提交 2ba68940 编写于 作者: L Linus Torvalds

Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler changes for v3.4 from Ingo Molnar

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
  printk: Make it compile with !CONFIG_PRINTK
  sched/x86: Fix overflow in cyc2ns_offset
  sched: Fix nohz load accounting -- again!
  sched: Update yield() docs
  printk/sched: Introduce special printk_sched() for those awkward moments
  sched/nohz: Correctly initialize 'next_balance' in 'nohz' idle balancer
  sched: Cleanup cpu_active madness
  sched: Fix load-balance wreckage
  sched: Clean up parameter passing of proc_sched_autogroup_set_nice()
  sched: Ditch per cgroup task lists for load-balancing
  sched: Rename load-balancing fields
  sched: Move load-balancing arguments into helper struct
  sched/rt: Do not submit new work when PI-blocked
  sched/rt: Prevent idle task boosting
  sched/wait: Add __wake_up_all_locked() API
  sched/rt: Document scheduler related skip-resched-check sites
  sched/rt: Use schedule_preempt_disabled()
  sched/rt: Add schedule_preempt_disabled()
  sched/rt: Do not throttle when PI boosting
  sched/rt: Keep period timer ticking when rt throttling is active
  ...
...@@ -38,7 +38,8 @@ First field is a sched_yield() statistic: ...@@ -38,7 +38,8 @@ First field is a sched_yield() statistic:
1) # of times sched_yield() was called 1) # of times sched_yield() was called
Next three are schedule() statistics: Next three are schedule() statistics:
2) # of times we switched to the expired queue and reused it 2) This field is a legacy array expiration count field used in the O(1)
scheduler. We kept it for ABI compatibility, but it is always set to zero.
3) # of times schedule() was called 3) # of times schedule() was called
4) # of times schedule() left the processor idle 4) # of times schedule() left the processor idle
......
...@@ -239,9 +239,7 @@ void cpu_idle(void) ...@@ -239,9 +239,7 @@ void cpu_idle(void)
leds_event(led_idle_end); leds_event(led_idle_end);
rcu_idle_exit(); rcu_idle_exit();
tick_nohz_idle_exit(); tick_nohz_idle_exit();
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -295,13 +295,6 @@ asmlinkage void __cpuinit secondary_start_kernel(void) ...@@ -295,13 +295,6 @@ asmlinkage void __cpuinit secondary_start_kernel(void)
*/ */
percpu_timer_setup(); percpu_timer_setup();
while (!cpu_active(cpu))
cpu_relax();
/*
* cpu_active bit is set, so it's safe to enalbe interrupts
* now.
*/
local_irq_enable(); local_irq_enable();
local_fiq_enable(); local_fiq_enable();
......
...@@ -40,9 +40,7 @@ void cpu_idle(void) ...@@ -40,9 +40,7 @@ void cpu_idle(void)
cpu_idle_sleep(); cpu_idle_sleep();
rcu_idle_exit(); rcu_idle_exit();
tick_nohz_idle_exit(); tick_nohz_idle_exit();
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -94,9 +94,7 @@ void cpu_idle(void) ...@@ -94,9 +94,7 @@ void cpu_idle(void)
idle(); idle();
rcu_idle_exit(); rcu_idle_exit();
tick_nohz_idle_exit(); tick_nohz_idle_exit();
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -115,9 +115,7 @@ void cpu_idle (void) ...@@ -115,9 +115,7 @@ void cpu_idle (void)
idle = default_idle; idle = default_idle;
idle(); idle();
} }
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -92,9 +92,7 @@ void cpu_idle(void) ...@@ -92,9 +92,7 @@ void cpu_idle(void)
idle(); idle();
} }
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -81,9 +81,7 @@ void cpu_idle(void) ...@@ -81,9 +81,7 @@ void cpu_idle(void)
while (1) { while (1) {
while (!need_resched()) while (!need_resched())
idle(); idle();
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -179,8 +179,6 @@ void __cpuinit start_secondary(void) ...@@ -179,8 +179,6 @@ void __cpuinit start_secondary(void)
printk(KERN_INFO "%s cpu %d\n", __func__, current_thread_info()->cpu); printk(KERN_INFO "%s cpu %d\n", __func__, current_thread_info()->cpu);
set_cpu_online(cpu, true); set_cpu_online(cpu, true);
while (!cpumask_test_cpu(cpu, cpu_active_mask))
cpu_relax();
local_irq_enable(); local_irq_enable();
cpu_idle(); cpu_idle();
......
...@@ -330,9 +330,7 @@ cpu_idle (void) ...@@ -330,9 +330,7 @@ cpu_idle (void)
normal_xtp(); normal_xtp();
#endif #endif
} }
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
check_pgt_cache(); check_pgt_cache();
if (cpu_is_offline(cpu)) if (cpu_is_offline(cpu))
play_dead(); play_dead();
......
...@@ -90,9 +90,7 @@ void cpu_idle (void) ...@@ -90,9 +90,7 @@ void cpu_idle (void)
idle(); idle();
} }
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -78,9 +78,7 @@ void cpu_idle(void) ...@@ -78,9 +78,7 @@ void cpu_idle(void)
while (1) { while (1) {
while (!need_resched()) while (!need_resched())
idle(); idle();
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -73,9 +73,7 @@ void cpu_idle(void) ...@@ -73,9 +73,7 @@ void cpu_idle(void)
/* endless idle loop with no priority at all */ /* endless idle loop with no priority at all */
while (1) { while (1) {
idle(); idle();
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -110,9 +110,7 @@ void cpu_idle(void) ...@@ -110,9 +110,7 @@ void cpu_idle(void)
rcu_idle_exit(); rcu_idle_exit();
tick_nohz_idle_exit(); tick_nohz_idle_exit();
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
check_pgt_cache(); check_pgt_cache();
} }
} }
......
...@@ -80,9 +80,7 @@ void __noreturn cpu_idle(void) ...@@ -80,9 +80,7 @@ void __noreturn cpu_idle(void)
#endif #endif
rcu_idle_exit(); rcu_idle_exit();
tick_nohz_idle_exit(); tick_nohz_idle_exit();
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -123,9 +123,7 @@ void cpu_idle(void) ...@@ -123,9 +123,7 @@ void cpu_idle(void)
idle(); idle();
} }
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -71,9 +71,7 @@ void cpu_idle(void) ...@@ -71,9 +71,7 @@ void cpu_idle(void)
while (1) { while (1) {
while (!need_resched()) while (!need_resched())
barrier(); barrier();
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
check_pgt_cache(); check_pgt_cache();
} }
} }
......
...@@ -101,11 +101,11 @@ void cpu_idle(void) ...@@ -101,11 +101,11 @@ void cpu_idle(void)
ppc64_runlatch_on(); ppc64_runlatch_on();
rcu_idle_exit(); rcu_idle_exit();
tick_nohz_idle_exit(); tick_nohz_idle_exit();
preempt_enable_no_resched(); if (cpu_should_die()) {
if (cpu_should_die()) sched_preempt_enable_no_resched();
cpu_die(); cpu_die();
schedule(); }
preempt_disable(); schedule_preempt_disabled();
} }
} }
......
...@@ -584,9 +584,7 @@ static void iseries_shared_idle(void) ...@@ -584,9 +584,7 @@ static void iseries_shared_idle(void)
if (hvlpevent_is_pending()) if (hvlpevent_is_pending())
process_iSeries_events(); process_iSeries_events();
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
...@@ -615,9 +613,7 @@ static void iseries_dedicated_idle(void) ...@@ -615,9 +613,7 @@ static void iseries_dedicated_idle(void)
ppc64_runlatch_on(); ppc64_runlatch_on();
rcu_idle_exit(); rcu_idle_exit();
tick_nohz_idle_exit(); tick_nohz_idle_exit();
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -97,9 +97,7 @@ void cpu_idle(void) ...@@ -97,9 +97,7 @@ void cpu_idle(void)
tick_nohz_idle_exit(); tick_nohz_idle_exit();
if (test_thread_flag(TIF_MCCK_PENDING)) if (test_thread_flag(TIF_MCCK_PENDING))
s390_handle_mcck(); s390_handle_mcck();
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -550,12 +550,6 @@ int __cpuinit start_secondary(void *cpuvoid) ...@@ -550,12 +550,6 @@ int __cpuinit start_secondary(void *cpuvoid)
S390_lowcore.restart_psw.addr = S390_lowcore.restart_psw.addr =
PSW_ADDR_AMODE | (unsigned long) psw_restart_int_handler; PSW_ADDR_AMODE | (unsigned long) psw_restart_int_handler;
__ctl_set_bit(0, 28); /* Enable lowcore protection */ __ctl_set_bit(0, 28); /* Enable lowcore protection */
/*
* Wait until the cpu which brought this one up marked it
* active before enabling interrupts.
*/
while (!cpumask_test_cpu(smp_processor_id(), cpu_active_mask))
cpu_relax();
local_irq_enable(); local_irq_enable();
/* cpu_idle will call schedule for us */ /* cpu_idle will call schedule for us */
cpu_idle(); cpu_idle();
......
...@@ -53,9 +53,7 @@ void __noreturn cpu_idle(void) ...@@ -53,9 +53,7 @@ void __noreturn cpu_idle(void)
while (!need_resched()) while (!need_resched())
barrier(); barrier();
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -114,9 +114,7 @@ void cpu_idle(void) ...@@ -114,9 +114,7 @@ void cpu_idle(void)
rcu_idle_exit(); rcu_idle_exit();
tick_nohz_idle_exit(); tick_nohz_idle_exit();
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -113,9 +113,7 @@ void cpu_idle(void) ...@@ -113,9 +113,7 @@ void cpu_idle(void)
while (!need_resched()) while (!need_resched())
cpu_relax(); cpu_relax();
} }
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
check_pgt_cache(); check_pgt_cache();
} }
} }
...@@ -138,9 +136,7 @@ void cpu_idle(void) ...@@ -138,9 +136,7 @@ void cpu_idle(void)
while (!need_resched()) while (!need_resched())
cpu_relax(); cpu_relax();
} }
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
check_pgt_cache(); check_pgt_cache();
} }
} }
......
...@@ -104,15 +104,13 @@ void cpu_idle(void) ...@@ -104,15 +104,13 @@ void cpu_idle(void)
rcu_idle_exit(); rcu_idle_exit();
tick_nohz_idle_exit(); tick_nohz_idle_exit();
preempt_enable_no_resched();
#ifdef CONFIG_HOTPLUG_CPU #ifdef CONFIG_HOTPLUG_CPU
if (cpu_is_offline(cpu)) if (cpu_is_offline(cpu)) {
sched_preempt_enable_no_resched();
cpu_play_dead(); cpu_play_dead();
}
#endif #endif
schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -108,9 +108,7 @@ void cpu_idle(void) ...@@ -108,9 +108,7 @@ void cpu_idle(void)
} }
rcu_idle_exit(); rcu_idle_exit();
tick_nohz_idle_exit(); tick_nohz_idle_exit();
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -57,14 +57,10 @@ DECLARE_PER_CPU(unsigned long long, cyc2ns_offset); ...@@ -57,14 +57,10 @@ DECLARE_PER_CPU(unsigned long long, cyc2ns_offset);
static inline unsigned long long __cycles_2_ns(unsigned long long cyc) static inline unsigned long long __cycles_2_ns(unsigned long long cyc)
{ {
unsigned long long quot;
unsigned long long rem;
int cpu = smp_processor_id(); int cpu = smp_processor_id();
unsigned long long ns = per_cpu(cyc2ns_offset, cpu); unsigned long long ns = per_cpu(cyc2ns_offset, cpu);
quot = (cyc >> CYC2NS_SCALE_FACTOR); ns += mult_frac(cyc, per_cpu(cyc2ns, cpu),
rem = cyc & ((1ULL << CYC2NS_SCALE_FACTOR) - 1); (1UL << CYC2NS_SCALE_FACTOR));
ns += quot * per_cpu(cyc2ns, cpu) +
((rem * per_cpu(cyc2ns, cpu)) >> CYC2NS_SCALE_FACTOR);
return ns; return ns;
} }
......
...@@ -119,9 +119,7 @@ void cpu_idle(void) ...@@ -119,9 +119,7 @@ void cpu_idle(void)
} }
rcu_idle_exit(); rcu_idle_exit();
tick_nohz_idle_exit(); tick_nohz_idle_exit();
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -156,9 +156,7 @@ void cpu_idle(void) ...@@ -156,9 +156,7 @@ void cpu_idle(void)
} }
tick_nohz_idle_exit(); tick_nohz_idle_exit();
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -291,19 +291,6 @@ notrace static void __cpuinit start_secondary(void *unused) ...@@ -291,19 +291,6 @@ notrace static void __cpuinit start_secondary(void *unused)
per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
x86_platform.nmi_init(); x86_platform.nmi_init();
/*
* Wait until the cpu which brought this one up marked it
* online before enabling interrupts. If we don't do that then
* we can end up waking up the softirq thread before this cpu
* reached the active state, which makes the scheduler unhappy
* and schedule the softirq thread on the wrong cpu. This is
* only observable with forced threaded interrupts, but in
* theory it could also happen w/o them. It's just way harder
* to achieve.
*/
while (!cpumask_test_cpu(smp_processor_id(), cpu_active_mask))
cpu_relax();
/* enable local interrupts */ /* enable local interrupts */
local_irq_enable(); local_irq_enable();
......
...@@ -620,7 +620,8 @@ static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) ...@@ -620,7 +620,8 @@ static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
if (cpu_khz) { if (cpu_khz) {
*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz; *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
*offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR); *offset = ns_now - mult_frac(tsc_now, *scale,
(1UL << CYC2NS_SCALE_FACTOR));
} }
sched_clock_idle_wakeup_event(0); sched_clock_idle_wakeup_event(0);
......
...@@ -113,9 +113,7 @@ void cpu_idle(void) ...@@ -113,9 +113,7 @@ void cpu_idle(void)
while (1) { while (1) {
while (!need_resched()) while (!need_resched())
platform_idle(); platform_idle();
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
} }
......
...@@ -8,6 +8,7 @@ ...@@ -8,6 +8,7 @@
#include <linux/blkdev.h> #include <linux/blkdev.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/cpu.h> #include <linux/cpu.h>
#include <linux/sched.h>
#include "blk.h" #include "blk.h"
...@@ -103,9 +104,10 @@ static struct notifier_block __cpuinitdata blk_cpu_notifier = { ...@@ -103,9 +104,10 @@ static struct notifier_block __cpuinitdata blk_cpu_notifier = {
void __blk_complete_request(struct request *req) void __blk_complete_request(struct request *req)
{ {
int ccpu, cpu, group_cpu = NR_CPUS; int ccpu, cpu;
struct request_queue *q = req->q; struct request_queue *q = req->q;
unsigned long flags; unsigned long flags;
bool shared = false;
BUG_ON(!q->softirq_done_fn); BUG_ON(!q->softirq_done_fn);
...@@ -117,22 +119,20 @@ void __blk_complete_request(struct request *req) ...@@ -117,22 +119,20 @@ void __blk_complete_request(struct request *req)
*/ */
if (req->cpu != -1) { if (req->cpu != -1) {
ccpu = req->cpu; ccpu = req->cpu;
if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags)) { if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
ccpu = blk_cpu_to_group(ccpu); shared = cpus_share_cache(cpu, ccpu);
group_cpu = blk_cpu_to_group(cpu);
}
} else } else
ccpu = cpu; ccpu = cpu;
/* /*
* If current CPU and requested CPU are in the same group, running * If current CPU and requested CPU share a cache, run the softirq on
* softirq in current CPU. One might concern this is just like * the current CPU. One might concern this is just like
* QUEUE_FLAG_SAME_FORCE, but actually not. blk_complete_request() is * QUEUE_FLAG_SAME_FORCE, but actually not. blk_complete_request() is
* running in interrupt handler, and currently I/O controller doesn't * running in interrupt handler, and currently I/O controller doesn't
* support multiple interrupts, so current CPU is unique actually. This * support multiple interrupts, so current CPU is unique actually. This
* avoids IPI sending from current CPU to the first CPU of a group. * avoids IPI sending from current CPU to the first CPU of a group.
*/ */
if (ccpu == cpu || ccpu == group_cpu) { if (ccpu == cpu || shared) {
struct list_head *list; struct list_head *list;
do_local: do_local:
list = &__get_cpu_var(blk_cpu_done); list = &__get_cpu_var(blk_cpu_done);
......
...@@ -166,22 +166,6 @@ static inline int queue_congestion_off_threshold(struct request_queue *q) ...@@ -166,22 +166,6 @@ static inline int queue_congestion_off_threshold(struct request_queue *q)
return q->nr_congestion_off; return q->nr_congestion_off;
} }
static inline int blk_cpu_to_group(int cpu)
{
int group = NR_CPUS;
#ifdef CONFIG_SCHED_MC
const struct cpumask *mask = cpu_coregroup_mask(cpu);
group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_SMT)
group = cpumask_first(topology_thread_cpumask(cpu));
#else
return cpu;
#endif
if (likely(group < NR_CPUS))
return group;
return cpu;
}
/* /*
* Contribute to IO statistics IFF: * Contribute to IO statistics IFF:
* *
......
...@@ -1310,8 +1310,7 @@ sched_autogroup_write(struct file *file, const char __user *buf, ...@@ -1310,8 +1310,7 @@ sched_autogroup_write(struct file *file, const char __user *buf,
if (!p) if (!p)
return -ESRCH; return -ESRCH;
err = nice; err = proc_sched_autogroup_set_nice(p, nice);
err = proc_sched_autogroup_set_nice(p, &err);
if (err) if (err)
count = err; count = err;
......
...@@ -149,7 +149,7 @@ extern struct cred init_cred; ...@@ -149,7 +149,7 @@ extern struct cred init_cred;
}, \ }, \
.rt = { \ .rt = { \
.run_list = LIST_HEAD_INIT(tsk.rt.run_list), \ .run_list = LIST_HEAD_INIT(tsk.rt.run_list), \
.time_slice = HZ, \ .time_slice = RR_TIMESLICE, \
.nr_cpus_allowed = NR_CPUS, \ .nr_cpus_allowed = NR_CPUS, \
}, \ }, \
.tasks = LIST_HEAD_INIT(tsk.tasks), \ .tasks = LIST_HEAD_INIT(tsk.tasks), \
......
...@@ -85,6 +85,19 @@ ...@@ -85,6 +85,19 @@
} \ } \
) )
/*
* Multiplies an integer by a fraction, while avoiding unnecessary
* overflow or loss of precision.
*/
#define mult_frac(x, numer, denom)( \
{ \
typeof(x) quot = (x) / (denom); \
typeof(x) rem = (x) % (denom); \
(quot * (numer)) + ((rem * (numer)) / (denom)); \
} \
)
#define _RET_IP_ (unsigned long)__builtin_return_address(0) #define _RET_IP_ (unsigned long)__builtin_return_address(0)
#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; })
......
...@@ -48,12 +48,14 @@ do { \ ...@@ -48,12 +48,14 @@ do { \
barrier(); \ barrier(); \
} while (0) } while (0)
#define preempt_enable_no_resched() \ #define sched_preempt_enable_no_resched() \
do { \ do { \
barrier(); \ barrier(); \
dec_preempt_count(); \ dec_preempt_count(); \
} while (0) } while (0)
#define preempt_enable_no_resched() sched_preempt_enable_no_resched()
#define preempt_enable() \ #define preempt_enable() \
do { \ do { \
preempt_enable_no_resched(); \ preempt_enable_no_resched(); \
...@@ -92,6 +94,7 @@ do { \ ...@@ -92,6 +94,7 @@ do { \
#else /* !CONFIG_PREEMPT_COUNT */ #else /* !CONFIG_PREEMPT_COUNT */
#define preempt_disable() do { } while (0) #define preempt_disable() do { } while (0)
#define sched_preempt_enable_no_resched() do { } while (0)
#define preempt_enable_no_resched() do { } while (0) #define preempt_enable_no_resched() do { } while (0)
#define preempt_enable() do { } while (0) #define preempt_enable() do { } while (0)
......
...@@ -100,6 +100,11 @@ int vprintk(const char *fmt, va_list args); ...@@ -100,6 +100,11 @@ int vprintk(const char *fmt, va_list args);
asmlinkage __printf(1, 2) __cold asmlinkage __printf(1, 2) __cold
int printk(const char *fmt, ...); int printk(const char *fmt, ...);
/*
* Special printk facility for scheduler use only, _DO_NOT_USE_ !
*/
__printf(1, 2) __cold int printk_sched(const char *fmt, ...);
/* /*
* Please don't use printk_ratelimit(), because it shares ratelimiting state * Please don't use printk_ratelimit(), because it shares ratelimiting state
* with all other unrelated printk_ratelimit() callsites. Instead use * with all other unrelated printk_ratelimit() callsites. Instead use
...@@ -127,6 +132,11 @@ int printk(const char *s, ...) ...@@ -127,6 +132,11 @@ int printk(const char *s, ...)
{ {
return 0; return 0;
} }
static inline __printf(1, 2) __cold
int printk_sched(const char *s, ...)
{
return 0;
}
static inline int printk_ratelimit(void) static inline int printk_ratelimit(void)
{ {
return 0; return 0;
......
...@@ -361,6 +361,7 @@ extern signed long schedule_timeout_interruptible(signed long timeout); ...@@ -361,6 +361,7 @@ extern signed long schedule_timeout_interruptible(signed long timeout);
extern signed long schedule_timeout_killable(signed long timeout); extern signed long schedule_timeout_killable(signed long timeout);
extern signed long schedule_timeout_uninterruptible(signed long timeout); extern signed long schedule_timeout_uninterruptible(signed long timeout);
asmlinkage void schedule(void); asmlinkage void schedule(void);
extern void schedule_preempt_disabled(void);
extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner); extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
struct nsproxy; struct nsproxy;
...@@ -905,6 +906,7 @@ struct sched_group_power { ...@@ -905,6 +906,7 @@ struct sched_group_power {
* single CPU. * single CPU.
*/ */
unsigned int power, power_orig; unsigned int power, power_orig;
unsigned long next_update;
/* /*
* Number of busy cpus in this group. * Number of busy cpus in this group.
*/ */
...@@ -1052,6 +1054,8 @@ static inline int test_sd_parent(struct sched_domain *sd, int flag) ...@@ -1052,6 +1054,8 @@ static inline int test_sd_parent(struct sched_domain *sd, int flag)
unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
bool cpus_share_cache(int this_cpu, int that_cpu);
#else /* CONFIG_SMP */ #else /* CONFIG_SMP */
struct sched_domain_attr; struct sched_domain_attr;
...@@ -1061,6 +1065,12 @@ partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], ...@@ -1061,6 +1065,12 @@ partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
struct sched_domain_attr *dattr_new) struct sched_domain_attr *dattr_new)
{ {
} }
static inline bool cpus_share_cache(int this_cpu, int that_cpu)
{
return true;
}
#endif /* !CONFIG_SMP */ #endif /* !CONFIG_SMP */
...@@ -1225,6 +1235,12 @@ struct sched_rt_entity { ...@@ -1225,6 +1235,12 @@ struct sched_rt_entity {
#endif #endif
}; };
/*
* default timeslice is 100 msecs (used only for SCHED_RR tasks).
* Timeslices get refilled after they expire.
*/
#define RR_TIMESLICE (100 * HZ / 1000)
struct rcu_node; struct rcu_node;
enum perf_event_task_context { enum perf_event_task_context {
...@@ -2047,7 +2063,7 @@ extern void sched_autogroup_fork(struct signal_struct *sig); ...@@ -2047,7 +2063,7 @@ extern void sched_autogroup_fork(struct signal_struct *sig);
extern void sched_autogroup_exit(struct signal_struct *sig); extern void sched_autogroup_exit(struct signal_struct *sig);
#ifdef CONFIG_PROC_FS #ifdef CONFIG_PROC_FS
extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice); extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
#endif #endif
#else #else
static inline void sched_autogroup_create_attach(struct task_struct *p) { } static inline void sched_autogroup_create_attach(struct task_struct *p) { }
...@@ -2064,12 +2080,20 @@ extern unsigned int sysctl_sched_cfs_bandwidth_slice; ...@@ -2064,12 +2080,20 @@ extern unsigned int sysctl_sched_cfs_bandwidth_slice;
extern int rt_mutex_getprio(struct task_struct *p); extern int rt_mutex_getprio(struct task_struct *p);
extern void rt_mutex_setprio(struct task_struct *p, int prio); extern void rt_mutex_setprio(struct task_struct *p, int prio);
extern void rt_mutex_adjust_pi(struct task_struct *p); extern void rt_mutex_adjust_pi(struct task_struct *p);
static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
{
return tsk->pi_blocked_on != NULL;
}
#else #else
static inline int rt_mutex_getprio(struct task_struct *p) static inline int rt_mutex_getprio(struct task_struct *p)
{ {
return p->normal_prio; return p->normal_prio;
} }
# define rt_mutex_adjust_pi(p) do { } while (0) # define rt_mutex_adjust_pi(p) do { } while (0)
static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
{
return false;
}
#endif #endif
extern bool yield_to(struct task_struct *p, bool preempt); extern bool yield_to(struct task_struct *p, bool preempt);
...@@ -2388,12 +2412,15 @@ static inline void task_unlock(struct task_struct *p) ...@@ -2388,12 +2412,15 @@ static inline void task_unlock(struct task_struct *p)
extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
unsigned long *flags); unsigned long *flags);
#define lock_task_sighand(tsk, flags) \ static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
({ struct sighand_struct *__ss; \ unsigned long *flags)
__cond_lock(&(tsk)->sighand->siglock, \ {
(__ss = __lock_task_sighand(tsk, flags))); \ struct sighand_struct *ret;
__ss; \
}) \ ret = __lock_task_sighand(tsk, flags);
(void)__cond_lock(&tsk->sighand->siglock, ret);
return ret;
}
static inline void unlock_task_sighand(struct task_struct *tsk, static inline void unlock_task_sighand(struct task_struct *tsk,
unsigned long *flags) unsigned long *flags)
......
...@@ -157,7 +157,7 @@ void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr, void *key); ...@@ -157,7 +157,7 @@ void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key); void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key);
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr, void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr,
void *key); void *key);
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode); void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr);
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr); void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr);
void __wake_up_bit(wait_queue_head_t *, void *, int); void __wake_up_bit(wait_queue_head_t *, void *, int);
int __wait_on_bit(wait_queue_head_t *, struct wait_bit_queue *, int (*)(void *), unsigned); int __wait_on_bit(wait_queue_head_t *, struct wait_bit_queue *, int (*)(void *), unsigned);
...@@ -170,7 +170,8 @@ wait_queue_head_t *bit_waitqueue(void *, int); ...@@ -170,7 +170,8 @@ wait_queue_head_t *bit_waitqueue(void *, int);
#define wake_up(x) __wake_up(x, TASK_NORMAL, 1, NULL) #define wake_up(x) __wake_up(x, TASK_NORMAL, 1, NULL)
#define wake_up_nr(x, nr) __wake_up(x, TASK_NORMAL, nr, NULL) #define wake_up_nr(x, nr) __wake_up(x, TASK_NORMAL, nr, NULL)
#define wake_up_all(x) __wake_up(x, TASK_NORMAL, 0, NULL) #define wake_up_all(x) __wake_up(x, TASK_NORMAL, 0, NULL)
#define wake_up_locked(x) __wake_up_locked((x), TASK_NORMAL) #define wake_up_locked(x) __wake_up_locked((x), TASK_NORMAL, 1)
#define wake_up_all_locked(x) __wake_up_locked((x), TASK_NORMAL, 0)
#define wake_up_interruptible(x) __wake_up(x, TASK_INTERRUPTIBLE, 1, NULL) #define wake_up_interruptible(x) __wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
#define wake_up_interruptible_nr(x, nr) __wake_up(x, TASK_INTERRUPTIBLE, nr, NULL) #define wake_up_interruptible_nr(x, nr) __wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)
......
...@@ -374,11 +374,8 @@ static noinline void __init_refok rest_init(void) ...@@ -374,11 +374,8 @@ static noinline void __init_refok rest_init(void)
* at least once to get things moving: * at least once to get things moving:
*/ */
init_idle_bootup_task(current); init_idle_bootup_task(current);
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
/* Call into cpu_idle with preempt disabled */ /* Call into cpu_idle with preempt disabled */
preempt_disable();
cpu_idle(); cpu_idle();
} }
......
...@@ -240,9 +240,7 @@ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, ...@@ -240,9 +240,7 @@ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
/* didn't get the lock, go to sleep: */ /* didn't get the lock, go to sleep: */
spin_unlock_mutex(&lock->wait_lock, flags); spin_unlock_mutex(&lock->wait_lock, flags);
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
spin_lock_mutex(&lock->wait_lock, flags); spin_lock_mutex(&lock->wait_lock, flags);
} }
......
...@@ -1216,13 +1216,27 @@ int is_console_locked(void) ...@@ -1216,13 +1216,27 @@ int is_console_locked(void)
return console_locked; return console_locked;
} }
/*
* Delayed printk facility, for scheduler-internal messages:
*/
#define PRINTK_BUF_SIZE 512
#define PRINTK_PENDING_WAKEUP 0x01
#define PRINTK_PENDING_SCHED 0x02
static DEFINE_PER_CPU(int, printk_pending); static DEFINE_PER_CPU(int, printk_pending);
static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
void printk_tick(void) void printk_tick(void)
{ {
if (__this_cpu_read(printk_pending)) { if (__this_cpu_read(printk_pending)) {
__this_cpu_write(printk_pending, 0); int pending = __this_cpu_xchg(printk_pending, 0);
wake_up_interruptible(&log_wait); if (pending & PRINTK_PENDING_SCHED) {
char *buf = __get_cpu_var(printk_sched_buf);
printk(KERN_WARNING "[sched_delayed] %s", buf);
}
if (pending & PRINTK_PENDING_WAKEUP)
wake_up_interruptible(&log_wait);
} }
} }
...@@ -1236,7 +1250,7 @@ int printk_needs_cpu(int cpu) ...@@ -1236,7 +1250,7 @@ int printk_needs_cpu(int cpu)
void wake_up_klogd(void) void wake_up_klogd(void)
{ {
if (waitqueue_active(&log_wait)) if (waitqueue_active(&log_wait))
this_cpu_write(printk_pending, 1); this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
} }
/** /**
...@@ -1629,6 +1643,26 @@ late_initcall(printk_late_init); ...@@ -1629,6 +1643,26 @@ late_initcall(printk_late_init);
#if defined CONFIG_PRINTK #if defined CONFIG_PRINTK
int printk_sched(const char *fmt, ...)
{
unsigned long flags;
va_list args;
char *buf;
int r;
local_irq_save(flags);
buf = __get_cpu_var(printk_sched_buf);
va_start(args, fmt);
r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
va_end(args);
__this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
local_irq_restore(flags);
return r;
}
/* /*
* printk rate limiting, lifted from the networking subsystem. * printk rate limiting, lifted from the networking subsystem.
* *
......
...@@ -195,20 +195,20 @@ __setup("noautogroup", setup_autogroup); ...@@ -195,20 +195,20 @@ __setup("noautogroup", setup_autogroup);
#ifdef CONFIG_PROC_FS #ifdef CONFIG_PROC_FS
int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice) int proc_sched_autogroup_set_nice(struct task_struct *p, int nice)
{ {
static unsigned long next = INITIAL_JIFFIES; static unsigned long next = INITIAL_JIFFIES;
struct autogroup *ag; struct autogroup *ag;
int err; int err;
if (*nice < -20 || *nice > 19) if (nice < -20 || nice > 19)
return -EINVAL; return -EINVAL;
err = security_task_setnice(current, *nice); err = security_task_setnice(current, nice);
if (err) if (err)
return err; return err;
if (*nice < 0 && !can_nice(current, *nice)) if (nice < 0 && !can_nice(current, nice))
return -EPERM; return -EPERM;
/* this is a heavy operation taking global locks.. */ /* this is a heavy operation taking global locks.. */
...@@ -219,9 +219,9 @@ int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice) ...@@ -219,9 +219,9 @@ int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice)
ag = autogroup_task_get(p); ag = autogroup_task_get(p);
down_write(&ag->lock); down_write(&ag->lock);
err = sched_group_set_shares(ag->tg, prio_to_weight[*nice + 20]); err = sched_group_set_shares(ag->tg, prio_to_weight[nice + 20]);
if (!err) if (!err)
ag->nice = *nice; ag->nice = nice;
up_write(&ag->lock); up_write(&ag->lock);
autogroup_kref_put(ag); autogroup_kref_put(ag);
......
...@@ -1284,7 +1284,7 @@ static int select_fallback_rq(int cpu, struct task_struct *p) ...@@ -1284,7 +1284,7 @@ static int select_fallback_rq(int cpu, struct task_struct *p)
* leave kernel. * leave kernel.
*/ */
if (p->mm && printk_ratelimit()) { if (p->mm && printk_ratelimit()) {
printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n", printk_sched("process %d (%s) no longer affine to cpu%d\n",
task_pid_nr(p), p->comm, cpu); task_pid_nr(p), p->comm, cpu);
} }
...@@ -1507,7 +1507,7 @@ static int ttwu_activate_remote(struct task_struct *p, int wake_flags) ...@@ -1507,7 +1507,7 @@ static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
} }
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
static inline int ttwu_share_cache(int this_cpu, int that_cpu) bool cpus_share_cache(int this_cpu, int that_cpu)
{ {
return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
} }
...@@ -1518,7 +1518,7 @@ static void ttwu_queue(struct task_struct *p, int cpu) ...@@ -1518,7 +1518,7 @@ static void ttwu_queue(struct task_struct *p, int cpu)
struct rq *rq = cpu_rq(cpu); struct rq *rq = cpu_rq(cpu);
#if defined(CONFIG_SMP) #if defined(CONFIG_SMP)
if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) { if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
sched_clock_cpu(cpu); /* sync clocks x-cpu */ sched_clock_cpu(cpu); /* sync clocks x-cpu */
ttwu_queue_remote(p, cpu); ttwu_queue_remote(p, cpu);
return; return;
...@@ -2266,13 +2266,10 @@ calc_load_n(unsigned long load, unsigned long exp, ...@@ -2266,13 +2266,10 @@ calc_load_n(unsigned long load, unsigned long exp,
* Once we've updated the global active value, we need to apply the exponential * Once we've updated the global active value, we need to apply the exponential
* weights adjusted to the number of cycles missed. * weights adjusted to the number of cycles missed.
*/ */
static void calc_global_nohz(unsigned long ticks) static void calc_global_nohz(void)
{ {
long delta, active, n; long delta, active, n;
if (time_before(jiffies, calc_load_update))
return;
/* /*
* If we crossed a calc_load_update boundary, make sure to fold * If we crossed a calc_load_update boundary, make sure to fold
* any pending idle changes, the respective CPUs might have * any pending idle changes, the respective CPUs might have
...@@ -2284,31 +2281,25 @@ static void calc_global_nohz(unsigned long ticks) ...@@ -2284,31 +2281,25 @@ static void calc_global_nohz(unsigned long ticks)
atomic_long_add(delta, &calc_load_tasks); atomic_long_add(delta, &calc_load_tasks);
/* /*
* If we were idle for multiple load cycles, apply them. * It could be the one fold was all it took, we done!
*/ */
if (ticks >= LOAD_FREQ) { if (time_before(jiffies, calc_load_update + 10))
n = ticks / LOAD_FREQ; return;
active = atomic_long_read(&calc_load_tasks); /*
active = active > 0 ? active * FIXED_1 : 0; * Catch-up, fold however many we are behind still
*/
delta = jiffies - calc_load_update - 10;
n = 1 + (delta / LOAD_FREQ);
avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); active = atomic_long_read(&calc_load_tasks);
avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); active = active > 0 ? active * FIXED_1 : 0;
avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
calc_load_update += n * LOAD_FREQ; avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
} avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
/* calc_load_update += n * LOAD_FREQ;
* Its possible the remainder of the above division also crosses
* a LOAD_FREQ period, the regular check in calc_global_load()
* which comes after this will take care of that.
*
* Consider us being 11 ticks before a cycle completion, and us
* sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
* age us 4 cycles, and the test in calc_global_load() will
* pick up the final one.
*/
} }
#else #else
void calc_load_account_idle(struct rq *this_rq) void calc_load_account_idle(struct rq *this_rq)
...@@ -2320,7 +2311,7 @@ static inline long calc_load_fold_idle(void) ...@@ -2320,7 +2311,7 @@ static inline long calc_load_fold_idle(void)
return 0; return 0;
} }
static void calc_global_nohz(unsigned long ticks) static void calc_global_nohz(void)
{ {
} }
#endif #endif
...@@ -2348,8 +2339,6 @@ void calc_global_load(unsigned long ticks) ...@@ -2348,8 +2339,6 @@ void calc_global_load(unsigned long ticks)
{ {
long active; long active;
calc_global_nohz(ticks);
if (time_before(jiffies, calc_load_update + 10)) if (time_before(jiffies, calc_load_update + 10))
return; return;
...@@ -2361,6 +2350,16 @@ void calc_global_load(unsigned long ticks) ...@@ -2361,6 +2350,16 @@ void calc_global_load(unsigned long ticks)
avenrun[2] = calc_load(avenrun[2], EXP_15, active); avenrun[2] = calc_load(avenrun[2], EXP_15, active);
calc_load_update += LOAD_FREQ; calc_load_update += LOAD_FREQ;
/*
* Account one period with whatever state we found before
* folding in the nohz state and ageing the entire idle period.
*
* This avoids loosing a sample when we go idle between
* calc_load_account_active() (10 ticks ago) and now and thus
* under-accounting.
*/
calc_global_nohz();
} }
/* /*
...@@ -3220,14 +3219,14 @@ static void __sched __schedule(void) ...@@ -3220,14 +3219,14 @@ static void __sched __schedule(void)
post_schedule(rq); post_schedule(rq);
preempt_enable_no_resched(); sched_preempt_enable_no_resched();
if (need_resched()) if (need_resched())
goto need_resched; goto need_resched;
} }
static inline void sched_submit_work(struct task_struct *tsk) static inline void sched_submit_work(struct task_struct *tsk)
{ {
if (!tsk->state) if (!tsk->state || tsk_is_pi_blocked(tsk))
return; return;
/* /*
* If we are going to sleep and we have plugged IO queued, * If we are going to sleep and we have plugged IO queued,
...@@ -3246,6 +3245,18 @@ asmlinkage void __sched schedule(void) ...@@ -3246,6 +3245,18 @@ asmlinkage void __sched schedule(void)
} }
EXPORT_SYMBOL(schedule); EXPORT_SYMBOL(schedule);
/**
* schedule_preempt_disabled - called with preemption disabled
*
* Returns with preemption disabled. Note: preempt_count must be 1
*/
void __sched schedule_preempt_disabled(void)
{
sched_preempt_enable_no_resched();
schedule();
preempt_disable();
}
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
static inline bool owner_running(struct mutex *lock, struct task_struct *owner) static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
...@@ -3406,9 +3417,9 @@ EXPORT_SYMBOL(__wake_up); ...@@ -3406,9 +3417,9 @@ EXPORT_SYMBOL(__wake_up);
/* /*
* Same as __wake_up but called with the spinlock in wait_queue_head_t held. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
*/ */
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
{ {
__wake_up_common(q, mode, 1, 0, NULL); __wake_up_common(q, mode, nr, 0, NULL);
} }
EXPORT_SYMBOL_GPL(__wake_up_locked); EXPORT_SYMBOL_GPL(__wake_up_locked);
...@@ -3767,6 +3778,24 @@ void rt_mutex_setprio(struct task_struct *p, int prio) ...@@ -3767,6 +3778,24 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
rq = __task_rq_lock(p); rq = __task_rq_lock(p);
/*
* Idle task boosting is a nono in general. There is one
* exception, when PREEMPT_RT and NOHZ is active:
*
* The idle task calls get_next_timer_interrupt() and holds
* the timer wheel base->lock on the CPU and another CPU wants
* to access the timer (probably to cancel it). We can safely
* ignore the boosting request, as the idle CPU runs this code
* with interrupts disabled and will complete the lock
* protected section without being interrupted. So there is no
* real need to boost.
*/
if (unlikely(p == rq->idle)) {
WARN_ON(p != rq->curr);
WARN_ON(p->pi_blocked_on);
goto out_unlock;
}
trace_sched_pi_setprio(p, prio); trace_sched_pi_setprio(p, prio);
oldprio = p->prio; oldprio = p->prio;
prev_class = p->sched_class; prev_class = p->sched_class;
...@@ -3790,11 +3819,10 @@ void rt_mutex_setprio(struct task_struct *p, int prio) ...@@ -3790,11 +3819,10 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
check_class_changed(rq, p, prev_class, oldprio); check_class_changed(rq, p, prev_class, oldprio);
out_unlock:
__task_rq_unlock(rq); __task_rq_unlock(rq);
} }
#endif #endif
void set_user_nice(struct task_struct *p, long nice) void set_user_nice(struct task_struct *p, long nice)
{ {
int old_prio, delta, on_rq; int old_prio, delta, on_rq;
...@@ -4474,7 +4502,7 @@ SYSCALL_DEFINE0(sched_yield) ...@@ -4474,7 +4502,7 @@ SYSCALL_DEFINE0(sched_yield)
__release(rq->lock); __release(rq->lock);
spin_release(&rq->lock.dep_map, 1, _THIS_IP_); spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
do_raw_spin_unlock(&rq->lock); do_raw_spin_unlock(&rq->lock);
preempt_enable_no_resched(); sched_preempt_enable_no_resched();
schedule(); schedule();
...@@ -4548,8 +4576,24 @@ EXPORT_SYMBOL(__cond_resched_softirq); ...@@ -4548,8 +4576,24 @@ EXPORT_SYMBOL(__cond_resched_softirq);
/** /**
* yield - yield the current processor to other threads. * yield - yield the current processor to other threads.
* *
* This is a shortcut for kernel-space yielding - it marks the * Do not ever use this function, there's a 99% chance you're doing it wrong.
* thread runnable and calls sys_sched_yield(). *
* The scheduler is at all times free to pick the calling task as the most
* eligible task to run, if removing the yield() call from your code breaks
* it, its already broken.
*
* Typical broken usage is:
*
* while (!event)
* yield();
*
* where one assumes that yield() will let 'the other' process run that will
* make event true. If the current task is a SCHED_FIFO task that will never
* happen. Never use yield() as a progress guarantee!!
*
* If you want to use yield() to wait for something, use wait_event().
* If you want to use yield() to be 'nice' for others, use cond_resched().
* If you still want to use yield(), do not!
*/ */
void __sched yield(void) void __sched yield(void)
{ {
...@@ -5381,7 +5425,7 @@ static int __cpuinit sched_cpu_active(struct notifier_block *nfb, ...@@ -5381,7 +5425,7 @@ static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
unsigned long action, void *hcpu) unsigned long action, void *hcpu)
{ {
switch (action & ~CPU_TASKS_FROZEN) { switch (action & ~CPU_TASKS_FROZEN) {
case CPU_ONLINE: case CPU_STARTING:
case CPU_DOWN_FAILED: case CPU_DOWN_FAILED:
set_cpu_active((long)hcpu, true); set_cpu_active((long)hcpu, true);
return NOTIFY_OK; return NOTIFY_OK;
...@@ -5753,7 +5797,7 @@ static void destroy_sched_domains(struct sched_domain *sd, int cpu) ...@@ -5753,7 +5797,7 @@ static void destroy_sched_domains(struct sched_domain *sd, int cpu)
* *
* Also keep a unique ID per domain (we use the first cpu number in * Also keep a unique ID per domain (we use the first cpu number in
* the cpumask of the domain), this allows us to quickly tell if * the cpumask of the domain), this allows us to quickly tell if
* two cpus are in the same cache domain, see ttwu_share_cache(). * two cpus are in the same cache domain, see cpus_share_cache().
*/ */
DEFINE_PER_CPU(struct sched_domain *, sd_llc); DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id); DEFINE_PER_CPU(int, sd_llc_id);
...@@ -6930,6 +6974,9 @@ void __init sched_init(void) ...@@ -6930,6 +6974,9 @@ void __init sched_init(void)
rq->online = 0; rq->online = 0;
rq->idle_stamp = 0; rq->idle_stamp = 0;
rq->avg_idle = 2*sysctl_sched_migration_cost; rq->avg_idle = 2*sysctl_sched_migration_cost;
INIT_LIST_HEAD(&rq->cfs_tasks);
rq_attach_root(rq, &def_root_domain); rq_attach_root(rq, &def_root_domain);
#ifdef CONFIG_NO_HZ #ifdef CONFIG_NO_HZ
rq->nohz_flags = 0; rq->nohz_flags = 0;
......
...@@ -288,7 +288,6 @@ static void print_cpu(struct seq_file *m, int cpu) ...@@ -288,7 +288,6 @@ static void print_cpu(struct seq_file *m, int cpu)
P(yld_count); P(yld_count);
P(sched_switch);
P(sched_count); P(sched_count);
P(sched_goidle); P(sched_goidle);
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
......
...@@ -776,29 +776,16 @@ update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) ...@@ -776,29 +776,16 @@ update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
* Scheduling class queueing methods: * Scheduling class queueing methods:
*/ */
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif
static void static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{ {
update_load_add(&cfs_rq->load, se->load.weight); update_load_add(&cfs_rq->load, se->load.weight);
if (!parent_entity(se)) if (!parent_entity(se))
update_load_add(&rq_of(cfs_rq)->load, se->load.weight); update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
if (entity_is_task(se)) { #ifdef CONFIG_SMP
add_cfs_task_weight(cfs_rq, se->load.weight); if (entity_is_task(se))
list_add(&se->group_node, &cfs_rq->tasks); list_add_tail(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
} #endif
cfs_rq->nr_running++; cfs_rq->nr_running++;
} }
...@@ -808,10 +795,8 @@ account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) ...@@ -808,10 +795,8 @@ account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
update_load_sub(&cfs_rq->load, se->load.weight); update_load_sub(&cfs_rq->load, se->load.weight);
if (!parent_entity(se)) if (!parent_entity(se))
update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
if (entity_is_task(se)) { if (entity_is_task(se))
add_cfs_task_weight(cfs_rq, -se->load.weight);
list_del_init(&se->group_node); list_del_init(&se->group_node);
}
cfs_rq->nr_running--; cfs_rq->nr_running--;
} }
...@@ -2672,8 +2657,6 @@ static int select_idle_sibling(struct task_struct *p, int target) ...@@ -2672,8 +2657,6 @@ static int select_idle_sibling(struct task_struct *p, int target)
/* /*
* Otherwise, iterate the domains and find an elegible idle cpu. * Otherwise, iterate the domains and find an elegible idle cpu.
*/ */
rcu_read_lock();
sd = rcu_dereference(per_cpu(sd_llc, target)); sd = rcu_dereference(per_cpu(sd_llc, target));
for_each_lower_domain(sd) { for_each_lower_domain(sd) {
sg = sd->groups; sg = sd->groups;
...@@ -2695,8 +2678,6 @@ static int select_idle_sibling(struct task_struct *p, int target) ...@@ -2695,8 +2678,6 @@ static int select_idle_sibling(struct task_struct *p, int target)
} while (sg != sd->groups); } while (sg != sd->groups);
} }
done: done:
rcu_read_unlock();
return target; return target;
} }
...@@ -2922,7 +2903,7 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_ ...@@ -2922,7 +2903,7 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_
return; return;
/* /*
* This is possible from callers such as pull_task(), in which we * This is possible from callers such as move_task(), in which we
* unconditionally check_prempt_curr() after an enqueue (which may have * unconditionally check_prempt_curr() after an enqueue (which may have
* lead to a throttle). This both saves work and prevents false * lead to a throttle). This both saves work and prevents false
* next-buddy nomination below. * next-buddy nomination below.
...@@ -3086,17 +3067,39 @@ static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preemp ...@@ -3086,17 +3067,39 @@ static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preemp
* Fair scheduling class load-balancing methods: * Fair scheduling class load-balancing methods:
*/ */
static unsigned long __read_mostly max_load_balance_interval = HZ/10;
#define LBF_ALL_PINNED 0x01
#define LBF_NEED_BREAK 0x02
struct lb_env {
struct sched_domain *sd;
int src_cpu;
struct rq *src_rq;
int dst_cpu;
struct rq *dst_rq;
enum cpu_idle_type idle;
long load_move;
unsigned int flags;
unsigned int loop;
unsigned int loop_break;
unsigned int loop_max;
};
/* /*
* pull_task - move a task from a remote runqueue to the local runqueue. * move_task - move a task from one runqueue to another runqueue.
* Both runqueues must be locked. * Both runqueues must be locked.
*/ */
static void pull_task(struct rq *src_rq, struct task_struct *p, static void move_task(struct task_struct *p, struct lb_env *env)
struct rq *this_rq, int this_cpu)
{ {
deactivate_task(src_rq, p, 0); deactivate_task(env->src_rq, p, 0);
set_task_cpu(p, this_cpu); set_task_cpu(p, env->dst_cpu);
activate_task(this_rq, p, 0); activate_task(env->dst_rq, p, 0);
check_preempt_curr(this_rq, p, 0); check_preempt_curr(env->dst_rq, p, 0);
} }
/* /*
...@@ -3131,19 +3134,11 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) ...@@ -3131,19 +3134,11 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
return delta < (s64)sysctl_sched_migration_cost; return delta < (s64)sysctl_sched_migration_cost;
} }
#define LBF_ALL_PINNED 0x01
#define LBF_NEED_BREAK 0x02 /* clears into HAD_BREAK */
#define LBF_HAD_BREAK 0x04
#define LBF_HAD_BREAKS 0x0C /* count HAD_BREAKs overflows into ABORT */
#define LBF_ABORT 0x10
/* /*
* can_migrate_task - may task p from runqueue rq be migrated to this_cpu? * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
*/ */
static static
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, int can_migrate_task(struct task_struct *p, struct lb_env *env)
struct sched_domain *sd, enum cpu_idle_type idle,
int *lb_flags)
{ {
int tsk_cache_hot = 0; int tsk_cache_hot = 0;
/* /*
...@@ -3152,13 +3147,13 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, ...@@ -3152,13 +3147,13 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
* 2) cannot be migrated to this CPU due to cpus_allowed, or * 2) cannot be migrated to this CPU due to cpus_allowed, or
* 3) are cache-hot on their current CPU. * 3) are cache-hot on their current CPU.
*/ */
if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) { if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
schedstat_inc(p, se.statistics.nr_failed_migrations_affine); schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
return 0; return 0;
} }
*lb_flags &= ~LBF_ALL_PINNED; env->flags &= ~LBF_ALL_PINNED;
if (task_running(rq, p)) { if (task_running(env->src_rq, p)) {
schedstat_inc(p, se.statistics.nr_failed_migrations_running); schedstat_inc(p, se.statistics.nr_failed_migrations_running);
return 0; return 0;
} }
...@@ -3169,12 +3164,12 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, ...@@ -3169,12 +3164,12 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
* 2) too many balance attempts have failed. * 2) too many balance attempts have failed.
*/ */
tsk_cache_hot = task_hot(p, rq->clock_task, sd); tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
if (!tsk_cache_hot || if (!tsk_cache_hot ||
sd->nr_balance_failed > sd->cache_nice_tries) { env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
#ifdef CONFIG_SCHEDSTATS #ifdef CONFIG_SCHEDSTATS
if (tsk_cache_hot) { if (tsk_cache_hot) {
schedstat_inc(sd, lb_hot_gained[idle]); schedstat_inc(env->sd, lb_hot_gained[env->idle]);
schedstat_inc(p, se.statistics.nr_forced_migrations); schedstat_inc(p, se.statistics.nr_forced_migrations);
} }
#endif #endif
...@@ -3195,65 +3190,80 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, ...@@ -3195,65 +3190,80 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
* *
* Called with both runqueues locked. * Called with both runqueues locked.
*/ */
static int static int move_one_task(struct lb_env *env)
move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
struct sched_domain *sd, enum cpu_idle_type idle)
{ {
struct task_struct *p, *n; struct task_struct *p, *n;
struct cfs_rq *cfs_rq;
int pinned = 0;
for_each_leaf_cfs_rq(busiest, cfs_rq) { list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) { if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
if (throttled_lb_pair(task_group(p), continue;
busiest->cpu, this_cpu))
break;
if (!can_migrate_task(p, busiest, this_cpu, if (!can_migrate_task(p, env))
sd, idle, &pinned)) continue;
continue;
pull_task(busiest, p, this_rq, this_cpu); move_task(p, env);
/* /*
* Right now, this is only the second place pull_task() * Right now, this is only the second place move_task()
* is called, so we can safely collect pull_task() * is called, so we can safely collect move_task()
* stats here rather than inside pull_task(). * stats here rather than inside move_task().
*/ */
schedstat_inc(sd, lb_gained[idle]); schedstat_inc(env->sd, lb_gained[env->idle]);
return 1; return 1;
}
} }
return 0; return 0;
} }
static unsigned long static unsigned long task_h_load(struct task_struct *p);
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_load_move, struct sched_domain *sd, /*
enum cpu_idle_type idle, int *lb_flags, * move_tasks tries to move up to load_move weighted load from busiest to
struct cfs_rq *busiest_cfs_rq) * this_rq, as part of a balancing operation within domain "sd".
* Returns 1 if successful and 0 otherwise.
*
* Called with both runqueues locked.
*/
static int move_tasks(struct lb_env *env)
{ {
int loops = 0, pulled = 0; struct list_head *tasks = &env->src_rq->cfs_tasks;
long rem_load_move = max_load_move; struct task_struct *p;
struct task_struct *p, *n; unsigned long load;
int pulled = 0;
if (env->load_move <= 0)
return 0;
if (max_load_move == 0) while (!list_empty(tasks)) {
goto out; p = list_first_entry(tasks, struct task_struct, se.group_node);
list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) { env->loop++;
if (loops++ > sysctl_sched_nr_migrate) { /* We've more or less seen every task there is, call it quits */
*lb_flags |= LBF_NEED_BREAK; if (env->loop > env->loop_max)
break;
/* take a breather every nr_migrate tasks */
if (env->loop > env->loop_break) {
env->loop_break += sysctl_sched_nr_migrate;
env->flags |= LBF_NEED_BREAK;
break; break;
} }
if ((p->se.load.weight >> 1) > rem_load_move || if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
!can_migrate_task(p, busiest, this_cpu, sd, idle, goto next;
lb_flags))
continue; load = task_h_load(p);
if (load < 16 && !env->sd->nr_balance_failed)
goto next;
if ((load / 2) > env->load_move)
goto next;
pull_task(busiest, p, this_rq, this_cpu); if (!can_migrate_task(p, env))
goto next;
move_task(p, env);
pulled++; pulled++;
rem_load_move -= p->se.load.weight; env->load_move -= load;
#ifdef CONFIG_PREEMPT #ifdef CONFIG_PREEMPT
/* /*
...@@ -3261,28 +3271,30 @@ balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, ...@@ -3261,28 +3271,30 @@ balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
* kernels will stop after the first task is pulled to minimize * kernels will stop after the first task is pulled to minimize
* the critical section. * the critical section.
*/ */
if (idle == CPU_NEWLY_IDLE) { if (env->idle == CPU_NEWLY_IDLE)
*lb_flags |= LBF_ABORT;
break; break;
}
#endif #endif
/* /*
* We only want to steal up to the prescribed amount of * We only want to steal up to the prescribed amount of
* weighted load. * weighted load.
*/ */
if (rem_load_move <= 0) if (env->load_move <= 0)
break; break;
continue;
next:
list_move_tail(&p->se.group_node, tasks);
} }
out:
/* /*
* Right now, this is one of only two places pull_task() is called, * Right now, this is one of only two places move_task() is called,
* so we can safely collect pull_task() stats here rather than * so we can safely collect move_task() stats here rather than
* inside pull_task(). * inside move_task().
*/ */
schedstat_add(sd, lb_gained[idle], pulled); schedstat_add(env->sd, lb_gained[env->idle], pulled);
return max_load_move - rem_load_move; return pulled;
} }
#ifdef CONFIG_FAIR_GROUP_SCHED #ifdef CONFIG_FAIR_GROUP_SCHED
...@@ -3362,113 +3374,35 @@ static int tg_load_down(struct task_group *tg, void *data) ...@@ -3362,113 +3374,35 @@ static int tg_load_down(struct task_group *tg, void *data)
static void update_h_load(long cpu) static void update_h_load(long cpu)
{ {
rcu_read_lock();
walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
rcu_read_unlock();
} }
static unsigned long static unsigned long task_h_load(struct task_struct *p)
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_load_move,
struct sched_domain *sd, enum cpu_idle_type idle,
int *lb_flags)
{ {
long rem_load_move = max_load_move; struct cfs_rq *cfs_rq = task_cfs_rq(p);
struct cfs_rq *busiest_cfs_rq; unsigned long load;
rcu_read_lock();
update_h_load(cpu_of(busiest));
for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
unsigned long busiest_h_load = busiest_cfs_rq->h_load;
unsigned long busiest_weight = busiest_cfs_rq->load.weight;
u64 rem_load, moved_load;
if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT))
break;
/*
* empty group or part of a throttled hierarchy
*/
if (!busiest_cfs_rq->task_weight ||
throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
continue;
rem_load = (u64)rem_load_move * busiest_weight;
rem_load = div_u64(rem_load, busiest_h_load + 1);
moved_load = balance_tasks(this_rq, this_cpu, busiest,
rem_load, sd, idle, lb_flags,
busiest_cfs_rq);
if (!moved_load)
continue;
moved_load *= busiest_h_load; load = p->se.load.weight;
moved_load = div_u64(moved_load, busiest_weight + 1); load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
rem_load_move -= moved_load; return load;
if (rem_load_move < 0)
break;
}
rcu_read_unlock();
return max_load_move - rem_load_move;
} }
#else #else
static inline void update_shares(int cpu) static inline void update_shares(int cpu)
{ {
} }
static unsigned long static inline void update_h_load(long cpu)
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_load_move,
struct sched_domain *sd, enum cpu_idle_type idle,
int *lb_flags)
{ {
return balance_tasks(this_rq, this_cpu, busiest,
max_load_move, sd, idle, lb_flags,
&busiest->cfs);
} }
#endif
/* static unsigned long task_h_load(struct task_struct *p)
* move_tasks tries to move up to max_load_move weighted load from busiest to
* this_rq, as part of a balancing operation within domain "sd".
* Returns 1 if successful and 0 otherwise.
*
* Called with both runqueues locked.
*/
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_load_move,
struct sched_domain *sd, enum cpu_idle_type idle,
int *lb_flags)
{ {
unsigned long total_load_moved = 0, load_moved; return p->se.load.weight;
do {
load_moved = load_balance_fair(this_rq, this_cpu, busiest,
max_load_move - total_load_moved,
sd, idle, lb_flags);
total_load_moved += load_moved;
if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT))
break;
#ifdef CONFIG_PREEMPT
/*
* NEWIDLE balancing is a source of latency, so preemptible
* kernels will stop after the first task is pulled to minimize
* the critical section.
*/
if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) {
*lb_flags |= LBF_ABORT;
break;
}
#endif
} while (load_moved && max_load_move > total_load_moved);
return total_load_moved > 0;
} }
#endif
/********** Helpers for find_busiest_group ************************/ /********** Helpers for find_busiest_group ************************/
/* /*
...@@ -3778,6 +3712,11 @@ void update_group_power(struct sched_domain *sd, int cpu) ...@@ -3778,6 +3712,11 @@ void update_group_power(struct sched_domain *sd, int cpu)
struct sched_domain *child = sd->child; struct sched_domain *child = sd->child;
struct sched_group *group, *sdg = sd->groups; struct sched_group *group, *sdg = sd->groups;
unsigned long power; unsigned long power;
unsigned long interval;
interval = msecs_to_jiffies(sd->balance_interval);
interval = clamp(interval, 1UL, max_load_balance_interval);
sdg->sgp->next_update = jiffies + interval;
if (!child) { if (!child) {
update_cpu_power(sd, cpu); update_cpu_power(sd, cpu);
...@@ -3885,12 +3824,15 @@ static inline void update_sg_lb_stats(struct sched_domain *sd, ...@@ -3885,12 +3824,15 @@ static inline void update_sg_lb_stats(struct sched_domain *sd,
* domains. In the newly idle case, we will allow all the cpu's * domains. In the newly idle case, we will allow all the cpu's
* to do the newly idle load balance. * to do the newly idle load balance.
*/ */
if (idle != CPU_NEWLY_IDLE && local_group) { if (local_group) {
if (balance_cpu != this_cpu) { if (idle != CPU_NEWLY_IDLE) {
*balance = 0; if (balance_cpu != this_cpu) {
return; *balance = 0;
} return;
update_group_power(sd, this_cpu); }
update_group_power(sd, this_cpu);
} else if (time_after_eq(jiffies, group->sgp->next_update))
update_group_power(sd, this_cpu);
} }
/* Adjust by relative CPU power of the group */ /* Adjust by relative CPU power of the group */
...@@ -4453,13 +4395,21 @@ static int load_balance(int this_cpu, struct rq *this_rq, ...@@ -4453,13 +4395,21 @@ static int load_balance(int this_cpu, struct rq *this_rq,
struct sched_domain *sd, enum cpu_idle_type idle, struct sched_domain *sd, enum cpu_idle_type idle,
int *balance) int *balance)
{ {
int ld_moved, lb_flags = 0, active_balance = 0; int ld_moved, active_balance = 0;
struct sched_group *group; struct sched_group *group;
unsigned long imbalance; unsigned long imbalance;
struct rq *busiest; struct rq *busiest;
unsigned long flags; unsigned long flags;
struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
struct lb_env env = {
.sd = sd,
.dst_cpu = this_cpu,
.dst_rq = this_rq,
.idle = idle,
.loop_break = sysctl_sched_nr_migrate,
};
cpumask_copy(cpus, cpu_active_mask); cpumask_copy(cpus, cpu_active_mask);
schedstat_inc(sd, lb_count[idle]); schedstat_inc(sd, lb_count[idle]);
...@@ -4494,32 +4444,34 @@ static int load_balance(int this_cpu, struct rq *this_rq, ...@@ -4494,32 +4444,34 @@ static int load_balance(int this_cpu, struct rq *this_rq,
* still unbalanced. ld_moved simply stays zero, so it is * still unbalanced. ld_moved simply stays zero, so it is
* correctly treated as an imbalance. * correctly treated as an imbalance.
*/ */
lb_flags |= LBF_ALL_PINNED; env.flags |= LBF_ALL_PINNED;
env.load_move = imbalance;
env.src_cpu = busiest->cpu;
env.src_rq = busiest;
env.loop_max = busiest->nr_running;
more_balance:
local_irq_save(flags); local_irq_save(flags);
double_rq_lock(this_rq, busiest); double_rq_lock(this_rq, busiest);
ld_moved = move_tasks(this_rq, this_cpu, busiest, if (!env.loop)
imbalance, sd, idle, &lb_flags); update_h_load(env.src_cpu);
ld_moved += move_tasks(&env);
double_rq_unlock(this_rq, busiest); double_rq_unlock(this_rq, busiest);
local_irq_restore(flags); local_irq_restore(flags);
if (env.flags & LBF_NEED_BREAK) {
env.flags &= ~LBF_NEED_BREAK;
goto more_balance;
}
/* /*
* some other cpu did the load balance for us. * some other cpu did the load balance for us.
*/ */
if (ld_moved && this_cpu != smp_processor_id()) if (ld_moved && this_cpu != smp_processor_id())
resched_cpu(this_cpu); resched_cpu(this_cpu);
if (lb_flags & LBF_ABORT)
goto out_balanced;
if (lb_flags & LBF_NEED_BREAK) {
lb_flags += LBF_HAD_BREAK - LBF_NEED_BREAK;
if (lb_flags & LBF_ABORT)
goto out_balanced;
goto redo;
}
/* All tasks on this runqueue were pinned by CPU affinity */ /* All tasks on this runqueue were pinned by CPU affinity */
if (unlikely(lb_flags & LBF_ALL_PINNED)) { if (unlikely(env.flags & LBF_ALL_PINNED)) {
cpumask_clear_cpu(cpu_of(busiest), cpus); cpumask_clear_cpu(cpu_of(busiest), cpus);
if (!cpumask_empty(cpus)) if (!cpumask_empty(cpus))
goto redo; goto redo;
...@@ -4549,7 +4501,7 @@ static int load_balance(int this_cpu, struct rq *this_rq, ...@@ -4549,7 +4501,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
tsk_cpus_allowed(busiest->curr))) { tsk_cpus_allowed(busiest->curr))) {
raw_spin_unlock_irqrestore(&busiest->lock, raw_spin_unlock_irqrestore(&busiest->lock,
flags); flags);
lb_flags |= LBF_ALL_PINNED; env.flags |= LBF_ALL_PINNED;
goto out_one_pinned; goto out_one_pinned;
} }
...@@ -4602,7 +4554,7 @@ static int load_balance(int this_cpu, struct rq *this_rq, ...@@ -4602,7 +4554,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
out_one_pinned: out_one_pinned:
/* tune up the balancing interval */ /* tune up the balancing interval */
if (((lb_flags & LBF_ALL_PINNED) && if (((env.flags & LBF_ALL_PINNED) &&
sd->balance_interval < MAX_PINNED_INTERVAL) || sd->balance_interval < MAX_PINNED_INTERVAL) ||
(sd->balance_interval < sd->max_interval)) (sd->balance_interval < sd->max_interval))
sd->balance_interval *= 2; sd->balance_interval *= 2;
...@@ -4712,10 +4664,18 @@ static int active_load_balance_cpu_stop(void *data) ...@@ -4712,10 +4664,18 @@ static int active_load_balance_cpu_stop(void *data)
} }
if (likely(sd)) { if (likely(sd)) {
struct lb_env env = {
.sd = sd,
.dst_cpu = target_cpu,
.dst_rq = target_rq,
.src_cpu = busiest_rq->cpu,
.src_rq = busiest_rq,
.idle = CPU_IDLE,
};
schedstat_inc(sd, alb_count); schedstat_inc(sd, alb_count);
if (move_one_task(target_rq, target_cpu, busiest_rq, if (move_one_task(&env))
sd, CPU_IDLE))
schedstat_inc(sd, alb_pushed); schedstat_inc(sd, alb_pushed);
else else
schedstat_inc(sd, alb_failed); schedstat_inc(sd, alb_failed);
...@@ -4947,8 +4907,6 @@ static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb, ...@@ -4947,8 +4907,6 @@ static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
static DEFINE_SPINLOCK(balancing); static DEFINE_SPINLOCK(balancing);
static unsigned long __read_mostly max_load_balance_interval = HZ/10;
/* /*
* Scale the max load_balance interval with the number of CPUs in the system. * Scale the max load_balance interval with the number of CPUs in the system.
* This trades load-balance latency on larger machines for less cross talk. * This trades load-balance latency on larger machines for less cross talk.
...@@ -5342,7 +5300,6 @@ static void set_curr_task_fair(struct rq *rq) ...@@ -5342,7 +5300,6 @@ static void set_curr_task_fair(struct rq *rq)
void init_cfs_rq(struct cfs_rq *cfs_rq) void init_cfs_rq(struct cfs_rq *cfs_rq)
{ {
cfs_rq->tasks_timeline = RB_ROOT; cfs_rq->tasks_timeline = RB_ROOT;
INIT_LIST_HEAD(&cfs_rq->tasks);
cfs_rq->min_vruntime = (u64)(-(1LL << 20)); cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT #ifndef CONFIG_64BIT
cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
...@@ -5614,6 +5571,7 @@ __init void init_sched_fair_class(void) ...@@ -5614,6 +5571,7 @@ __init void init_sched_fair_class(void)
open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
#ifdef CONFIG_NO_HZ #ifdef CONFIG_NO_HZ
nohz.next_balance = jiffies;
zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
cpu_notifier(sched_ilb_notifier, 0); cpu_notifier(sched_ilb_notifier, 0);
#endif #endif
......
...@@ -778,12 +778,9 @@ static inline int balance_runtime(struct rt_rq *rt_rq) ...@@ -778,12 +778,9 @@ static inline int balance_runtime(struct rt_rq *rt_rq)
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{ {
int i, idle = 1; int i, idle = 1, throttled = 0;
const struct cpumask *span; const struct cpumask *span;
if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
return 1;
span = sched_rt_period_mask(); span = sched_rt_period_mask();
for_each_cpu(i, span) { for_each_cpu(i, span) {
int enqueue = 0; int enqueue = 0;
...@@ -818,12 +815,17 @@ static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) ...@@ -818,12 +815,17 @@ static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
if (!rt_rq_throttled(rt_rq)) if (!rt_rq_throttled(rt_rq))
enqueue = 1; enqueue = 1;
} }
if (rt_rq->rt_throttled)
throttled = 1;
if (enqueue) if (enqueue)
sched_rt_rq_enqueue(rt_rq); sched_rt_rq_enqueue(rt_rq);
raw_spin_unlock(&rq->lock); raw_spin_unlock(&rq->lock);
} }
if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
return 1;
return idle; return idle;
} }
...@@ -855,8 +857,30 @@ static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) ...@@ -855,8 +857,30 @@ static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
return 0; return 0;
if (rt_rq->rt_time > runtime) { if (rt_rq->rt_time > runtime) {
rt_rq->rt_throttled = 1; struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
printk_once(KERN_WARNING "sched: RT throttling activated\n");
/*
* Don't actually throttle groups that have no runtime assigned
* but accrue some time due to boosting.
*/
if (likely(rt_b->rt_runtime)) {
static bool once = false;
rt_rq->rt_throttled = 1;
if (!once) {
once = true;
printk_sched("sched: RT throttling activated\n");
}
} else {
/*
* In case we did anyway, make it go away,
* replenishment is a joke, since it will replenish us
* with exactly 0 ns.
*/
rt_rq->rt_time = 0;
}
if (rt_rq_throttled(rt_rq)) { if (rt_rq_throttled(rt_rq)) {
sched_rt_rq_dequeue(rt_rq); sched_rt_rq_dequeue(rt_rq);
return 1; return 1;
...@@ -884,7 +908,8 @@ static void update_curr_rt(struct rq *rq) ...@@ -884,7 +908,8 @@ static void update_curr_rt(struct rq *rq)
if (unlikely((s64)delta_exec < 0)) if (unlikely((s64)delta_exec < 0))
delta_exec = 0; delta_exec = 0;
schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec)); schedstat_set(curr->se.statistics.exec_max,
max(curr->se.statistics.exec_max, delta_exec));
curr->se.sum_exec_runtime += delta_exec; curr->se.sum_exec_runtime += delta_exec;
account_group_exec_runtime(curr, delta_exec); account_group_exec_runtime(curr, delta_exec);
...@@ -1972,7 +1997,7 @@ static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) ...@@ -1972,7 +1997,7 @@ static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
if (--p->rt.time_slice) if (--p->rt.time_slice)
return; return;
p->rt.time_slice = DEF_TIMESLICE; p->rt.time_slice = RR_TIMESLICE;
/* /*
* Requeue to the end of queue if we are not the only element * Requeue to the end of queue if we are not the only element
...@@ -2000,7 +2025,7 @@ static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) ...@@ -2000,7 +2025,7 @@ static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
* Time slice is 0 for SCHED_FIFO tasks * Time slice is 0 for SCHED_FIFO tasks
*/ */
if (task->policy == SCHED_RR) if (task->policy == SCHED_RR)
return DEF_TIMESLICE; return RR_TIMESLICE;
else else
return 0; return 0;
} }
......
...@@ -36,11 +36,7 @@ extern __read_mostly int scheduler_running; ...@@ -36,11 +36,7 @@ extern __read_mostly int scheduler_running;
/* /*
* These are the 'tuning knobs' of the scheduler: * These are the 'tuning knobs' of the scheduler:
*
* default timeslice is 100 msecs (used only for SCHED_RR tasks).
* Timeslices get refilled after they expire.
*/ */
#define DEF_TIMESLICE (100 * HZ / 1000)
/* /*
* single value that denotes runtime == period, ie unlimited time. * single value that denotes runtime == period, ie unlimited time.
...@@ -216,9 +212,6 @@ struct cfs_rq { ...@@ -216,9 +212,6 @@ struct cfs_rq {
struct rb_root tasks_timeline; struct rb_root tasks_timeline;
struct rb_node *rb_leftmost; struct rb_node *rb_leftmost;
struct list_head tasks;
struct list_head *balance_iterator;
/* /*
* 'curr' points to currently running entity on this cfs_rq. * 'curr' points to currently running entity on this cfs_rq.
* It is set to NULL otherwise (i.e when none are currently running). * It is set to NULL otherwise (i.e when none are currently running).
...@@ -245,11 +238,6 @@ struct cfs_rq { ...@@ -245,11 +238,6 @@ struct cfs_rq {
struct task_group *tg; /* group that "owns" this runqueue */ struct task_group *tg; /* group that "owns" this runqueue */
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
/*
* the part of load.weight contributed by tasks
*/
unsigned long task_weight;
/* /*
* h_load = weight * f(tg) * h_load = weight * f(tg)
* *
...@@ -424,6 +412,8 @@ struct rq { ...@@ -424,6 +412,8 @@ struct rq {
int cpu; int cpu;
int online; int online;
struct list_head cfs_tasks;
u64 rt_avg; u64 rt_avg;
u64 age_stamp; u64 age_stamp;
u64 idle_stamp; u64 idle_stamp;
...@@ -462,7 +452,6 @@ struct rq { ...@@ -462,7 +452,6 @@ struct rq {
unsigned int yld_count; unsigned int yld_count;
/* schedule() stats */ /* schedule() stats */
unsigned int sched_switch;
unsigned int sched_count; unsigned int sched_count;
unsigned int sched_goidle; unsigned int sched_goidle;
......
...@@ -32,9 +32,9 @@ static int show_schedstat(struct seq_file *seq, void *v) ...@@ -32,9 +32,9 @@ static int show_schedstat(struct seq_file *seq, void *v)
/* runqueue-specific stats */ /* runqueue-specific stats */
seq_printf(seq, seq_printf(seq,
"cpu%d %u %u %u %u %u %u %llu %llu %lu", "cpu%d %u 0 %u %u %u %u %llu %llu %lu",
cpu, rq->yld_count, cpu, rq->yld_count,
rq->sched_switch, rq->sched_count, rq->sched_goidle, rq->sched_count, rq->sched_goidle,
rq->ttwu_count, rq->ttwu_local, rq->ttwu_count, rq->ttwu_local,
rq->rq_cpu_time, rq->rq_cpu_time,
rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount); rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount);
......
...@@ -343,7 +343,7 @@ void irq_exit(void) ...@@ -343,7 +343,7 @@ void irq_exit(void)
tick_nohz_irq_exit(); tick_nohz_irq_exit();
#endif #endif
rcu_irq_exit(); rcu_irq_exit();
preempt_enable_no_resched(); sched_preempt_enable_no_resched();
} }
/* /*
...@@ -740,9 +740,7 @@ static int run_ksoftirqd(void * __bind_cpu) ...@@ -740,9 +740,7 @@ static int run_ksoftirqd(void * __bind_cpu)
while (!kthread_should_stop()) { while (!kthread_should_stop()) {
preempt_disable(); preempt_disable();
if (!local_softirq_pending()) { if (!local_softirq_pending()) {
preempt_enable_no_resched(); schedule_preempt_disabled();
schedule();
preempt_disable();
} }
__set_current_state(TASK_RUNNING); __set_current_state(TASK_RUNNING);
...@@ -757,7 +755,7 @@ static int run_ksoftirqd(void * __bind_cpu) ...@@ -757,7 +755,7 @@ static int run_ksoftirqd(void * __bind_cpu)
if (local_softirq_pending()) if (local_softirq_pending())
__do_softirq(); __do_softirq();
local_irq_enable(); local_irq_enable();
preempt_enable_no_resched(); sched_preempt_enable_no_resched();
cond_resched(); cond_resched();
preempt_disable(); preempt_disable();
rcu_note_context_switch((long)__bind_cpu); rcu_note_context_switch((long)__bind_cpu);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册