67 @@ static unsigned ttm_page_pool_get_pages(struct ttm_page_pool *pool,
return count;
}
/* Put all pages in pages list to correct pool to wait for reuse */
static void ttm_put_pages(struct page **pages, unsigned npages, int flags,
enum ttm_caching_state cstate)
{
unsigned long irq_flags;
struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
unsigned i;
if (pool == NULL) {
/* No pool for this memory type so free the pages */
for (i = 0; i < npages; i++) {
if (pages[i]) {
if (page_count(pages[i]) != 1)
printk(KERN_ERR TTM_PFX
"Erroneous page count. "
"Leaking pages.\n");
__free_page(pages[i]);
pages[i] = NULL;
}
}
return;
}
spin_lock_irqsave(&pool->lock, irq_flags);
for (i = 0; i < npages; i++) {
if (pages[i]) {
if (page_count(pages[i]) != 1)
printk(KERN_ERR TTM_PFX
"Erroneous page count. "
"Leaking pages.\n");
list_add_tail(&pages[i]->lru, &pool->list);
pages[i] = NULL;
pool->npages++;
}
}
/* Check that we don't go over the pool limit */
npages = 0;
if (pool->npages > _manager->options.max_size) {
npages = pool->npages - _manager->options.max_size;
/* free at least NUM_PAGES_TO_ALLOC number of pages
* to reduce calls to set_memory_wb */
if (npages < NUM_PAGES_TO_ALLOC)
npages = NUM_PAGES_TO_ALLOC;
}
spin_unlock_irqrestore(&pool->lock, irq_flags);
if (npages)
ttm_page_pool_free(pool, npages);
}
/*
* On success pages list will hold count number of correctly
* cached pages.
*/
int ttm_get_pages(struct list_head *pages, int flags,
enum ttm_caching_state cstate, unsigned count,
dma_addr_t *dma_address)
static int ttm_get_pages(struct page **pages, unsigned npages, int flags,
enum ttm_caching_state cstate)
{
struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
struct list_head plist;
struct page *p = NULL;
gfp_t gfp_flags = GFP_USER;
unsigned count;
int r;
/* set zero flag for page allocation if required */
......@@ -684,7 +736,7 @@ int ttm_get_pages(struct list_head *pages, int flags,
else
gfp_flags |= GFP_HIGHUSER;
for (r = 0; r < count; ++r) {
for (r = 0; r < npages; ++r) {
p = alloc_page(gfp_flags);
if (!p) {
......@@ -693,87 +745,53 @@ int ttm_get_pages(struct list_head *pages, int flags,
return -ENOMEM;
}
list_add(&p->lru, pages);
pages[r] = p;
}
return 0;
}
/* combine zero flag to pool flags */
gfp_flags |= pool->gfp_flags;
/* First we take pages from the pool */
count = ttm_page_pool_get_pages(pool, pages, flags, cstate, count);
INIT_LIST_HEAD(&plist);
npages = ttm_page_pool_get_pages(pool, &plist, flags, cstate, npages);
count = 0;
list_for_each_entry(p, &plist, lru) {
pages[count++] = p;
}
/* clear the pages coming from the pool if requested */
if (flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
list_for_each_entry(p, pages, lru) {
list_for_each_entry(p, &plist, lru) {
clear_page(page_address(p));
}
}
/* If pool didn't have enough pages allocate new one. */
if (count > 0) {
if (npages > 0) {
/* ttm_alloc_new_pages doesn't reference pool so we can run
* multiple requests in parallel.
**/
r = ttm_alloc_new_pages(pages, gfp_flags, flags, cstate, count);
INIT_LIST_HEAD(&plist);
r = ttm_alloc_new_pages(&plist, gfp_flags, flags, cstate, npages);
list_for_each_entry(p, &plist, lru) {
pages[count++] = p;
}
if (r) {
/* If there is any pages in the list put them back to
* the pool. */
printk(KERN_ERR TTM_PFX
"Failed to allocate extra pages "
"for large request.");
ttm_put_pages(pages, 0, flags, cstate, NULL);
ttm_put_pages(pages, count, flags, cstate);
return r;
}
}
return 0;
}
/* Put all pages in pages list to correct pool to wait for reuse */
void ttm_put_pages(struct list_head *pages, unsigned page_count, int flags,
enum ttm_caching_state cstate, dma_addr_t *dma_address)
{
unsigned long irq_flags;
struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
struct page *p, *tmp;
if (pool == NULL) {
/* No pool for this memory type so free the pages */
list_for_each_entry_safe(p, tmp, pages, lru) {
__free_page(p);
}
/* Make the pages list empty */
INIT_LIST_HEAD(pages);
return;
}
if (page_count == 0) {
list_for_each_entry_safe(p, tmp, pages, lru) {
++page_count;
}
}
spin_lock_irqsave(&pool->lock, irq_flags);
list_splice_init(pages, &pool->list);
pool->npages += page_count;
/* Check that we don't go over the pool limit */
page_count = 0;
if (pool->npages > _manager->options.max_size) {
page_count = pool->npages - _manager->options.max_size;
/* free at least NUM_PAGES_TO_ALLOC number of pages
* to reduce calls to set_memory_wb */
if (page_count < NUM_PAGES_TO_ALLOC)
page_count = NUM_PAGES_TO_ALLOC;
}
spin_unlock_irqrestore(&pool->lock, irq_flags);
if (page_count)
ttm_page_pool_free(pool, page_count);
}
static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, int flags,
char *name)
{
......@@ -836,6 +854,62 @@ void ttm_page_alloc_fini(void)
_manager = NULL;
}
int ttm_pool_populate(struct ttm_tt *ttm)
{
struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
unsigned i;
int ret;
if (ttm->state != tt_unpopulated)
return 0;
for (i = 0; i < ttm->num_pages; ++i) {
ret = ttm_get_pages(&ttm->pages[i], 1,
ttm->page_flags,
ttm->caching_state);
if (ret != 0) {
ttm_pool_unpopulate(ttm);
return -ENOMEM;
}
ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
false, false);
if (unlikely(ret != 0)) {
ttm_pool_unpopulate(ttm);
return -ENOMEM;
}
}
if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
ret = ttm_tt_swapin(ttm);
if (unlikely(ret != 0)) {
ttm_pool_unpopulate(ttm);
return ret;
}
}
ttm->state = tt_unbound;
return 0;
}
EXPORT_SYMBOL(ttm_pool_populate);
void ttm_pool_unpopulate(struct ttm_tt *ttm)
{
unsigned i;
for (i = 0; i < ttm->num_pages; ++i) {
if (ttm->pages[i]) {
ttm_mem_global_free_page(ttm->glob->mem_glob,
ttm->pages[i]);
ttm_put_pages(&ttm->pages[i], 1,
ttm->page_flags,
ttm->caching_state);
}
}
ttm->state = tt_unpopulated;
}
EXPORT_SYMBOL(ttm_pool_unpopulate);
int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
{
struct ttm_page_pool *p;
......
此差异已折叠。
......@@ -43,139 +43,20 @@
#include "ttm/ttm_placement.h"
#include "ttm/ttm_page_alloc.h"
static int ttm_tt_swapin(struct ttm_tt *ttm);
/**
* Allocates storage for pointers to the pages that back the ttm.
*/
static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
{
ttm->pages = drm_calloc_large(ttm->num_pages, sizeof(*ttm->pages));
ttm->dma_address = drm_calloc_large(ttm->num_pages,
sizeof(*ttm->dma_address));
}
static void ttm_tt_free_page_directory(struct ttm_tt *ttm)
{
drm_free_large(ttm->pages);
ttm->pages = NULL;
drm_free_large(ttm->dma_address);
ttm->dma_address = NULL;
}
static void ttm_tt_free_user_pages(struct ttm_tt *ttm)
{
int write;
int dirty;
struct page *page;
int i;
struct ttm_backend *be = ttm->be;
BUG_ON(!(ttm->page_flags & TTM_PAGE_FLAG_USER));
write = ((ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0);
dirty = ((ttm->page_flags & TTM_PAGE_FLAG_USER_DIRTY) != 0);
if (be)
be->func->clear(be);
for (i = 0; i < ttm->num_pages; ++i) {
page = ttm->pages[i];
if (page == NULL)
continue;
if (page == ttm->dummy_read_page) {
BUG_ON(write);
continue;
}
if (write && dirty && !PageReserved(page))
set_page_dirty_lock(page);
ttm->pages[i] = NULL;
ttm_mem_global_free(ttm->glob->mem_glob, PAGE_SIZE);
put_page(page);
}
ttm->state = tt_unpopulated;
ttm->first_himem_page = ttm->num_pages;
ttm->last_lomem_page = -1;
}
static struct page *__ttm_tt_get_page(struct ttm_tt *ttm, int index)
{
struct page *p;
struct list_head h;
struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
int ret;
while (NULL == (p = ttm->pages[index])) {
INIT_LIST_HEAD(&h);
ret = ttm_get_pages(&h, ttm->page_flags, ttm->caching_state, 1,
&ttm->dma_address[index]);
if (ret != 0)
return NULL;
p = list_first_entry(&h, struct page, lru);
ret = ttm_mem_global_alloc_page(mem_glob, p, false, false);
if (unlikely(ret != 0))
goto out_err;
if (PageHighMem(p))
ttm->pages[--ttm->first_himem_page] = p;
else
ttm->pages[++ttm->last_lomem_page] = p;
}
return p;
out_err:
put_page(p);
return NULL;
}
struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index)
{
int ret;
if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
ret = ttm_tt_swapin(ttm);
if (unlikely(ret != 0))
return NULL;
}
return __ttm_tt_get_page(ttm, index);
ttm->pages = drm_calloc_large(ttm->num_pages, sizeof(void*));
}
int ttm_tt_populate(struct ttm_tt *ttm)
static void ttm_dma_tt_alloc_page_directory(struct ttm_dma_tt *ttm)
{
struct page *page;
unsigned long i;
struct ttm_backend *be;
int ret;
if (ttm->state != tt_unpopulated)
return 0;
if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
ret = ttm_tt_swapin(ttm);
if (unlikely(ret != 0))
return ret;
}
be = ttm->be;
for (i = 0; i < ttm->num_pages; ++i) {
page = __ttm_tt_get_page(ttm, i);
if (!page)
return -ENOMEM;
}
be->func->populate(be, ttm->num_pages, ttm->pages,
ttm->dummy_read_page, ttm->dma_address);
ttm->state = tt_unbound;
return 0;
ttm->ttm.pages = drm_calloc_large(ttm->ttm.num_pages, sizeof(void*));
ttm->dma_address = drm_calloc_large(ttm->ttm.num_pages,
sizeof(*ttm->dma_address));
}
EXPORT_SYMBOL(ttm_tt_populate);
#ifdef CONFIG_X86
static inline int ttm_tt_set_page_caching(struct page *p,
......@@ -278,153 +159,98 @@ int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
}
EXPORT_SYMBOL(ttm_tt_set_placement_caching);
static void ttm_tt_free_alloced_pages(struct ttm_tt *ttm)
{
int i;
unsigned count = 0;
struct list_head h;
struct page *cur_page;
struct ttm_backend *be = ttm->be;
INIT_LIST_HEAD(&h);
if (be)
be->func->clear(be);
for (i = 0; i < ttm->num_pages; ++i) {
cur_page = ttm->pages[i];
ttm->pages[i] = NULL;
if (cur_page) {
if (page_count(cur_page) != 1)
printk(KERN_ERR TTM_PFX
"Erroneous page count. "
"Leaking pages.\n");
ttm_mem_global_free_page(ttm->glob->mem_glob,
cur_page);
list_add(&cur_page->lru, &h);
count++;
}
}
ttm_put_pages(&h, count, ttm->page_flags, ttm->caching_state,
ttm->dma_address);
ttm->state = tt_unpopulated;
ttm->first_himem_page = ttm->num_pages;
ttm->last_lomem_page = -1;
}
void ttm_tt_destroy(struct ttm_tt *ttm)
{
struct ttm_backend *be;
if (unlikely(ttm == NULL))
return;
be = ttm->be;
if (likely(be != NULL)) {
be->func->destroy(be);
ttm->be = NULL;
if (ttm->state == tt_bound) {
ttm_tt_unbind(ttm);
}
if (likely(ttm->pages != NULL)) {
if (ttm->page_flags & TTM_PAGE_FLAG_USER)
ttm_tt_free_user_pages(ttm);
else
ttm_tt_free_alloced_pages(ttm);
ttm_tt_free_page_directory(ttm);
ttm->bdev->driver->ttm_tt_unpopulate(ttm);
}
if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP) &&
ttm->swap_storage)
fput(ttm->swap_storage);
kfree(ttm);
ttm->swap_storage = NULL;
ttm->func->destroy(ttm);
}
int ttm_tt_set_user(struct ttm_tt *ttm,
struct task_struct *tsk,
unsigned long start, unsigned long num_pages)
int ttm_tt_init(struct ttm_tt *ttm, struct ttm_bo_device *bdev,
unsigned long size, uint32_t page_flags,
struct page *dummy_read_page)
{
struct mm_struct *mm = tsk->mm;
int ret;
int write = (ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0;
struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
BUG_ON(num_pages != ttm->num_pages);
BUG_ON((ttm->page_flags & TTM_PAGE_FLAG_USER) == 0);
/**
* Account user pages as lowmem pages for now.
*/
ret = ttm_mem_global_alloc(mem_glob, num_pages * PAGE_SIZE,
false, false);
if (unlikely(ret != 0))
return ret;
down_read(&mm->mmap_sem);
ret = get_user_pages(tsk, mm, start, num_pages,
write, 0, ttm->pages, NULL);
up_read(&mm->mmap_sem);
ttm->bdev = bdev;
ttm->glob = bdev->glob;
ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
ttm->caching_state = tt_cached;
ttm->page_flags = page_flags;
ttm->dummy_read_page = dummy_read_page;
ttm->state = tt_unpopulated;
if (ret != num_pages && write) {
ttm_tt_free_user_pages(ttm);
ttm_mem_global_free(mem_glob, num_pages * PAGE_SIZE);
ttm_tt_alloc_page_directory(ttm);
if (!ttm->pages) {
ttm_tt_destroy(ttm);
printk(KERN_ERR TTM_PFX "Failed allocating page table\n");
return -ENOMEM;
}
ttm->tsk = tsk;
ttm->start = start;
ttm->state = tt_unbound;
return 0;
}
EXPORT_SYMBOL(ttm_tt_init);
struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
uint32_t page_flags, struct page *dummy_read_page)
void ttm_tt_fini(struct ttm_tt *ttm)
{
struct ttm_bo_driver *bo_driver = bdev->driver;
struct ttm_tt *ttm;
if (!bo_driver)
return NULL;
drm_free_large(ttm->pages);
ttm->pages = NULL;
}
EXPORT_SYMBOL(ttm_tt_fini);
ttm = kzalloc(sizeof(*ttm), GFP_KERNEL);
if (!ttm)
return NULL;
int ttm_dma_tt_init(struct ttm_dma_tt *ttm_dma, struct ttm_bo_device *bdev,
unsigned long size, uint32_t page_flags,
struct page *dummy_read_page)
{
struct ttm_tt *ttm = &ttm_dma->ttm;
ttm->bdev = bdev;
ttm->glob = bdev->glob;
ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
ttm->first_himem_page = ttm->num_pages;
ttm->last_lomem_page = -1;
ttm->caching_state = tt_cached;
ttm->page_flags = page_flags;
ttm->dummy_read_page = dummy_read_page;
ttm->state = tt_unpopulated;
ttm_tt_alloc_page_directory(ttm);
if (!ttm->pages) {
INIT_LIST_HEAD(&ttm_dma->pages_list);
ttm_dma_tt_alloc_page_directory(ttm_dma);
if (!ttm->pages || !ttm_dma->dma_address) {
ttm_tt_destroy(ttm);
printk(KERN_ERR TTM_PFX "Failed allocating page table\n");
return NULL;
}
ttm->be = bo_driver->create_ttm_backend_entry(bdev);
if (!ttm->be) {
ttm_tt_destroy(ttm);
printk(KERN_ERR TTM_PFX "Failed creating ttm backend entry\n");
return NULL;
return -ENOMEM;
}
ttm->state = tt_unpopulated;
return ttm;
return 0;
}
EXPORT_SYMBOL(ttm_dma_tt_init);
void ttm_dma_tt_fini(struct ttm_dma_tt *ttm_dma)
{
struct ttm_tt *ttm = &ttm_dma->ttm;
drm_free_large(ttm->pages);
ttm->pages = NULL;
drm_free_large(ttm_dma->dma_address);
ttm_dma->dma_address = NULL;
}
EXPORT_SYMBOL(ttm_dma_tt_fini);
void ttm_tt_unbind(struct ttm_tt *ttm)
{
int ret;
struct ttm_backend *be = ttm->be;
if (ttm->state == tt_bound) {
ret = be->func->unbind(be);
ret = ttm->func->unbind(ttm);
BUG_ON(ret);
ttm->state = tt_unbound;
}
......@@ -433,7 +259,6 @@ void ttm_tt_unbind(struct ttm_tt *ttm)
int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
{
int ret = 0;
struct ttm_backend *be;
if (!ttm)
return -EINVAL;
......@@ -441,25 +266,21 @@ int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
if (ttm->state == tt_bound)
return 0;
be = ttm->be;
ret = ttm_tt_populate(ttm);
ret = ttm->bdev->driver->ttm_tt_populate(ttm);
if (ret)
return ret;
ret = be->func->bind(be, bo_mem);
ret = ttm->func->bind(ttm, bo_mem);
if (unlikely(ret != 0))
return ret;
ttm->state = tt_bound;
if (ttm->page_flags & TTM_PAGE_FLAG_USER)
ttm->page_flags |= TTM_PAGE_FLAG_USER_DIRTY;
return 0;
}
EXPORT_SYMBOL(ttm_tt_bind);
static int ttm_tt_swapin(struct ttm_tt *ttm)
int ttm_tt_swapin(struct ttm_tt *ttm)
{
struct address_space *swap_space;
struct file *swap_storage;
......@@ -470,16 +291,6 @@ static int ttm_tt_swapin(struct ttm_tt *ttm)
int i;
int ret = -ENOMEM;
if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
ret = ttm_tt_set_user(ttm, ttm->tsk, ttm->start,
ttm->num_pages);
if (unlikely(ret != 0))
return ret;
ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
return 0;
}
swap_storage = ttm->swap_storage;
BUG_ON(swap_storage == NULL);
......@@ -491,7 +302,7 @@ static int ttm_tt_swapin(struct ttm_tt *ttm)
ret = PTR_ERR(from_page);
goto out_err;
}
to_page = __ttm_tt_get_page(ttm, i);
to_page = ttm->pages[i];
if (unlikely(to_page == NULL))
goto out_err;
......@@ -512,7 +323,6 @@ static int ttm_tt_swapin(struct ttm_tt *ttm)
return 0;
out_err:
ttm_tt_free_alloced_pages(ttm);
return ret;
}
......@@ -530,18 +340,6 @@ int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistent_swap_storage)
BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
BUG_ON(ttm->caching_state != tt_cached);
/*
* For user buffers, just unpin the pages, as there should be
* vma references.
*/
if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
ttm_tt_free_user_pages(ttm);
ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
ttm->swap_storage = NULL;
return 0;
}
if (!persistent_swap_storage) {
swap_storage = shmem_file_setup("ttm swap",
ttm->num_pages << PAGE_SHIFT,
......@@ -576,7 +374,7 @@ int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistent_swap_storage)
page_cache_release(to_page);
}
ttm_tt_free_alloced_pages(ttm);
ttm->bdev->driver->ttm_tt_unpopulate(ttm);
ttm->swap_storage = swap_storage;
ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
if (persistent_swap_storage)
......
......@@ -28,6 +28,7 @@
#include "vmwgfx_drv.h"
#include "ttm/ttm_bo_driver.h"
#include "ttm/ttm_placement.h"
#include "ttm/ttm_page_alloc.h"
static uint32_t vram_placement_flags = TTM_PL_FLAG_VRAM |
TTM_PL_FLAG_CACHED;
......@@ -139,85 +140,63 @@ struct ttm_placement vmw_srf_placement = {
.busy_placement = gmr_vram_placement_flags
};
struct vmw_ttm_backend {
struct ttm_backend backend;
struct page **pages;
unsigned long num_pages;
struct vmw_ttm_tt {
struct ttm_tt ttm;
struct vmw_private *dev_priv;
int gmr_id;
};
static int vmw_ttm_populate(struct ttm_backend *backend,
unsigned long num_pages, struct page **pages,
struct page *dummy_read_page,
dma_addr_t *dma_addrs)
static int vmw_ttm_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
{
struct vmw_ttm_backend *vmw_be =
container_of(backend, struct vmw_ttm_backend, backend);
vmw_be->pages = pages;
vmw_be->num_pages = num_pages;
return 0;
}
static int vmw_ttm_bind(struct ttm_backend *backend, struct ttm_mem_reg *bo_mem)
{
struct vmw_ttm_backend *vmw_be =
container_of(backend, struct vmw_ttm_backend, backend);
struct vmw_ttm_tt *vmw_be = container_of(ttm, struct vmw_ttm_tt, ttm);
vmw_be->gmr_id = bo_mem->start;
return vmw_gmr_bind(vmw_be->dev_priv, vmw_be->pages,
vmw_be->num_pages, vmw_be->gmr_id);
return vmw_gmr_bind(vmw_be->dev_priv, ttm->pages,
ttm->num_pages, vmw_be->gmr_id);
}
static int vmw_ttm_unbind(struct ttm_backend *backend)
static int vmw_ttm_unbind(struct ttm_tt *ttm)
{
struct vmw_ttm_backend *vmw_be =
container_of(backend, struct vmw_ttm_backend, backend);
struct vmw_ttm_tt *vmw_be = container_of(ttm, struct vmw_ttm_tt, ttm);
vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
return 0;
}
static void vmw_ttm_clear(struct ttm_backend *backend)
static void vmw_ttm_destroy(struct ttm_tt *ttm)
{
struct vmw_ttm_backend *vmw_be =
container_of(backend, struct vmw_ttm_backend, backend);
vmw_be->pages = NULL;
vmw_be->num_pages = 0;
}
static void vmw_ttm_destroy(struct ttm_backend *backend)
{
struct vmw_ttm_backend *vmw_be =
container_of(backend, struct vmw_ttm_backend, backend);
struct vmw_ttm_tt *vmw_be = container_of(ttm, struct vmw_ttm_tt, ttm);
ttm_tt_fini(ttm);
kfree(vmw_be);
}
static struct ttm_backend_func vmw_ttm_func = {
.populate = vmw_ttm_populate,
.clear = vmw_ttm_clear,
.bind = vmw_ttm_bind,
.unbind = vmw_ttm_unbind,
.destroy = vmw_ttm_destroy,
};
struct ttm_backend *vmw_ttm_backend_init(struct ttm_bo_device *bdev)
struct ttm_tt *vmw_ttm_tt_create(struct ttm_bo_device *bdev,
unsigned long size, uint32_t page_flags,
struct page *dummy_read_page)
{
struct vmw_ttm_backend *vmw_be;
struct vmw_ttm_tt *vmw_be;
vmw_be = kmalloc(sizeof(*vmw_be), GFP_KERNEL);
if (!vmw_be)
return NULL;
vmw_be->backend.func = &vmw_ttm_func;
vmw_be->ttm.func = &vmw_ttm_func;
vmw_be->dev_priv = container_of(bdev, struct vmw_private, bdev);
return &vmw_be->backend;
if (ttm_tt_init(&vmw_be->ttm, bdev, size, page_flags, dummy_read_page)) {
kfree(vmw_be);
return NULL;
}
return &vmw_be->ttm;
}
int vmw_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
......@@ -357,7 +336,9 @@ static int vmw_sync_obj_wait(void *sync_obj, void *sync_arg,
}
struct ttm_bo_driver vmw_bo_driver = {
.create_ttm_backend_entry = vmw_ttm_backend_init,
.ttm_tt_create = &vmw_ttm_tt_create,
.ttm_tt_populate = &ttm_pool_populate,
.ttm_tt_unpopulate = &ttm_pool_unpopulate,
.invalidate_caches = vmw_invalidate_caches,
.init_mem_type = vmw_init_mem_type,
.evict_flags = vmw_evict_flags,
......
......@@ -1517,29 +1517,10 @@ int vmw_surface_check(struct vmw_private *dev_priv,
/**
* Buffer management.
*/
static size_t vmw_dmabuf_acc_size(struct ttm_bo_global *glob,
unsigned long num_pages)
{
static size_t bo_user_size = ~0;
size_t page_array_size =
(num_pages * sizeof(void *) + PAGE_SIZE - 1) & PAGE_MASK;
if (unlikely(bo_user_size == ~0)) {
bo_user_size = glob->ttm_bo_extra_size +
ttm_round_pot(sizeof(struct vmw_dma_buffer));
}
return bo_user_size + page_array_size;
}
void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
{
struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
struct ttm_bo_global *glob = bo->glob;
ttm_mem_global_free(glob->mem_glob, bo->acc_size);
kfree(vmw_bo);
}
......@@ -1550,24 +1531,12 @@ int vmw_dmabuf_init(struct vmw_private *dev_priv,
void (*bo_free) (struct ttm_buffer_object *bo))
{
struct ttm_bo_device *bdev = &dev_priv->bdev;
struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
size_t acc_size;
int ret;
BUG_ON(!bo_free);
acc_size =
vmw_dmabuf_acc_size(bdev->glob,
(size + PAGE_SIZE - 1) >> PAGE_SHIFT);
ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
if (unlikely(ret != 0)) {
/* we must free the bo here as
* ttm_buffer_object_init does so as well */
bo_free(&vmw_bo->base);
return ret;
}
acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct vmw_dma_buffer));
memset(vmw_bo, 0, sizeof(*vmw_bo));
INIT_LIST_HEAD(&vmw_bo->validate_list);
......@@ -1582,9 +1551,7 @@ int vmw_dmabuf_init(struct vmw_private *dev_priv,
static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
{
struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
struct ttm_bo_global *glob = bo->glob;
ttm_mem_global_free(glob->mem_glob, bo->acc_size);
kfree(vmw_user_bo);
}
......
......@@ -153,7 +153,7 @@ void __init xen_swiotlb_init(int verbose)
char *m = NULL;
unsigned int repeat = 3;
nr_tbl = swioltb_nr_tbl();
nr_tbl = swiotlb_nr_tbl();
if (nr_tbl)
xen_io_tlb_nslabs = nr_tbl;
else {
......
......@@ -122,17 +122,12 @@ struct ttm_mem_reg {
* be mmapped by user space. Each of these bos occupy a slot in the
* device address space, that can be used for normal vm operations.
*
* @ttm_bo_type_user: These are user-space memory areas that are made
* available to the GPU by mapping the buffer pages into the GPU aperture
* space. These buffers cannot be mmaped from the device address space.
*
* @ttm_bo_type_kernel: These buffers are like ttm_bo_type_device buffers,
* but they cannot be accessed from user-space. For kernel-only use.
*/
enum ttm_bo_type {
ttm_bo_type_device,
ttm_bo_type_user,
ttm_bo_type_kernel
};
......@@ -434,9 +429,9 @@ extern void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev,
* -EBUSY if the buffer is busy and no_wait is true.
* -ERESTARTSYS if interrupted by a signal.
*/
extern int
ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait);
/**
* ttm_bo_synccpu_write_release:
*
......@@ -446,6 +441,22 @@ ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait);
*/
extern void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo);
/**
* ttm_bo_acc_size
*
* @bdev: Pointer to a ttm_bo_device struct.
* @bo_size: size of the buffer object in byte.
* @struct_size: size of the structure holding buffer object datas
*
* Returns size to account for a buffer object
*/
size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
unsigned long bo_size,
unsigned struct_size);
size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
unsigned long bo_size,
unsigned struct_size);
/**
* ttm_bo_init
*
......@@ -493,6 +504,7 @@ extern int ttm_bo_init(struct ttm_bo_device *bdev,
struct file *persistent_swap_storage,
size_t acc_size,
void (*destroy) (struct ttm_buffer_object *));
/**
* ttm_bo_synccpu_object_init
*
......
......@@ -42,37 +42,10 @@
struct ttm_backend;
struct ttm_backend_func {
/**
* struct ttm_backend_func member populate
*
* @backend: Pointer to a struct ttm_backend.
* @num_pages: Number of pages to populate.
* @pages: Array of pointers to ttm pages.
* @dummy_read_page: Page to be used instead of NULL pages in the
* array @pages.
* @dma_addrs: Array of DMA (bus) address of the ttm pages.
*
* Populate the backend with ttm pages. Depending on the backend,
* it may or may not copy the @pages array.
*/
int (*populate) (struct ttm_backend *backend,
unsigned long num_pages, struct page **pages,
struct page *dummy_read_page,
dma_addr_t *dma_addrs);
/**
* struct ttm_backend_func member clear
*
* @backend: Pointer to a struct ttm_backend.
*
* This is an "unpopulate" function. Release all resources
* allocated with populate.
*/
void (*clear) (struct ttm_backend *backend);
/**
* struct ttm_backend_func member bind
*
* @backend: Pointer to a struct ttm_backend.
* @ttm: Pointer to a struct ttm_tt.
* @bo_mem: Pointer to a struct ttm_mem_reg describing the
* memory type and location for binding.
*
......@@ -80,46 +53,29 @@ struct ttm_backend_func {
* indicated by @bo_mem. This function should be able to handle
* differences between aperture and system page sizes.
*/
int (*bind) (struct ttm_backend *backend, struct ttm_mem_reg *bo_mem);
int (*bind) (struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem);
/**
* struct ttm_backend_func member unbind
*
* @backend: Pointer to a struct ttm_backend.
* @ttm: Pointer to a struct ttm_tt.
*
* Unbind previously bound backend pages. This function should be
* able to handle differences between aperture and system page sizes.
*/
int (*unbind) (struct ttm_backend *backend);
int (*unbind) (struct ttm_tt *ttm);
/**
* struct ttm_backend_func member destroy
*
* @backend: Pointer to a struct ttm_backend.
* @ttm: Pointer to a struct ttm_tt.
*
* Destroy the backend.
* Destroy the backend. This will be call back from ttm_tt_destroy so
* don't call ttm_tt_destroy from the callback or infinite loop.
*/
void (*destroy) (struct ttm_backend *backend);
};
/**
* struct ttm_backend
*
* @bdev: Pointer to a struct ttm_bo_device.
* @flags: For driver use.
* @func: Pointer to a struct ttm_backend_func that describes
* the backend methods.
*
*/
struct ttm_backend {
struct ttm_bo_device *bdev;
uint32_t flags;
struct ttm_backend_func *func;
void (*destroy) (struct ttm_tt *ttm);
};
#define TTM_PAGE_FLAG_USER (1 << 1)
#define TTM_PAGE_FLAG_USER_DIRTY (1 << 2)
#define TTM_PAGE_FLAG_WRITE (1 << 3)
#define TTM_PAGE_FLAG_SWAPPED (1 << 4)
#define TTM_PAGE_FLAG_PERSISTENT_SWAP (1 << 5)
......@@ -135,23 +91,18 @@ enum ttm_caching_state {
/**
* struct ttm_tt
*
* @bdev: Pointer to a struct ttm_bo_device.
* @func: Pointer to a struct ttm_backend_func that describes
* the backend methods.
* @dummy_read_page: Page to map where the ttm_tt page array contains a NULL
* pointer.
* @pages: Array of pages backing the data.
* @first_himem_page: Himem pages are put last in the page array, which
* enables us to run caching attribute changes on only the first part
* of the page array containing lomem pages. This is the index of the
* first himem page.
* @last_lomem_page: Index of the last lomem page in the page array.
* @num_pages: Number of pages in the page array.
* @bdev: Pointer to the current struct ttm_bo_device.
* @be: Pointer to the ttm backend.
* @tsk: The task for user ttm.
* @start: virtual address for user ttm.
* @swap_storage: Pointer to shmem struct file for swap storage.
* @caching_state: The current caching state of the pages.
* @state: The current binding state of the pages.
* @dma_address: The DMA (bus) addresses of the pages (if TTM_PAGE_FLAG_DMA32)
*
* This is a structure holding the pages, caching- and aperture binding
* status for a buffer object that isn't backed by fixed (VRAM / AGP)
......@@ -159,16 +110,14 @@ enum ttm_caching_state {
*/
struct ttm_tt {
struct ttm_bo_device *bdev;
struct ttm_backend_func *func;
struct page *dummy_read_page;
struct page **pages;
long first_himem_page;
long last_lomem_page;
uint32_t page_flags;
unsigned long num_pages;
struct ttm_bo_global *glob;
struct ttm_backend *be;
struct task_struct *tsk;
unsigned long start;
struct file *swap_storage;
enum ttm_caching_state caching_state;
enum {
......@@ -176,7 +125,23 @@ struct ttm_tt {
tt_unbound,
tt_unpopulated,
} state;
};
/**
* struct ttm_dma_tt
*
* @ttm: Base ttm_tt struct.
* @dma_address: The DMA (bus) addresses of the pages
* @pages_list: used by some page allocation backend
*
* This is a structure holding the pages, caching- and aperture binding
* status for a buffer object that isn't backed by fixed (VRAM / AGP)
* memory.
*/
struct ttm_dma_tt {
struct ttm_tt ttm;
dma_addr_t *dma_address;
struct list_head pages_list;
};
#define TTM_MEMTYPE_FLAG_FIXED (1 << 0) /* Fixed (on-card) PCI memory */
......@@ -351,15 +316,42 @@ struct ttm_mem_type_manager {
struct ttm_bo_driver {
/**
* struct ttm_bo_driver member create_ttm_backend_entry
* ttm_tt_create
*
* @bdev: The buffer object device.
* @bdev: pointer to a struct ttm_bo_device:
* @size: Size of the data needed backing.
* @page_flags: Page flags as identified by TTM_PAGE_FLAG_XX flags.
* @dummy_read_page: See struct ttm_bo_device.
*
* Create a driver specific struct ttm_backend.
* Create a struct ttm_tt to back data with system memory pages.
* No pages are actually allocated.
* Returns:
* NULL: Out of memory.
*/
struct ttm_tt *(*ttm_tt_create)(struct ttm_bo_device *bdev,
unsigned long size,
uint32_t page_flags,
struct page *dummy_read_page);
struct ttm_backend *(*create_ttm_backend_entry)
(struct ttm_bo_device *bdev);
/**
* ttm_tt_populate
*
* @ttm: The struct ttm_tt to contain the backing pages.
*
* Allocate all backing pages
* Returns:
* -ENOMEM: Out of memory.
*/
int (*ttm_tt_populate)(struct ttm_tt *ttm);
/**
* ttm_tt_unpopulate
*
* @ttm: The struct ttm_tt to contain the backing pages.
*
* Free all backing page
*/
void (*ttm_tt_unpopulate)(struct ttm_tt *ttm);
/**
* struct ttm_bo_driver member invalidate_caches
......@@ -477,9 +469,6 @@ struct ttm_bo_global_ref {
* @dummy_read_page: Pointer to a dummy page used for mapping requests
* of unpopulated pages.
* @shrink: A shrink callback object used for buffer object swap.
* @ttm_bo_extra_size: Extra size (sizeof(struct ttm_buffer_object) excluded)
* used by a buffer object. This is excluding page arrays and backing pages.
* @ttm_bo_size: This is @ttm_bo_extra_size + sizeof(struct ttm_buffer_object).
* @device_list_mutex: Mutex protecting the device list.
* This mutex is held while traversing the device list for pm options.
* @lru_lock: Spinlock protecting the bo subsystem lru lists.
......@@ -497,8 +486,6 @@ struct ttm_bo_global {
struct ttm_mem_global *mem_glob;
struct page *dummy_read_page;
struct ttm_mem_shrink shrink;
size_t ttm_bo_extra_size;
size_t ttm_bo_size;
struct mutex device_list_mutex;
spinlock_t lru_lock;
......@@ -600,8 +587,9 @@ ttm_flag_masked(uint32_t *old, uint32_t new, uint32_t mask)
}
/**
* ttm_tt_create
* ttm_tt_init
*
* @ttm: The struct ttm_tt.
* @bdev: pointer to a struct ttm_bo_device:
* @size: Size of the data needed backing.
* @page_flags: Page flags as identified by TTM_PAGE_FLAG_XX flags.
......@@ -612,28 +600,22 @@ ttm_flag_masked(uint32_t *old, uint32_t new, uint32_t mask)
* Returns:
* NULL: Out of memory.
*/
extern struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev,
unsigned long size,
uint32_t page_flags,
struct page *dummy_read_page);
extern int ttm_tt_init(struct ttm_tt *ttm, struct ttm_bo_device *bdev,
unsigned long size, uint32_t page_flags,
struct page *dummy_read_page);
extern int ttm_dma_tt_init(struct ttm_dma_tt *ttm_dma, struct ttm_bo_device *bdev,
unsigned long size, uint32_t page_flags,
struct page *dummy_read_page);
/**
* ttm_tt_set_user:
* ttm_tt_fini
*
* @ttm: The struct ttm_tt to populate.
* @tsk: A struct task_struct for which @start is a valid user-space address.
* @start: A valid user-space address.
* @num_pages: Size in pages of the user memory area.
* @ttm: the ttm_tt structure.
*
* Populate a struct ttm_tt with a user-space memory area after first pinning
* the pages backing it.
* Returns:
* !0: Error.
* Free memory of ttm_tt structure
*/
extern int ttm_tt_set_user(struct ttm_tt *ttm,
struct task_struct *tsk,
unsigned long start, unsigned long num_pages);
extern void ttm_tt_fini(struct ttm_tt *ttm);
extern void ttm_dma_tt_fini(struct ttm_dma_tt *ttm_dma);
/**
* ttm_ttm_bind:
......@@ -645,21 +627,12 @@ extern int ttm_tt_set_user(struct ttm_tt *ttm,
*/
extern int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem);
/**
* ttm_tt_populate:
*
* @ttm: The struct ttm_tt to contain the backing pages.
*
* Add backing pages to all of @ttm
*/
extern int ttm_tt_populate(struct ttm_tt *ttm);
/**
* ttm_ttm_destroy:
*
* @ttm: The struct ttm_tt.
*
* Unbind, unpopulate and destroy a struct ttm_tt.
* Unbind, unpopulate and destroy common struct ttm_tt.
*/
extern void ttm_tt_destroy(struct ttm_tt *ttm);
......@@ -673,19 +646,13 @@ extern void ttm_tt_destroy(struct ttm_tt *ttm);
extern void ttm_tt_unbind(struct ttm_tt *ttm);
/**
* ttm_ttm_destroy:
* ttm_tt_swapin:
*
* @ttm: The struct ttm_tt.
* @index: Index of the desired page.
*
* Return a pointer to the struct page backing @ttm at page
* index @index. If the page is unpopulated, one will be allocated to
* populate that index.
*
* Returns:
* NULL on OOM.
* Swap in a previously swap out ttm_tt.
*/
extern struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index);
extern int ttm_tt_swapin(struct ttm_tt *ttm);
/**
* ttm_tt_cache_flush:
......@@ -1046,17 +1013,23 @@ extern const struct ttm_mem_type_manager_func ttm_bo_manager_func;
#include <linux/agp_backend.h>
/**
* ttm_agp_backend_init
* ttm_agp_tt_create
*
* @bdev: Pointer to a struct ttm_bo_device.
* @bridge: The agp bridge this device is sitting on.
* @size: Size of the data needed backing.
* @page_flags: Page flags as identified by TTM_PAGE_FLAG_XX flags.
* @dummy_read_page: See struct ttm_bo_device.
*
*
* Create a TTM backend that uses the indicated AGP bridge as an aperture
* for TT memory. This function uses the linux agpgart interface to
* bind and unbind memory backing a ttm_tt.
*/
extern struct ttm_backend *ttm_agp_backend_init(struct ttm_bo_device *bdev,
struct agp_bridge_data *bridge);
extern struct ttm_tt *ttm_agp_tt_create(struct ttm_bo_device *bdev,
struct agp_bridge_data *bridge,
unsigned long size, uint32_t page_flags,
struct page *dummy_read_page);
#endif
#endif
......@@ -30,45 +30,70 @@
#include "ttm_memory.h"
/**
* Get count number of pages from pool to pages list.
* Initialize pool allocator.
*/
int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages);
/**
* Free pool allocator.
*/
void ttm_page_alloc_fini(void);
/**
* ttm_pool_populate:
*
* @ttm: The struct ttm_tt to contain the backing pages.
*
* @pages: head of empty linked list where pages are filled.
* @flags: ttm flags for page allocation.
* @cstate: ttm caching state for the page.
* @count: number of pages to allocate.
* @dma_address: The DMA (bus) address of pages (if TTM_PAGE_FLAG_DMA32 set).
* Add backing pages to all of @ttm
*/
int ttm_get_pages(struct list_head *pages,
int flags,
enum ttm_caching_state cstate,
unsigned count,
dma_addr_t *dma_address);
extern int ttm_pool_populate(struct ttm_tt *ttm);
/**
* Put linked list of pages to pool.
* ttm_pool_unpopulate:
*
* @ttm: The struct ttm_tt which to free backing pages.
*
* @pages: list of pages to free.
* @page_count: number of pages in the list. Zero can be passed for unknown
* count.
* @flags: ttm flags for page allocation.
* @cstate: ttm caching state.
* @dma_address: The DMA (bus) address of pages (if TTM_PAGE_FLAG_DMA32 set).
* Free all pages of @ttm
*/
void ttm_put_pages(struct list_head *pages,
unsigned page_count,
int flags,
enum ttm_caching_state cstate,
dma_addr_t *dma_address);
extern void ttm_pool_unpopulate(struct ttm_tt *ttm);
/**
* Output the state of pools to debugfs file
*/
extern int ttm_page_alloc_debugfs(struct seq_file *m, void *data);
#ifdef CONFIG_SWIOTLB
/**
* Initialize pool allocator.
*/
int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages);
int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages);
/**
* Free pool allocator.
*/
void ttm_page_alloc_fini(void);
void ttm_dma_page_alloc_fini(void);
/**
* Output the state of pools to debugfs file
*/
extern int ttm_page_alloc_debugfs(struct seq_file *m, void *data);
extern int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data);
extern int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev);
extern void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev);
#else
static inline int ttm_dma_page_alloc_init(struct ttm_mem_global *glob,
unsigned max_pages)
{
return -ENODEV;
}
static inline void ttm_dma_page_alloc_fini(void) { return; }
static inline int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
{
return 0;
}
#endif
#endif
......@@ -24,7 +24,7 @@ extern int swiotlb_force;
extern void swiotlb_init(int verbose);
extern void swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose);
extern unsigned long swioltb_nr_tbl(void);
extern unsigned long swiotlb_nr_tbl(void);
/*
* Enumeration for sync targets
......
......@@ -110,11 +110,11 @@ setup_io_tlb_npages(char *str)
__setup("swiotlb=", setup_io_tlb_npages);
/* make io_tlb_overflow tunable too? */
unsigned long swioltb_nr_tbl(void)
unsigned long swiotlb_nr_tbl(void)
{
return io_tlb_nslabs;
}
EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
/* Note that this doesn't work with highmem page */
static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
volatile void *address)
......@@ -321,6 +321,7 @@ void __init swiotlb_free(void)
free_bootmem_late(__pa(io_tlb_start),
PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
}
io_tlb_nslabs = 0;
}
static int is_swiotlb_buffer(phys_addr_t paddr)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册