提交 23b5c8fa 编写于 作者: P Paul E. McKenney

rcu: Decrease memory-barrier usage based on semi-formal proof

(Note: this was reverted, and is now being re-applied in pieces, with
this being the fifth and final piece.  See below for the reason that
it is now felt to be safe to re-apply this.)

Commit d09b62df fixed grace-period synchronization, but left some smp_mb()
invocations in rcu_process_callbacks() that are no longer needed, but
sheer paranoia prevented them from being removed.  This commit removes
them and provides a proof of correctness in their absence.  It also adds
a memory barrier to rcu_report_qs_rsp() immediately before the update to
rsp->completed in order to handle the theoretical possibility that the
compiler or CPU might move massive quantities of code into a lock-based
critical section.  This also proves that the sheer paranoia was not
entirely unjustified, at least from a theoretical point of view.

In addition, the old dyntick-idle synchronization depended on the fact
that grace periods were many milliseconds in duration, so that it could
be assumed that no dyntick-idle CPU could reorder a memory reference
across an entire grace period.  Unfortunately for this design, the
addition of expedited grace periods breaks this assumption, which has
the unfortunate side-effect of requiring atomic operations in the
functions that track dyntick-idle state for RCU.  (There is some hope
that the algorithms used in user-level RCU might be applied here, but
some work is required to handle the NMIs that user-space applications
can happily ignore.  For the short term, better safe than sorry.)

This proof assumes that neither compiler nor CPU will allow a lock
acquisition and release to be reordered, as doing so can result in
deadlock.  The proof is as follows:

1.	A given CPU declares a quiescent state under the protection of
	its leaf rcu_node's lock.

2.	If there is more than one level of rcu_node hierarchy, the
	last CPU to declare a quiescent state will also acquire the
	->lock of the next rcu_node up in the hierarchy,  but only
	after releasing the lower level's lock.  The acquisition of this
	lock clearly cannot occur prior to the acquisition of the leaf
	node's lock.

3.	Step 2 repeats until we reach the root rcu_node structure.
	Please note again that only one lock is held at a time through
	this process.  The acquisition of the root rcu_node's ->lock
	must occur after the release of that of the leaf rcu_node.

4.	At this point, we set the ->completed field in the rcu_state
	structure in rcu_report_qs_rsp().  However, if the rcu_node
	hierarchy contains only one rcu_node, then in theory the code
	preceding the quiescent state could leak into the critical
	section.  We therefore precede the update of ->completed with a
	memory barrier.  All CPUs will therefore agree that any updates
	preceding any report of a quiescent state will have happened
	before the update of ->completed.

5.	Regardless of whether a new grace period is needed, rcu_start_gp()
	will propagate the new value of ->completed to all of the leaf
	rcu_node structures, under the protection of each rcu_node's ->lock.
	If a new grace period is needed immediately, this propagation
	will occur in the same critical section that ->completed was
	set in, but courtesy of the memory barrier in #4 above, is still
	seen to follow any pre-quiescent-state activity.

6.	When a given CPU invokes __rcu_process_gp_end(), it becomes
	aware of the end of the old grace period and therefore makes
	any RCU callbacks that were waiting on that grace period eligible
	for invocation.

	If this CPU is the same one that detected the end of the grace
	period, and if there is but a single rcu_node in the hierarchy,
	we will still be in the single critical section.  In this case,
	the memory barrier in step #4 guarantees that all callbacks will
	be seen to execute after each CPU's quiescent state.

	On the other hand, if this is a different CPU, it will acquire
	the leaf rcu_node's ->lock, and will again be serialized after
	each CPU's quiescent state for the old grace period.

On the strength of this proof, this commit therefore removes the memory
barriers from rcu_process_callbacks() and adds one to rcu_report_qs_rsp().
The effect is to reduce the number of memory barriers by one and to
reduce the frequency of execution from about once per scheduling tick
per CPU to once per grace period.

This was reverted do to hangs found during testing by Yinghai Lu and
Ingo Molnar.  Frederic Weisbecker supplied Yinghai with tracing that
located the underlying problem, and Frederic also provided the fix.

The underlying problem was that the HARDIRQ_ENTER() macro from
lib/locking-selftest.c invoked irq_enter(), which in turn invokes
rcu_irq_enter(), but HARDIRQ_EXIT() invoked __irq_exit(), which
does not invoke rcu_irq_exit().  This situation resulted in calls
to rcu_irq_enter() that were not balanced by the required calls to
rcu_irq_exit().  Therefore, after these locking selftests completed,
RCU's dyntick-idle nesting count was a large number (for example,
72), which caused RCU to to conclude that the affected CPU was not in
dyntick-idle mode when in fact it was.

RCU would therefore incorrectly wait for this dyntick-idle CPU, resulting
in hangs.

In contrast, with Frederic's patch, which replaces the irq_enter()
in HARDIRQ_ENTER() with an __irq_enter(), these tests don't ever call
either rcu_irq_enter() or rcu_irq_exit(), which works because the CPU
running the test is already marked as not being in dyntick-idle mode.
This means that the rcu_irq_enter() and rcu_irq_exit() calls and RCU
then has no problem working out which CPUs are in dyntick-idle mode and
which are not.

The reason that the imbalance was not noticed before the barrier patch
was applied is that the old implementation of rcu_enter_nohz() ignored
the nesting depth.  This could still result in delays, but much shorter
ones.  Whenever there was a delay, RCU would IPI the CPU with the
unbalanced nesting level, which would eventually result in rcu_enter_nohz()
being called, which in turn would force RCU to see that the CPU was in
dyntick-idle mode.

The reason that very few people noticed the problem is that the mismatched
irq_enter() vs. __irq_exit() occured only when the kernel was built with
CONFIG_DEBUG_LOCKING_API_SELFTESTS.
Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
上级 4305ce78
...@@ -99,18 +99,11 @@ o "qp" indicates that RCU still expects a quiescent state from ...@@ -99,18 +99,11 @@ o "qp" indicates that RCU still expects a quiescent state from
o "dt" is the current value of the dyntick counter that is incremented o "dt" is the current value of the dyntick counter that is incremented
when entering or leaving dynticks idle state, either by the when entering or leaving dynticks idle state, either by the
scheduler or by irq. The number after the "/" is the interrupt scheduler or by irq. This number is even if the CPU is in
nesting depth when in dyntick-idle state, or one greater than dyntick idle mode and odd otherwise. The number after the first
the interrupt-nesting depth otherwise. "/" is the interrupt nesting depth when in dyntick-idle state,
or one greater than the interrupt-nesting depth otherwise.
This field is displayed only for CONFIG_NO_HZ kernels. The number after the second "/" is the NMI nesting depth.
o "dn" is the current value of the dyntick counter that is incremented
when entering or leaving dynticks idle state via NMI. If both
the "dt" and "dn" values are even, then this CPU is in dynticks
idle mode and may be ignored by RCU. If either of these two
counters is odd, then RCU must be alert to the possibility of
an RCU read-side critical section running on this CPU.
This field is displayed only for CONFIG_NO_HZ kernels. This field is displayed only for CONFIG_NO_HZ kernels.
......
...@@ -162,7 +162,7 @@ EXPORT_SYMBOL_GPL(rcu_note_context_switch); ...@@ -162,7 +162,7 @@ EXPORT_SYMBOL_GPL(rcu_note_context_switch);
#ifdef CONFIG_NO_HZ #ifdef CONFIG_NO_HZ
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
.dynticks_nesting = 1, .dynticks_nesting = 1,
.dynticks = 1, .dynticks = ATOMIC_INIT(1),
}; };
#endif /* #ifdef CONFIG_NO_HZ */ #endif /* #ifdef CONFIG_NO_HZ */
...@@ -321,13 +321,25 @@ void rcu_enter_nohz(void) ...@@ -321,13 +321,25 @@ void rcu_enter_nohz(void)
unsigned long flags; unsigned long flags;
struct rcu_dynticks *rdtp; struct rcu_dynticks *rdtp;
smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
local_irq_save(flags); local_irq_save(flags);
rdtp = &__get_cpu_var(rcu_dynticks); rdtp = &__get_cpu_var(rcu_dynticks);
if (--rdtp->dynticks_nesting == 0) if (--rdtp->dynticks_nesting) {
rdtp->dynticks++; local_irq_restore(flags);
WARN_ON_ONCE(rdtp->dynticks & 0x1); return;
}
/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
smp_mb__before_atomic_inc(); /* See above. */
atomic_inc(&rdtp->dynticks);
smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
local_irq_restore(flags); local_irq_restore(flags);
/* If the interrupt queued a callback, get out of dyntick mode. */
if (in_irq() &&
(__get_cpu_var(rcu_sched_data).nxtlist ||
__get_cpu_var(rcu_bh_data).nxtlist ||
rcu_preempt_needs_cpu(smp_processor_id())))
set_need_resched();
} }
/* /*
...@@ -343,11 +355,16 @@ void rcu_exit_nohz(void) ...@@ -343,11 +355,16 @@ void rcu_exit_nohz(void)
local_irq_save(flags); local_irq_save(flags);
rdtp = &__get_cpu_var(rcu_dynticks); rdtp = &__get_cpu_var(rcu_dynticks);
rdtp->dynticks++; if (rdtp->dynticks_nesting++) {
rdtp->dynticks_nesting++; local_irq_restore(flags);
WARN_ON_ONCE(!(rdtp->dynticks & 0x1)); return;
}
smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
atomic_inc(&rdtp->dynticks);
/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
smp_mb__after_atomic_inc(); /* See above. */
WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
local_irq_restore(flags); local_irq_restore(flags);
smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
} }
/** /**
...@@ -361,11 +378,15 @@ void rcu_nmi_enter(void) ...@@ -361,11 +378,15 @@ void rcu_nmi_enter(void)
{ {
struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
if (rdtp->dynticks & 0x1) if (rdtp->dynticks_nmi_nesting == 0 &&
(atomic_read(&rdtp->dynticks) & 0x1))
return; return;
rdtp->dynticks_nmi++; rdtp->dynticks_nmi_nesting++;
WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1)); smp_mb__before_atomic_inc(); /* Force delay from prior write. */
smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ atomic_inc(&rdtp->dynticks);
/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
smp_mb__after_atomic_inc(); /* See above. */
WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
} }
/** /**
...@@ -379,11 +400,14 @@ void rcu_nmi_exit(void) ...@@ -379,11 +400,14 @@ void rcu_nmi_exit(void)
{ {
struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
if (rdtp->dynticks & 0x1) if (rdtp->dynticks_nmi_nesting == 0 ||
--rdtp->dynticks_nmi_nesting != 0)
return; return;
smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
rdtp->dynticks_nmi++; smp_mb__before_atomic_inc(); /* See above. */
WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1); atomic_inc(&rdtp->dynticks);
smp_mb__after_atomic_inc(); /* Force delay to next write. */
WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
} }
/** /**
...@@ -394,13 +418,7 @@ void rcu_nmi_exit(void) ...@@ -394,13 +418,7 @@ void rcu_nmi_exit(void)
*/ */
void rcu_irq_enter(void) void rcu_irq_enter(void)
{ {
struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); rcu_exit_nohz();
if (rdtp->dynticks_nesting++)
return;
rdtp->dynticks++;
WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
} }
/** /**
...@@ -412,19 +430,7 @@ void rcu_irq_enter(void) ...@@ -412,19 +430,7 @@ void rcu_irq_enter(void)
*/ */
void rcu_irq_exit(void) void rcu_irq_exit(void)
{ {
struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); rcu_enter_nohz();
if (--rdtp->dynticks_nesting)
return;
smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
rdtp->dynticks++;
WARN_ON_ONCE(rdtp->dynticks & 0x1);
/* If the interrupt queued a callback, get out of dyntick mode. */
if (in_irq() &&
(__this_cpu_read(rcu_sched_data.nxtlist) ||
__this_cpu_read(rcu_bh_data.nxtlist)))
set_need_resched();
} }
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
...@@ -436,19 +442,8 @@ void rcu_irq_exit(void) ...@@ -436,19 +442,8 @@ void rcu_irq_exit(void)
*/ */
static int dyntick_save_progress_counter(struct rcu_data *rdp) static int dyntick_save_progress_counter(struct rcu_data *rdp)
{ {
int ret; rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
int snap; return 0;
int snap_nmi;
snap = rdp->dynticks->dynticks;
snap_nmi = rdp->dynticks->dynticks_nmi;
smp_mb(); /* Order sampling of snap with end of grace period. */
rdp->dynticks_snap = snap;
rdp->dynticks_nmi_snap = snap_nmi;
ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
if (ret)
rdp->dynticks_fqs++;
return ret;
} }
/* /*
...@@ -459,16 +454,11 @@ static int dyntick_save_progress_counter(struct rcu_data *rdp) ...@@ -459,16 +454,11 @@ static int dyntick_save_progress_counter(struct rcu_data *rdp)
*/ */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{ {
long curr; unsigned long curr;
long curr_nmi; unsigned long snap;
long snap;
long snap_nmi;
curr = rdp->dynticks->dynticks; curr = (unsigned long)atomic_add_return(0, &rdp->dynticks->dynticks);
snap = rdp->dynticks_snap; snap = (unsigned long)rdp->dynticks_snap;
curr_nmi = rdp->dynticks->dynticks_nmi;
snap_nmi = rdp->dynticks_nmi_snap;
smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
/* /*
* If the CPU passed through or entered a dynticks idle phase with * If the CPU passed through or entered a dynticks idle phase with
...@@ -478,8 +468,7 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) ...@@ -478,8 +468,7 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
* read-side critical section that started before the beginning * read-side critical section that started before the beginning
* of the current RCU grace period. * of the current RCU grace period.
*/ */
if ((curr != snap || (curr & 0x1) == 0) && if ((curr & 0x1) == 0 || ULONG_CMP_GE(curr, snap + 2)) {
(curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
rdp->dynticks_fqs++; rdp->dynticks_fqs++;
return 1; return 1;
} }
......
...@@ -84,11 +84,9 @@ ...@@ -84,11 +84,9 @@
* Dynticks per-CPU state. * Dynticks per-CPU state.
*/ */
struct rcu_dynticks { struct rcu_dynticks {
int dynticks_nesting; /* Track nesting level, sort of. */ int dynticks_nesting; /* Track irq/process nesting level. */
int dynticks; /* Even value for dynticks-idle, else odd. */ int dynticks_nmi_nesting; /* Track NMI nesting level. */
int dynticks_nmi; /* Even value for either dynticks-idle or */ atomic_t dynticks; /* Even value for dynticks-idle, else odd. */
/* not in nmi handler, else odd. So this */
/* remains even for nmi from irq handler. */
}; };
/* RCU's kthread states for tracing. */ /* RCU's kthread states for tracing. */
...@@ -284,7 +282,6 @@ struct rcu_data { ...@@ -284,7 +282,6 @@ struct rcu_data {
/* 3) dynticks interface. */ /* 3) dynticks interface. */
struct rcu_dynticks *dynticks; /* Shared per-CPU dynticks state. */ struct rcu_dynticks *dynticks; /* Shared per-CPU dynticks state. */
int dynticks_snap; /* Per-GP tracking for dynticks. */ int dynticks_snap; /* Per-GP tracking for dynticks. */
int dynticks_nmi_snap; /* Per-GP tracking for dynticks_nmi. */
#endif /* #ifdef CONFIG_NO_HZ */ #endif /* #ifdef CONFIG_NO_HZ */
/* 4) reasons this CPU needed to be kicked by force_quiescent_state */ /* 4) reasons this CPU needed to be kicked by force_quiescent_state */
......
...@@ -1520,7 +1520,6 @@ int rcu_needs_cpu(int cpu) ...@@ -1520,7 +1520,6 @@ int rcu_needs_cpu(int cpu)
{ {
int c = 0; int c = 0;
int snap; int snap;
int snap_nmi;
int thatcpu; int thatcpu;
/* Check for being in the holdoff period. */ /* Check for being in the holdoff period. */
...@@ -1531,10 +1530,10 @@ int rcu_needs_cpu(int cpu) ...@@ -1531,10 +1530,10 @@ int rcu_needs_cpu(int cpu)
for_each_online_cpu(thatcpu) { for_each_online_cpu(thatcpu) {
if (thatcpu == cpu) if (thatcpu == cpu)
continue; continue;
snap = per_cpu(rcu_dynticks, thatcpu).dynticks; snap = atomic_add_return(0, &per_cpu(rcu_dynticks,
snap_nmi = per_cpu(rcu_dynticks, thatcpu).dynticks_nmi; thatcpu).dynticks);
smp_mb(); /* Order sampling of snap with end of grace period. */ smp_mb(); /* Order sampling of snap with end of grace period. */
if (((snap & 0x1) != 0) || ((snap_nmi & 0x1) != 0)) { if ((snap & 0x1) != 0) {
per_cpu(rcu_dyntick_drain, cpu) = 0; per_cpu(rcu_dyntick_drain, cpu) = 0;
per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1; per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
return rcu_needs_cpu_quick_check(cpu); return rcu_needs_cpu_quick_check(cpu);
......
...@@ -69,10 +69,10 @@ static void print_one_rcu_data(struct seq_file *m, struct rcu_data *rdp) ...@@ -69,10 +69,10 @@ static void print_one_rcu_data(struct seq_file *m, struct rcu_data *rdp)
rdp->passed_quiesc, rdp->passed_quiesc_completed, rdp->passed_quiesc, rdp->passed_quiesc_completed,
rdp->qs_pending); rdp->qs_pending);
#ifdef CONFIG_NO_HZ #ifdef CONFIG_NO_HZ
seq_printf(m, " dt=%d/%d dn=%d df=%lu", seq_printf(m, " dt=%d/%d/%d df=%lu",
rdp->dynticks->dynticks, atomic_read(&rdp->dynticks->dynticks),
rdp->dynticks->dynticks_nesting, rdp->dynticks->dynticks_nesting,
rdp->dynticks->dynticks_nmi, rdp->dynticks->dynticks_nmi_nesting,
rdp->dynticks_fqs); rdp->dynticks_fqs);
#endif /* #ifdef CONFIG_NO_HZ */ #endif /* #ifdef CONFIG_NO_HZ */
seq_printf(m, " of=%lu ri=%lu", rdp->offline_fqs, rdp->resched_ipi); seq_printf(m, " of=%lu ri=%lu", rdp->offline_fqs, rdp->resched_ipi);
...@@ -141,9 +141,9 @@ static void print_one_rcu_data_csv(struct seq_file *m, struct rcu_data *rdp) ...@@ -141,9 +141,9 @@ static void print_one_rcu_data_csv(struct seq_file *m, struct rcu_data *rdp)
rdp->qs_pending); rdp->qs_pending);
#ifdef CONFIG_NO_HZ #ifdef CONFIG_NO_HZ
seq_printf(m, ",%d,%d,%d,%lu", seq_printf(m, ",%d,%d,%d,%lu",
rdp->dynticks->dynticks, atomic_read(&rdp->dynticks->dynticks),
rdp->dynticks->dynticks_nesting, rdp->dynticks->dynticks_nesting,
rdp->dynticks->dynticks_nmi, rdp->dynticks->dynticks_nmi_nesting,
rdp->dynticks_fqs); rdp->dynticks_fqs);
#endif /* #ifdef CONFIG_NO_HZ */ #endif /* #ifdef CONFIG_NO_HZ */
seq_printf(m, ",%lu,%lu", rdp->offline_fqs, rdp->resched_ipi); seq_printf(m, ",%lu,%lu", rdp->offline_fqs, rdp->resched_ipi);
...@@ -167,7 +167,7 @@ static int show_rcudata_csv(struct seq_file *m, void *unused) ...@@ -167,7 +167,7 @@ static int show_rcudata_csv(struct seq_file *m, void *unused)
{ {
seq_puts(m, "\"CPU\",\"Online?\",\"c\",\"g\",\"pq\",\"pqc\",\"pq\","); seq_puts(m, "\"CPU\",\"Online?\",\"c\",\"g\",\"pq\",\"pqc\",\"pq\",");
#ifdef CONFIG_NO_HZ #ifdef CONFIG_NO_HZ
seq_puts(m, "\"dt\",\"dt nesting\",\"dn\",\"df\","); seq_puts(m, "\"dt\",\"dt nesting\",\"dt NMI nesting\",\"df\",");
#endif /* #ifdef CONFIG_NO_HZ */ #endif /* #ifdef CONFIG_NO_HZ */
seq_puts(m, "\"of\",\"ri\",\"ql\",\"b\",\"ci\",\"co\",\"ca\"\n"); seq_puts(m, "\"of\",\"ri\",\"ql\",\"b\",\"ci\",\"co\",\"ca\"\n");
#ifdef CONFIG_TREE_PREEMPT_RCU #ifdef CONFIG_TREE_PREEMPT_RCU
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册