Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
OpenHarmony
kernel_linux
提交
1cdc5abf
K
kernel_linux
项目概览
OpenHarmony
/
kernel_linux
上一次同步 3 年多
通知
13
Star
8
Fork
2
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
K
kernel_linux
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
1cdc5abf
编写于
5月 15, 2010
作者:
D
David S. Miller
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'master' of
git://git.kernel.org/pub/scm/linux/kernel/git/inaky/wimax
上级
e0f43752
0fb0a4f0
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
480 addition
and
117 deletion
+480
-117
drivers/net/wimax/i2400m/control.c
drivers/net/wimax/i2400m/control.c
+15
-0
drivers/net/wimax/i2400m/driver.c
drivers/net/wimax/i2400m/driver.c
+128
-37
drivers/net/wimax/i2400m/i2400m-sdio.h
drivers/net/wimax/i2400m/i2400m-sdio.h
+4
-1
drivers/net/wimax/i2400m/i2400m.h
drivers/net/wimax/i2400m/i2400m.h
+73
-9
drivers/net/wimax/i2400m/netdev.c
drivers/net/wimax/i2400m/netdev.c
+5
-7
drivers/net/wimax/i2400m/rx.c
drivers/net/wimax/i2400m/rx.c
+74
-35
drivers/net/wimax/i2400m/sdio-tx.c
drivers/net/wimax/i2400m/sdio-tx.c
+28
-7
drivers/net/wimax/i2400m/sdio.c
drivers/net/wimax/i2400m/sdio.c
+7
-0
drivers/net/wimax/i2400m/tx.c
drivers/net/wimax/i2400m/tx.c
+134
-19
drivers/net/wimax/i2400m/usb.c
drivers/net/wimax/i2400m/usb.c
+11
-1
net/wimax/stack.c
net/wimax/stack.c
+1
-1
未找到文件。
drivers/net/wimax/i2400m/control.c
浏览文件 @
1cdc5abf
...
...
@@ -83,6 +83,21 @@
#define D_SUBMODULE control
#include "debug-levels.h"
static
int
i2400m_idle_mode_disabled
;
/* 0 (idle mode enabled) by default */
module_param_named
(
idle_mode_disabled
,
i2400m_idle_mode_disabled
,
int
,
0644
);
MODULE_PARM_DESC
(
idle_mode_disabled
,
"If true, the device will not enable idle mode negotiation "
"with the base station (when connected) to save power."
);
/* 0 (power saving enabled) by default */
static
int
i2400m_power_save_disabled
;
module_param_named
(
power_save_disabled
,
i2400m_power_save_disabled
,
int
,
0644
);
MODULE_PARM_DESC
(
power_save_disabled
,
"If true, the driver will not tell the device to enter "
"power saving mode when it reports it is ready for it. "
"False by default (so the device is told to do power "
"saving)."
);
int
i2400m_passive_mode
;
/* 0 (passive mode disabled) by default */
module_param_named
(
passive_mode
,
i2400m_passive_mode
,
int
,
0644
);
MODULE_PARM_DESC
(
passive_mode
,
...
...
drivers/net/wimax/i2400m/driver.c
浏览文件 @
1cdc5abf
...
...
@@ -75,25 +75,6 @@
#include "debug-levels.h"
int
i2400m_idle_mode_disabled
;
/* 0 (idle mode enabled) by default */
module_param_named
(
idle_mode_disabled
,
i2400m_idle_mode_disabled
,
int
,
0644
);
MODULE_PARM_DESC
(
idle_mode_disabled
,
"If true, the device will not enable idle mode negotiation "
"with the base station (when connected) to save power."
);
int
i2400m_rx_reorder_disabled
;
/* 0 (rx reorder enabled) by default */
module_param_named
(
rx_reorder_disabled
,
i2400m_rx_reorder_disabled
,
int
,
0644
);
MODULE_PARM_DESC
(
rx_reorder_disabled
,
"If true, RX reordering will be disabled."
);
int
i2400m_power_save_disabled
;
/* 0 (power saving enabled) by default */
module_param_named
(
power_save_disabled
,
i2400m_power_save_disabled
,
int
,
0644
);
MODULE_PARM_DESC
(
power_save_disabled
,
"If true, the driver will not tell the device to enter "
"power saving mode when it reports it is ready for it. "
"False by default (so the device is told to do power "
"saving)."
);
static
char
i2400m_debug_params
[
128
];
module_param_string
(
debug
,
i2400m_debug_params
,
sizeof
(
i2400m_debug_params
),
0644
);
...
...
@@ -395,6 +376,16 @@ int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
result
=
i2400m_dev_initialize
(
i2400m
);
if
(
result
<
0
)
goto
error_dev_initialize
;
/* We don't want any additional unwanted error recovery triggered
* from any other context so if anything went wrong before we come
* here, let's keep i2400m->error_recovery untouched and leave it to
* dev_reset_handle(). See dev_reset_handle(). */
atomic_dec
(
&
i2400m
->
error_recovery
);
/* Every thing works so far, ok, now we are ready to
* take error recovery if it's required. */
/* At this point, reports will come for the device and set it
* to the right state if it is different than UNINITIALIZED */
d_fnend
(
3
,
dev
,
"(net_dev %p [i2400m %p]) = %d
\n
"
,
...
...
@@ -403,10 +394,10 @@ int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
error_dev_initialize:
error_check_mac_addr:
error_fw_check:
i2400m
->
ready
=
0
;
wmb
();
/* see i2400m->ready's documentation */
flush_workqueue
(
i2400m
->
work_queue
);
error_fw_check:
if
(
i2400m
->
bus_dev_stop
)
i2400m
->
bus_dev_stop
(
i2400m
);
error_bus_dev_start:
...
...
@@ -436,7 +427,8 @@ int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags)
result
=
__i2400m_dev_start
(
i2400m
,
bm_flags
);
if
(
result
>=
0
)
{
i2400m
->
updown
=
1
;
wmb
();
/* see i2400m->updown's documentation */
i2400m
->
alive
=
1
;
wmb
();
/* see i2400m->updown and i2400m->alive's doc */
}
}
mutex_unlock
(
&
i2400m
->
init_mutex
);
...
...
@@ -497,7 +489,8 @@ void i2400m_dev_stop(struct i2400m *i2400m)
if
(
i2400m
->
updown
)
{
__i2400m_dev_stop
(
i2400m
);
i2400m
->
updown
=
0
;
wmb
();
/* see i2400m->updown's documentation */
i2400m
->
alive
=
0
;
wmb
();
/* see i2400m->updown and i2400m->alive's doc */
}
mutex_unlock
(
&
i2400m
->
init_mutex
);
}
...
...
@@ -617,12 +610,12 @@ int i2400m_post_reset(struct i2400m *i2400m)
error_dev_start:
if
(
i2400m
->
bus_release
)
i2400m
->
bus_release
(
i2400m
);
error_bus_setup:
/* even if the device was up, it could not be recovered, so we
* mark it as down. */
i2400m
->
updown
=
0
;
wmb
();
/* see i2400m->updown's documentation */
mutex_unlock
(
&
i2400m
->
init_mutex
);
error_bus_setup:
d_fnend
(
3
,
dev
,
"(i2400m %p) = %d
\n
"
,
i2400m
,
result
);
return
result
;
}
...
...
@@ -669,6 +662,9 @@ void __i2400m_dev_reset_handle(struct work_struct *ws)
d_fnstart
(
3
,
dev
,
"(ws %p i2400m %p reason %s)
\n
"
,
ws
,
i2400m
,
reason
);
i2400m
->
boot_mode
=
1
;
wmb
();
/* Make sure i2400m_msg_to_dev() sees boot_mode */
result
=
0
;
if
(
mutex_trylock
(
&
i2400m
->
init_mutex
)
==
0
)
{
/* We are still in i2400m_dev_start() [let it fail] or
...
...
@@ -679,32 +675,62 @@ void __i2400m_dev_reset_handle(struct work_struct *ws)
complete
(
&
i2400m
->
msg_completion
);
goto
out
;
}
if
(
i2400m
->
updown
==
0
)
{
dev_info
(
dev
,
"%s: device is down, doing nothing
\n
"
,
reason
);
goto
out_unlock
;
}
dev_err
(
dev
,
"%s: reinitializing driver
\n
"
,
reason
);
__i2400m_dev_stop
(
i2400m
);
result
=
__i2400m_dev_start
(
i2400m
,
I2400M_BRI_SOFT
|
I2400M_BRI_MAC_REINIT
);
if
(
result
<
0
)
{
rmb
();
if
(
i2400m
->
updown
)
{
__i2400m_dev_stop
(
i2400m
);
i2400m
->
updown
=
0
;
wmb
();
/* see i2400m->updown's documentation */
dev_err
(
dev
,
"%s: cannot start the device: %d
\n
"
,
reason
,
result
);
result
=
-
EUCLEAN
;
}
out_unlock:
if
(
i2400m
->
alive
)
{
result
=
__i2400m_dev_start
(
i2400m
,
I2400M_BRI_SOFT
|
I2400M_BRI_MAC_REINIT
);
if
(
result
<
0
)
{
dev_err
(
dev
,
"%s: cannot start the device: %d
\n
"
,
reason
,
result
);
result
=
-
EUCLEAN
;
if
(
atomic_read
(
&
i2400m
->
bus_reset_retries
)
>=
I2400M_BUS_RESET_RETRIES
)
{
result
=
-
ENODEV
;
dev_err
(
dev
,
"tried too many times to "
"reset the device, giving up
\n
"
);
}
}
}
if
(
i2400m
->
reset_ctx
)
{
ctx
->
result
=
result
;
complete
(
&
ctx
->
completion
);
}
mutex_unlock
(
&
i2400m
->
init_mutex
);
if
(
result
==
-
EUCLEAN
)
{
/*
* We come here because the reset during operational mode
* wasn't successully done and need to proceed to a bus
* reset. For the dev_reset_handle() to be able to handle
* the reset event later properly, we restore boot_mode back
* to the state before previous reset. ie: just like we are
* issuing the bus reset for the first time
*/
i2400m
->
boot_mode
=
0
;
wmb
();
atomic_inc
(
&
i2400m
->
bus_reset_retries
);
/* ops, need to clean up [w/ init_mutex not held] */
result
=
i2400m_reset
(
i2400m
,
I2400M_RT_BUS
);
if
(
result
>=
0
)
result
=
-
ENODEV
;
}
else
{
rmb
();
if
(
i2400m
->
alive
)
{
/* great, we expect the device state up and
* dev_start() actually brings the device state up */
i2400m
->
updown
=
1
;
wmb
();
atomic_set
(
&
i2400m
->
bus_reset_retries
,
0
);
}
}
out:
i2400m_put
(
i2400m
);
...
...
@@ -728,14 +754,72 @@ void __i2400m_dev_reset_handle(struct work_struct *ws)
*/
int
i2400m_dev_reset_handle
(
struct
i2400m
*
i2400m
,
const
char
*
reason
)
{
i2400m
->
boot_mode
=
1
;
wmb
();
/* Make sure i2400m_msg_to_dev() sees boot_mode */
return
i2400m_schedule_work
(
i2400m
,
__i2400m_dev_reset_handle
,
GFP_ATOMIC
,
&
reason
,
sizeof
(
reason
));
}
EXPORT_SYMBOL_GPL
(
i2400m_dev_reset_handle
);
/*
* The actual work of error recovery.
*
* The current implementation of error recovery is to trigger a bus reset.
*/
static
void
__i2400m_error_recovery
(
struct
work_struct
*
ws
)
{
struct
i2400m_work
*
iw
=
container_of
(
ws
,
struct
i2400m_work
,
ws
);
struct
i2400m
*
i2400m
=
iw
->
i2400m
;
i2400m_reset
(
i2400m
,
I2400M_RT_BUS
);
i2400m_put
(
i2400m
);
kfree
(
iw
);
return
;
}
/*
* Schedule a work struct for error recovery.
*
* The intention of error recovery is to bring back the device to some
* known state whenever TX sees -110 (-ETIMEOUT) on copying the data to
* the device. The TX failure could mean a device bus stuck, so the current
* error recovery implementation is to trigger a bus reset to the device
* and hopefully it can bring back the device.
*
* The actual work of error recovery has to be in a thread context because
* it is kicked off in the TX thread (i2400ms->tx_workqueue) which is to be
* destroyed by the error recovery mechanism (currently a bus reset).
*
* Also, there may be already a queue of TX works that all hit
* the -ETIMEOUT error condition because the device is stuck already.
* Since bus reset is used as the error recovery mechanism and we don't
* want consecutive bus resets simply because the multiple TX works
* in the queue all hit the same device erratum, the flag "error_recovery"
* is introduced for preventing unwanted consecutive bus resets.
*
* Error recovery shall only be invoked again if previous one was completed.
* The flag error_recovery is set when error recovery mechanism is scheduled,
* and is checked when we need to schedule another error recovery. If it is
* in place already, then we shouldn't schedule another one.
*/
void
i2400m_error_recovery
(
struct
i2400m
*
i2400m
)
{
struct
device
*
dev
=
i2400m_dev
(
i2400m
);
if
(
atomic_add_return
(
1
,
&
i2400m
->
error_recovery
)
==
1
)
{
if
(
i2400m_schedule_work
(
i2400m
,
__i2400m_error_recovery
,
GFP_ATOMIC
,
NULL
,
0
)
<
0
)
{
dev_err
(
dev
,
"run out of memory for "
"scheduling an error recovery ?
\n
"
);
atomic_dec
(
&
i2400m
->
error_recovery
);
}
}
else
atomic_dec
(
&
i2400m
->
error_recovery
);
return
;
}
EXPORT_SYMBOL_GPL
(
i2400m_error_recovery
);
/*
* Alloc the command and ack buffers for boot mode
*
...
...
@@ -802,6 +886,13 @@ void i2400m_init(struct i2400m *i2400m)
mutex_init
(
&
i2400m
->
init_mutex
);
/* wake_tx_ws is initialized in i2400m_tx_setup() */
atomic_set
(
&
i2400m
->
bus_reset_retries
,
0
);
i2400m
->
alive
=
0
;
/* initialize error_recovery to 1 for denoting we
* are not yet ready to take any error recovery */
atomic_set
(
&
i2400m
->
error_recovery
,
1
);
}
EXPORT_SYMBOL_GPL
(
i2400m_init
);
...
...
drivers/net/wimax/i2400m/i2400m-sdio.h
浏览文件 @
1cdc5abf
...
...
@@ -99,7 +99,10 @@ enum {
*
* @tx_workqueue: workqeueue used for data TX; we don't use the
* system's workqueue as that might cause deadlocks with code in
* the bus-generic driver.
* the bus-generic driver. The read/write operation to the queue
* is protected with spinlock (tx_lock in struct i2400m) to avoid
* the queue being destroyed in the middle of a the queue read/write
* operation.
*
* @debugfs_dentry: dentry for the SDIO specific debugfs files
*
...
...
drivers/net/wimax/i2400m/i2400m.h
浏览文件 @
1cdc5abf
...
...
@@ -160,6 +160,16 @@
#include <linux/wimax/i2400m.h>
#include <asm/byteorder.h>
enum
{
/* netdev interface */
/*
* Out of NWG spec (R1_v1.2.2), 3.3.3 ASN Bearer Plane MTU Size
*
* The MTU is 1400 or less
*/
I2400M_MAX_MTU
=
1400
,
};
/* Misc constants */
enum
{
/* Size of the Boot Mode Command buffer */
...
...
@@ -167,6 +177,11 @@ enum {
I2400M_BM_ACK_BUF_SIZE
=
256
,
};
enum
{
/* Maximum number of bus reset can be retried */
I2400M_BUS_RESET_RETRIES
=
3
,
};
/**
* struct i2400m_poke_table - Hardware poke table for the Intel 2400m
*
...
...
@@ -227,6 +242,11 @@ struct i2400m_barker_db;
* so we have a tx_blk_size variable that the bus layer sets to
* tell the engine how much of that we need.
*
* @bus_tx_room_min: [fill] Minimum room required while allocating
* TX queue's buffer space for message header. SDIO requires
* 224 bytes and USB 16 bytes. Refer bus specific driver code
* for details.
*
* @bus_pl_size_max: [fill] Maximum payload size.
*
* @bus_setup: [optional fill] Function called by the bus-generic code
...
...
@@ -397,7 +417,7 @@ struct i2400m_barker_db;
*
* @tx_size_max: biggest TX message sent.
*
* @rx_lock: spinlock to protect RX members
* @rx_lock: spinlock to protect RX members
and rx_roq_refcount.
*
* @rx_pl_num: total number of payloads received
*
...
...
@@ -421,6 +441,10 @@ struct i2400m_barker_db;
* delivered. Then the driver can release them to the host. See
* drivers/net/i2400m/rx.c for details.
*
* @rx_roq_refcount: refcount rx_roq. This refcounts any access to
* rx_roq thus preventing rx_roq being destroyed when rx_roq
* is being accessed. rx_roq_refcount is protected by rx_lock.
*
* @rx_reports: reports received from the device that couldn't be
* processed because the driver wasn't still ready; when ready,
* they are pulled from here and chewed.
...
...
@@ -507,6 +531,38 @@ struct i2400m_barker_db;
* same.
*
* @pm_notifier: used to register for PM events
*
* @bus_reset_retries: counter for the number of bus resets attempted for
* this boot. It's not for tracking the number of bus resets during
* the whole driver life cycle (from insmod to rmmod) but for the
* number of dev_start() executed until dev_start() returns a success
* (ie: a good boot means a dev_stop() followed by a successful
* dev_start()). dev_reset_handler() increments this counter whenever
* it is triggering a bus reset. It checks this counter to decide if a
* subsequent bus reset should be retried. dev_reset_handler() retries
* the bus reset until dev_start() succeeds or the counter reaches
* I2400M_BUS_RESET_RETRIES. The counter is cleared to 0 in
* dev_reset_handle() when dev_start() returns a success,
* ie: a successul boot is completed.
*
* @alive: flag to denote if the device *should* be alive. This flag is
* everything like @updown (see doc for @updown) except reflecting
* the device state *we expect* rather than the actual state as denoted
* by @updown. It is set 1 whenever @updown is set 1 in dev_start().
* Then the device is expected to be alive all the time
* (i2400m->alive remains 1) until the driver is removed. Therefore
* all the device reboot events detected can be still handled properly
* by either dev_reset_handle() or .pre_reset/.post_reset as long as
* the driver presents. It is set 0 along with @updown in dev_stop().
*
* @error_recovery: flag to denote if we are ready to take an error recovery.
* 0 for ready to take an error recovery; 1 for not ready. It is
* initialized to 1 while probe() since we don't tend to take any error
* recovery during probe(). It is decremented by 1 whenever dev_start()
* succeeds to indicate we are ready to take error recovery from now on.
* It is checked every time we wanna schedule an error recovery. If an
* error recovery is already in place (error_recovery was set 1), we
* should not schedule another one until the last one is done.
*/
struct
i2400m
{
struct
wimax_dev
wimax_dev
;
/* FIRST! See doc */
...
...
@@ -522,6 +578,7 @@ struct i2400m {
wait_queue_head_t
state_wq
;
/* Woken up when on state updates */
size_t
bus_tx_block_size
;
size_t
bus_tx_room_min
;
size_t
bus_pl_size_max
;
unsigned
bus_bm_retries
;
...
...
@@ -550,10 +607,12 @@ struct i2400m {
tx_num
,
tx_size_acc
,
tx_size_min
,
tx_size_max
;
/* RX stuff */
spinlock_t
rx_lock
;
/* protect RX state */
/* protect RX state and rx_roq_refcount */
spinlock_t
rx_lock
;
unsigned
rx_pl_num
,
rx_pl_max
,
rx_pl_min
,
rx_num
,
rx_size_acc
,
rx_size_min
,
rx_size_max
;
struct
i2400m_roq
*
rx_roq
;
/* not under rx_lock! */
struct
i2400m_roq
*
rx_roq
;
/* access is refcounted */
struct
kref
rx_roq_refcount
;
/* refcount access to rx_roq */
u8
src_mac_addr
[
ETH_HLEN
];
struct
list_head
rx_reports
;
/* under rx_lock! */
struct
work_struct
rx_report_ws
;
...
...
@@ -581,6 +640,16 @@ struct i2400m {
struct
i2400m_barker_db
*
barker
;
struct
notifier_block
pm_notifier
;
/* counting bus reset retries in this boot */
atomic_t
bus_reset_retries
;
/* if the device is expected to be alive */
unsigned
alive
;
/* 0 if we are ready for error recovery; 1 if not ready */
atomic_t
error_recovery
;
};
...
...
@@ -803,6 +872,7 @@ void i2400m_put(struct i2400m *i2400m)
extern
int
i2400m_dev_reset_handle
(
struct
i2400m
*
,
const
char
*
);
extern
int
i2400m_pre_reset
(
struct
i2400m
*
);
extern
int
i2400m_post_reset
(
struct
i2400m
*
);
extern
void
i2400m_error_recovery
(
struct
i2400m
*
);
/*
* _setup()/_release() are called by the probe/disconnect functions of
...
...
@@ -815,7 +885,6 @@ extern int i2400m_rx(struct i2400m *, struct sk_buff *);
extern
struct
i2400m_msg_hdr
*
i2400m_tx_msg_get
(
struct
i2400m
*
,
size_t
*
);
extern
void
i2400m_tx_msg_sent
(
struct
i2400m
*
);
extern
int
i2400m_power_save_disabled
;
/*
* Utility functions
...
...
@@ -922,10 +991,5 @@ extern int i2400m_barker_db_init(const char *);
extern
void
i2400m_barker_db_exit
(
void
);
/* Module parameters */
extern
int
i2400m_idle_mode_disabled
;
extern
int
i2400m_rx_reorder_disabled
;
#endif
/* #ifndef __I2400M_H__ */
drivers/net/wimax/i2400m/netdev.c
浏览文件 @
1cdc5abf
...
...
@@ -84,17 +84,15 @@
enum
{
/* netdev interface */
/*
* Out of NWG spec (R1_v1.2.2), 3.3.3 ASN Bearer Plane MTU Size
*
* The MTU is 1400 or less
*/
I2400M_MAX_MTU
=
1400
,
/* 20 secs? yep, this is the maximum timeout that the device
* might take to get out of IDLE / negotiate it with the base
* station. We add 1sec for good measure. */
I2400M_TX_TIMEOUT
=
21
*
HZ
,
I2400M_TX_QLEN
=
5
,
/*
* Experimentation has determined that, 20 to be a good value
* for minimizing the jitter in the throughput.
*/
I2400M_TX_QLEN
=
20
,
};
...
...
drivers/net/wimax/i2400m/rx.c
浏览文件 @
1cdc5abf
...
...
@@ -155,6 +155,11 @@
#define D_SUBMODULE rx
#include "debug-levels.h"
static
int
i2400m_rx_reorder_disabled
;
/* 0 (rx reorder enabled) by default */
module_param_named
(
rx_reorder_disabled
,
i2400m_rx_reorder_disabled
,
int
,
0644
);
MODULE_PARM_DESC
(
rx_reorder_disabled
,
"If true, RX reordering will be disabled."
);
struct
i2400m_report_hook_args
{
struct
sk_buff
*
skb_rx
;
const
struct
i2400m_l3l4_hdr
*
l3l4_hdr
;
...
...
@@ -300,17 +305,16 @@ void i2400m_rx_ctl_ack(struct i2400m *i2400m,
d_printf
(
1
,
dev
,
"Huh? waiter for command reply cancelled
\n
"
);
goto
error_waiter_cancelled
;
}
if
(
ack_skb
==
NULL
)
{
if
(
IS_ERR
(
ack_skb
))
dev_err
(
dev
,
"CMD/GET/SET ack: cannot allocate SKB
\n
"
);
i2400m
->
ack_skb
=
ERR_PTR
(
-
ENOMEM
);
}
else
i2400m
->
ack_skb
=
ack_skb
;
i2400m
->
ack_skb
=
ack_skb
;
spin_unlock_irqrestore
(
&
i2400m
->
rx_lock
,
flags
);
complete
(
&
i2400m
->
msg_completion
);
return
;
error_waiter_cancelled:
kfree_skb
(
ack_skb
);
if
(
!
IS_ERR
(
ack_skb
))
kfree_skb
(
ack_skb
);
error_no_waiter:
spin_unlock_irqrestore
(
&
i2400m
->
rx_lock
,
flags
);
}
...
...
@@ -741,12 +745,12 @@ unsigned __i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
unsigned
new_nws
,
nsn_itr
;
new_nws
=
__i2400m_roq_nsn
(
roq
,
sn
);
if
(
unlikely
(
new_nws
>=
1024
)
&&
d_test
(
1
))
{
dev_err
(
dev
,
"SW BUG? __update_ws new_nws %u (sn %u ws %u)
\n
"
,
new_nws
,
sn
,
roq
->
ws
);
WARN_ON
(
1
);
i2400m_roq_log_dump
(
i2400m
,
roq
);
}
/*
* For type 2(update_window_start) rx messages, there is no
* need to check if the normalized sequence number is greater 1023.
* Simply insert and deliver all packets to the host up to the
* window start.
*/
skb_queue_walk_safe
(
&
roq
->
queue
,
skb_itr
,
tmp_itr
)
{
roq_data_itr
=
(
struct
i2400m_roq_data
*
)
&
skb_itr
->
cb
;
nsn_itr
=
__i2400m_roq_nsn
(
roq
,
roq_data_itr
->
sn
);
...
...
@@ -885,31 +889,51 @@ void i2400m_roq_queue_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
i2400m
,
roq
,
skb
,
sn
);
len
=
skb_queue_len
(
&
roq
->
queue
);
nsn
=
__i2400m_roq_nsn
(
roq
,
sn
);
/*
* For type 3(queue_update_window_start) rx messages, there is no
* need to check if the normalized sequence number is greater 1023.
* Simply insert and deliver all packets to the host up to the
* window start.
*/
old_ws
=
roq
->
ws
;
if
(
unlikely
(
nsn
>=
1024
))
{
dev_err
(
dev
,
"SW BUG? queue_update_ws nsn %u (sn %u ws %u)
\n
"
,
nsn
,
sn
,
roq
->
ws
);
i2400m_roq_log_dump
(
i2400m
,
roq
);
i2400m_reset
(
i2400m
,
I2400M_RT_WARM
);
}
else
{
/* if the queue is empty, don't bother as we'd queue
* it and inmediately unqueue it -- just deliver it */
if
(
len
==
0
)
{
struct
i2400m_roq_data
*
roq_data
;
roq_data
=
(
struct
i2400m_roq_data
*
)
&
skb
->
cb
;
i2400m_net_erx
(
i2400m
,
skb
,
roq_data
->
cs
);
}
else
__i2400m_roq_queue
(
i2400m
,
roq
,
skb
,
sn
,
nsn
);
__i2400m_roq_update_ws
(
i2400m
,
roq
,
sn
+
1
);
i2400m_roq_log_add
(
i2400m
,
roq
,
I2400M_RO_TYPE_PACKET_WS
,
old_ws
,
len
,
sn
,
nsn
,
roq
->
ws
);
}
/* If the queue is empty, don't bother as we'd queue
* it and immediately unqueue it -- just deliver it.
*/
if
(
len
==
0
)
{
struct
i2400m_roq_data
*
roq_data
;
roq_data
=
(
struct
i2400m_roq_data
*
)
&
skb
->
cb
;
i2400m_net_erx
(
i2400m
,
skb
,
roq_data
->
cs
);
}
else
__i2400m_roq_queue
(
i2400m
,
roq
,
skb
,
sn
,
nsn
);
__i2400m_roq_update_ws
(
i2400m
,
roq
,
sn
+
1
);
i2400m_roq_log_add
(
i2400m
,
roq
,
I2400M_RO_TYPE_PACKET_WS
,
old_ws
,
len
,
sn
,
nsn
,
roq
->
ws
);
d_fnend
(
2
,
dev
,
"(i2400m %p roq %p skb %p sn %u) = void
\n
"
,
i2400m
,
roq
,
skb
,
sn
);
}
/*
* This routine destroys the memory allocated for rx_roq, when no
* other thread is accessing it. Access to rx_roq is refcounted by
* rx_roq_refcount, hence memory allocated must be destroyed when
* rx_roq_refcount becomes zero. This routine gets executed when
* rx_roq_refcount becomes zero.
*/
void
i2400m_rx_roq_destroy
(
struct
kref
*
ref
)
{
unsigned
itr
;
struct
i2400m
*
i2400m
=
container_of
(
ref
,
struct
i2400m
,
rx_roq_refcount
);
for
(
itr
=
0
;
itr
<
I2400M_RO_CIN
+
1
;
itr
++
)
__skb_queue_purge
(
&
i2400m
->
rx_roq
[
itr
].
queue
);
kfree
(
i2400m
->
rx_roq
[
0
].
log
);
kfree
(
i2400m
->
rx_roq
);
i2400m
->
rx_roq
=
NULL
;
}
/*
* Receive and send up an extended data packet
*
...
...
@@ -963,6 +987,7 @@ void i2400m_rx_edata(struct i2400m *i2400m, struct sk_buff *skb_rx,
unsigned
ro_needed
,
ro_type
,
ro_cin
,
ro_sn
;
struct
i2400m_roq
*
roq
;
struct
i2400m_roq_data
*
roq_data
;
unsigned
long
flags
;
BUILD_BUG_ON
(
ETH_HLEN
>
sizeof
(
*
hdr
));
...
...
@@ -1001,7 +1026,16 @@ void i2400m_rx_edata(struct i2400m *i2400m, struct sk_buff *skb_rx,
ro_cin
=
(
reorder
>>
I2400M_RO_CIN_SHIFT
)
&
I2400M_RO_CIN
;
ro_sn
=
(
reorder
>>
I2400M_RO_SN_SHIFT
)
&
I2400M_RO_SN
;
spin_lock_irqsave
(
&
i2400m
->
rx_lock
,
flags
);
roq
=
&
i2400m
->
rx_roq
[
ro_cin
];
if
(
roq
==
NULL
)
{
kfree_skb
(
skb
);
/* rx_roq is already destroyed */
spin_unlock_irqrestore
(
&
i2400m
->
rx_lock
,
flags
);
goto
error
;
}
kref_get
(
&
i2400m
->
rx_roq_refcount
);
spin_unlock_irqrestore
(
&
i2400m
->
rx_lock
,
flags
);
roq_data
=
(
struct
i2400m_roq_data
*
)
&
skb
->
cb
;
roq_data
->
sn
=
ro_sn
;
roq_data
->
cs
=
cs
;
...
...
@@ -1028,6 +1062,10 @@ void i2400m_rx_edata(struct i2400m *i2400m, struct sk_buff *skb_rx,
default:
dev_err
(
dev
,
"HW BUG? unknown reorder type %u
\n
"
,
ro_type
);
}
spin_lock_irqsave
(
&
i2400m
->
rx_lock
,
flags
);
kref_put
(
&
i2400m
->
rx_roq_refcount
,
i2400m_rx_roq_destroy
);
spin_unlock_irqrestore
(
&
i2400m
->
rx_lock
,
flags
);
}
else
i2400m_net_erx
(
i2400m
,
skb
,
cs
);
...
...
@@ -1337,6 +1375,7 @@ int i2400m_rx_setup(struct i2400m *i2400m)
__i2400m_roq_init
(
&
i2400m
->
rx_roq
[
itr
]);
i2400m
->
rx_roq
[
itr
].
log
=
&
rd
[
itr
];
}
kref_init
(
&
i2400m
->
rx_roq_refcount
);
}
return
0
;
...
...
@@ -1350,12 +1389,12 @@ int i2400m_rx_setup(struct i2400m *i2400m)
/* Tear down the RX queue and infrastructure */
void
i2400m_rx_release
(
struct
i2400m
*
i2400m
)
{
unsigned
long
flags
;
if
(
i2400m
->
rx_reorder
)
{
unsigned
itr
;
for
(
itr
=
0
;
itr
<
I2400M_RO_CIN
+
1
;
itr
++
)
__skb_queue_purge
(
&
i2400m
->
rx_roq
[
itr
].
queue
);
kfree
(
i2400m
->
rx_roq
[
0
].
log
);
kfree
(
i2400m
->
rx_roq
);
spin_lock_irqsave
(
&
i2400m
->
rx_lock
,
flags
);
kref_put
(
&
i2400m
->
rx_roq_refcount
,
i2400m_rx_roq_destroy
);
spin_unlock_irqrestore
(
&
i2400m
->
rx_lock
,
flags
);
}
/* at this point, nothing can be received... */
i2400m_report_hook_flush
(
i2400m
);
...
...
drivers/net/wimax/i2400m/sdio-tx.c
浏览文件 @
1cdc5abf
...
...
@@ -98,6 +98,10 @@ void i2400ms_tx_submit(struct work_struct *ws)
tx_msg_size
,
result
);
}
if
(
result
==
-
ETIMEDOUT
)
{
i2400m_error_recovery
(
i2400m
);
break
;
}
d_printf
(
2
,
dev
,
"TX: %zub submitted
\n
"
,
tx_msg_size
);
}
...
...
@@ -114,13 +118,17 @@ void i2400ms_bus_tx_kick(struct i2400m *i2400m)
{
struct
i2400ms
*
i2400ms
=
container_of
(
i2400m
,
struct
i2400ms
,
i2400m
);
struct
device
*
dev
=
&
i2400ms
->
func
->
dev
;
unsigned
long
flags
;
d_fnstart
(
3
,
dev
,
"(i2400m %p) = void
\n
"
,
i2400m
);
/* schedule tx work, this is because tx may block, therefore
* it has to run in a thread context.
*/
queue_work
(
i2400ms
->
tx_workqueue
,
&
i2400ms
->
tx_worker
);
spin_lock_irqsave
(
&
i2400m
->
tx_lock
,
flags
);
if
(
i2400ms
->
tx_workqueue
!=
NULL
)
queue_work
(
i2400ms
->
tx_workqueue
,
&
i2400ms
->
tx_worker
);
spin_unlock_irqrestore
(
&
i2400m
->
tx_lock
,
flags
);
d_fnend
(
3
,
dev
,
"(i2400m %p) = void
\n
"
,
i2400m
);
}
...
...
@@ -130,27 +138,40 @@ int i2400ms_tx_setup(struct i2400ms *i2400ms)
int
result
;
struct
device
*
dev
=
&
i2400ms
->
func
->
dev
;
struct
i2400m
*
i2400m
=
&
i2400ms
->
i2400m
;
struct
workqueue_struct
*
tx_workqueue
;
unsigned
long
flags
;
d_fnstart
(
5
,
dev
,
"(i2400ms %p)
\n
"
,
i2400ms
);
INIT_WORK
(
&
i2400ms
->
tx_worker
,
i2400ms_tx_submit
);
snprintf
(
i2400ms
->
tx_wq_name
,
sizeof
(
i2400ms
->
tx_wq_name
),
"%s-tx"
,
i2400m
->
wimax_dev
.
name
);
i2400ms
->
tx_workqueue
=
tx_workqueue
=
create_singlethread_workqueue
(
i2400ms
->
tx_wq_name
);
if
(
NULL
==
i2400ms
->
tx_workqueue
)
{
if
(
tx_workqueue
==
NULL
)
{
dev_err
(
dev
,
"TX: failed to create workqueue
\n
"
);
result
=
-
ENOMEM
;
}
else
result
=
0
;
spin_lock_irqsave
(
&
i2400m
->
tx_lock
,
flags
);
i2400ms
->
tx_workqueue
=
tx_workqueue
;
spin_unlock_irqrestore
(
&
i2400m
->
tx_lock
,
flags
);
d_fnend
(
5
,
dev
,
"(i2400ms %p) = %d
\n
"
,
i2400ms
,
result
);
return
result
;
}
void
i2400ms_tx_release
(
struct
i2400ms
*
i2400ms
)
{
if
(
i2400ms
->
tx_workqueue
)
{
destroy_workqueue
(
i2400ms
->
tx_workqueue
);
i2400ms
->
tx_workqueue
=
NULL
;
}
struct
i2400m
*
i2400m
=
&
i2400ms
->
i2400m
;
struct
workqueue_struct
*
tx_workqueue
;
unsigned
long
flags
;
tx_workqueue
=
i2400ms
->
tx_workqueue
;
spin_lock_irqsave
(
&
i2400m
->
tx_lock
,
flags
);
i2400ms
->
tx_workqueue
=
NULL
;
spin_unlock_irqrestore
(
&
i2400m
->
tx_lock
,
flags
);
if
(
tx_workqueue
)
destroy_workqueue
(
tx_workqueue
);
}
drivers/net/wimax/i2400m/sdio.c
浏览文件 @
1cdc5abf
...
...
@@ -483,6 +483,13 @@ int i2400ms_probe(struct sdio_func *func,
sdio_set_drvdata
(
func
,
i2400ms
);
i2400m
->
bus_tx_block_size
=
I2400MS_BLK_SIZE
;
/*
* Room required in the TX queue for SDIO message to accommodate
* a smallest payload while allocating header space is 224 bytes,
* which is the smallest message size(the block size 256 bytes)
* minus the smallest message header size(32 bytes).
*/
i2400m
->
bus_tx_room_min
=
I2400MS_BLK_SIZE
-
I2400M_PL_ALIGN
*
2
;
i2400m
->
bus_pl_size_max
=
I2400MS_PL_SIZE_MAX
;
i2400m
->
bus_setup
=
i2400ms_bus_setup
;
i2400m
->
bus_dev_start
=
i2400ms_bus_dev_start
;
...
...
drivers/net/wimax/i2400m/tx.c
浏览文件 @
1cdc5abf
...
...
@@ -258,8 +258,10 @@ enum {
* Doc says maximum transaction is 16KiB. If we had 16KiB en
* route and 16KiB being queued, it boils down to needing
* 32KiB.
* 32KiB is insufficient for 1400 MTU, hence increasing
* tx buffer size to 64KiB.
*/
I2400M_TX_BUF_SIZE
=
32768
,
I2400M_TX_BUF_SIZE
=
65536
,
/**
* Message header and payload descriptors have to be 16
* aligned (16 + 4 * N = 16 * M). If we take that average sent
...
...
@@ -270,10 +272,21 @@ enum {
* at the end there are less, we pad up to the nearest
* multiple of 16.
*/
I2400M_TX_PLD_MAX
=
12
,
/*
* According to Intel Wimax i3200, i5x50 and i6x50 specification
* documents, the maximum number of payloads per message can be
* up to 60. Increasing the number of payloads to 60 per message
* helps to accommodate smaller payloads in a single transaction.
*/
I2400M_TX_PLD_MAX
=
60
,
I2400M_TX_PLD_SIZE
=
sizeof
(
struct
i2400m_msg_hdr
)
+
I2400M_TX_PLD_MAX
*
sizeof
(
struct
i2400m_pld
),
I2400M_TX_SKIP
=
0x80000000
,
/*
* According to Intel Wimax i3200, i5x50 and i6x50 specification
* documents, the maximum size of each message can be up to 16KiB.
*/
I2400M_TX_MSG_SIZE
=
16384
,
};
#define TAIL_FULL ((void *)~(unsigned long)NULL)
...
...
@@ -328,6 +341,14 @@ size_t __i2400m_tx_tail_room(struct i2400m *i2400m)
* @padding: ensure that there is at least this many bytes of free
* contiguous space in the fifo. This is needed because later on
* we might need to add padding.
* @try_head: specify either to allocate head room or tail room space
* in the TX FIFO. This boolean is required to avoids a system hang
* due to an infinite loop caused by i2400m_tx_fifo_push().
* The caller must always try to allocate tail room space first by
* calling this routine with try_head = 0. In case if there
* is not enough tail room space but there is enough head room space,
* (i2400m_tx_fifo_push() returns TAIL_FULL) try to allocate head
* room space, by calling this routine again with try_head = 1.
*
* Returns:
*
...
...
@@ -359,6 +380,48 @@ size_t __i2400m_tx_tail_room(struct i2400m *i2400m)
* fail and return TAIL_FULL and let the caller figure out if we wants to
* skip the tail room and try to allocate from the head.
*
* There is a corner case, wherein i2400m_tx_new() can get into
* an infinite loop calling i2400m_tx_fifo_push().
* In certain situations, tx_in would have reached on the top of TX FIFO
* and i2400m_tx_tail_room() returns 0, as described below:
*
* N ___________ tail room is zero
* |<- IN ->|
* | |
* | |
* | |
* | data |
* |<- OUT ->|
* | |
* | |
* | head room |
* 0 -----------
* During such a time, where tail room is zero in the TX FIFO and if there
* is a request to add a payload to TX FIFO, which calls:
* i2400m_tx()
* ->calls i2400m_tx_close()
* ->calls i2400m_tx_skip_tail()
* goto try_new;
* ->calls i2400m_tx_new()
* |----> [try_head:]
* infinite loop | ->calls i2400m_tx_fifo_push()
* | if (tail_room < needed)
* | if (head_room => needed)
* | return TAIL_FULL;
* |<---- goto try_head;
*
* i2400m_tx() calls i2400m_tx_close() to close the message, since there
* is no tail room to accommodate the payload and calls
* i2400m_tx_skip_tail() to skip the tail space. Now i2400m_tx() calls
* i2400m_tx_new() to allocate space for new message header calling
* i2400m_tx_fifo_push() that returns TAIL_FULL, since there is no tail space
* to accommodate the message header, but there is enough head space.
* The i2400m_tx_new() keeps re-retrying by calling i2400m_tx_fifo_push()
* ending up in a loop causing system freeze.
*
* This corner case is avoided by using a try_head boolean,
* as an argument to i2400m_tx_fifo_push().
*
* Note:
*
* Assumes i2400m->tx_lock is taken, and we use that as a barrier
...
...
@@ -367,7 +430,8 @@ size_t __i2400m_tx_tail_room(struct i2400m *i2400m)
* pop data off the queue
*/
static
void
*
i2400m_tx_fifo_push
(
struct
i2400m
*
i2400m
,
size_t
size
,
size_t
padding
)
void
*
i2400m_tx_fifo_push
(
struct
i2400m
*
i2400m
,
size_t
size
,
size_t
padding
,
bool
try_head
)
{
struct
device
*
dev
=
i2400m_dev
(
i2400m
);
size_t
room
,
tail_room
,
needed_size
;
...
...
@@ -382,9 +446,21 @@ void *i2400m_tx_fifo_push(struct i2400m *i2400m, size_t size, size_t padding)
}
/* Is there space at the tail? */
tail_room
=
__i2400m_tx_tail_room
(
i2400m
);
if
(
tail_room
<
needed_size
)
{
if
(
i2400m
->
tx_out
%
I2400M_TX_BUF_SIZE
<
i2400m
->
tx_in
%
I2400M_TX_BUF_SIZE
)
{
if
(
!
try_head
&&
tail_room
<
needed_size
)
{
/*
* If the tail room space is not enough to push the message
* in the TX FIFO, then there are two possibilities:
* 1. There is enough head room space to accommodate
* this message in the TX FIFO.
* 2. There is not enough space in the head room and
* in tail room of the TX FIFO to accommodate the message.
* In the case (1), return TAIL_FULL so that the caller
* can figure out, if the caller wants to push the message
* into the head room space.
* In the case (2), return NULL, indicating that the TX FIFO
* cannot accommodate the message.
*/
if
(
room
-
tail_room
>=
needed_size
)
{
d_printf
(
2
,
dev
,
"fifo push %zu/%zu: tail full
\n
"
,
size
,
padding
);
return
TAIL_FULL
;
/* There might be head space */
...
...
@@ -485,14 +561,25 @@ void i2400m_tx_new(struct i2400m *i2400m)
{
struct
device
*
dev
=
i2400m_dev
(
i2400m
);
struct
i2400m_msg_hdr
*
tx_msg
;
bool
try_head
=
0
;
BUG_ON
(
i2400m
->
tx_msg
!=
NULL
);
/*
* In certain situations, TX queue might have enough space to
* accommodate the new message header I2400M_TX_PLD_SIZE, but
* might not have enough space to accommodate the payloads.
* Adding bus_tx_room_min padding while allocating a new TX message
* increases the possibilities of including at least one payload of the
* size <= bus_tx_room_min.
*/
try_head:
tx_msg
=
i2400m_tx_fifo_push
(
i2400m
,
I2400M_TX_PLD_SIZE
,
0
);
tx_msg
=
i2400m_tx_fifo_push
(
i2400m
,
I2400M_TX_PLD_SIZE
,
i2400m
->
bus_tx_room_min
,
try_head
);
if
(
tx_msg
==
NULL
)
goto
out
;
else
if
(
tx_msg
==
TAIL_FULL
)
{
i2400m_tx_skip_tail
(
i2400m
);
d_printf
(
2
,
dev
,
"new TX message: tail full, trying head
\n
"
);
try_head
=
1
;
goto
try_head
;
}
memset
(
tx_msg
,
0
,
I2400M_TX_PLD_SIZE
);
...
...
@@ -566,7 +653,7 @@ void i2400m_tx_close(struct i2400m *i2400m)
aligned_size
=
ALIGN
(
tx_msg_moved
->
size
,
i2400m
->
bus_tx_block_size
);
padding
=
aligned_size
-
tx_msg_moved
->
size
;
if
(
padding
>
0
)
{
pad_buf
=
i2400m_tx_fifo_push
(
i2400m
,
padding
,
0
);
pad_buf
=
i2400m_tx_fifo_push
(
i2400m
,
padding
,
0
,
0
);
if
(
unlikely
(
WARN_ON
(
pad_buf
==
NULL
||
pad_buf
==
TAIL_FULL
)))
{
/* This should not happen -- append should verify
...
...
@@ -632,6 +719,7 @@ int i2400m_tx(struct i2400m *i2400m, const void *buf, size_t buf_len,
unsigned
long
flags
;
size_t
padded_len
;
void
*
ptr
;
bool
try_head
=
0
;
unsigned
is_singleton
=
pl_type
==
I2400M_PT_RESET_WARM
||
pl_type
==
I2400M_PT_RESET_COLD
;
...
...
@@ -643,9 +731,11 @@ int i2400m_tx(struct i2400m *i2400m, const void *buf, size_t buf_len,
* current one is out of payload slots or we have a singleton,
* close it and start a new one */
spin_lock_irqsave
(
&
i2400m
->
tx_lock
,
flags
);
result
=
-
ESHUTDOWN
;
if
(
i2400m
->
tx_buf
==
NULL
)
/* If tx_buf is NULL, device is shutdown */
if
(
i2400m
->
tx_buf
==
NULL
)
{
result
=
-
ESHUTDOWN
;
goto
error_tx_new
;
}
try_new:
if
(
unlikely
(
i2400m
->
tx_msg
==
NULL
))
i2400m_tx_new
(
i2400m
);
...
...
@@ -659,7 +749,13 @@ int i2400m_tx(struct i2400m *i2400m, const void *buf, size_t buf_len,
}
if
(
i2400m
->
tx_msg
==
NULL
)
goto
error_tx_new
;
if
(
i2400m
->
tx_msg
->
size
+
padded_len
>
I2400M_TX_BUF_SIZE
/
2
)
{
/*
* Check if this skb will fit in the TX queue's current active
* TX message. The total message size must not exceed the maximum
* size of each message I2400M_TX_MSG_SIZE. If it exceeds,
* close the current message and push this skb into the new message.
*/
if
(
i2400m
->
tx_msg
->
size
+
padded_len
>
I2400M_TX_MSG_SIZE
)
{
d_printf
(
2
,
dev
,
"TX: message too big, going new
\n
"
);
i2400m_tx_close
(
i2400m
);
i2400m_tx_new
(
i2400m
);
...
...
@@ -669,11 +765,12 @@ int i2400m_tx(struct i2400m *i2400m, const void *buf, size_t buf_len,
/* So we have a current message header; now append space for
* the message -- if there is not enough, try the head */
ptr
=
i2400m_tx_fifo_push
(
i2400m
,
padded_len
,
i2400m
->
bus_tx_block_size
);
i2400m
->
bus_tx_block_size
,
try_head
);
if
(
ptr
==
TAIL_FULL
)
{
/* Tail is full, try head */
d_printf
(
2
,
dev
,
"pl append: tail full
\n
"
);
i2400m_tx_close
(
i2400m
);
i2400m_tx_skip_tail
(
i2400m
);
try_head
=
1
;
goto
try_new
;
}
else
if
(
ptr
==
NULL
)
{
/* All full */
result
=
-
ENOSPC
;
...
...
@@ -860,25 +957,43 @@ EXPORT_SYMBOL_GPL(i2400m_tx_msg_sent);
* i2400m_tx_setup - Initialize the TX queue and infrastructure
*
* Make sure we reset the TX sequence to zero, as when this function
* is called, the firmware has been just restarted.
* is called, the firmware has been just restarted. Same rational
* for tx_in, tx_out, tx_msg_size and tx_msg. We reset them since
* the memory for TX queue is reallocated.
*/
int
i2400m_tx_setup
(
struct
i2400m
*
i2400m
)
{
int
result
;
int
result
=
0
;
void
*
tx_buf
;
unsigned
long
flags
;
/* Do this here only once -- can't do on
* i2400m_hard_start_xmit() as we'll cause race conditions if
* the WS was scheduled on another CPU */
INIT_WORK
(
&
i2400m
->
wake_tx_ws
,
i2400m_wake_tx_work
);
i2400m
->
tx_sequence
=
0
;
i2400m
->
tx_buf
=
kmalloc
(
I2400M_TX_BUF_SIZE
,
GFP_KERNEL
);
if
(
i2400m
->
tx_buf
==
NULL
)
tx_buf
=
kmalloc
(
I2400M_TX_BUF_SIZE
,
GFP_ATOMIC
);
if
(
tx_buf
==
NULL
)
{
result
=
-
ENOMEM
;
else
result
=
0
;
goto
error_kmalloc
;
}
/*
* Fail the build if we can't fit at least two maximum size messages
* on the TX FIFO [one being delivered while one is constructed].
*/
BUILD_BUG_ON
(
2
*
I2400M_TX_MSG_SIZE
>
I2400M_TX_BUF_SIZE
);
spin_lock_irqsave
(
&
i2400m
->
tx_lock
,
flags
);
i2400m
->
tx_sequence
=
0
;
i2400m
->
tx_in
=
0
;
i2400m
->
tx_out
=
0
;
i2400m
->
tx_msg_size
=
0
;
i2400m
->
tx_msg
=
NULL
;
i2400m
->
tx_buf
=
tx_buf
;
spin_unlock_irqrestore
(
&
i2400m
->
tx_lock
,
flags
);
/* Huh? the bus layer has to define this... */
BUG_ON
(
i2400m
->
bus_tx_block_size
==
0
);
error_kmalloc:
return
result
;
}
...
...
drivers/net/wimax/i2400m/usb.c
浏览文件 @
1cdc5abf
...
...
@@ -82,6 +82,8 @@ MODULE_PARM_DESC(debug,
/* Our firmware file name */
static
const
char
*
i2400mu_bus_fw_names_5x50
[]
=
{
#define I2400MU_FW_FILE_NAME_v1_5 "i2400m-fw-usb-1.5.sbcf"
I2400MU_FW_FILE_NAME_v1_5
,
#define I2400MU_FW_FILE_NAME_v1_4 "i2400m-fw-usb-1.4.sbcf"
I2400MU_FW_FILE_NAME_v1_4
,
NULL
,
...
...
@@ -467,6 +469,13 @@ int i2400mu_probe(struct usb_interface *iface,
usb_set_intfdata
(
iface
,
i2400mu
);
i2400m
->
bus_tx_block_size
=
I2400MU_BLK_SIZE
;
/*
* Room required in the Tx queue for USB message to accommodate
* a smallest payload while allocating header space is 16 bytes.
* Adding this room for the new tx message increases the
* possibilities of including any payload with size <= 16 bytes.
*/
i2400m
->
bus_tx_room_min
=
I2400MU_BLK_SIZE
;
i2400m
->
bus_pl_size_max
=
I2400MU_PL_SIZE_MAX
;
i2400m
->
bus_setup
=
NULL
;
i2400m
->
bus_dev_start
=
i2400mu_bus_dev_start
;
...
...
@@ -778,4 +787,5 @@ MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>");
MODULE_DESCRIPTION
(
"Driver for USB based Intel Wireless WiMAX Connection 2400M "
"(5x50 & 6050)"
);
MODULE_LICENSE
(
"GPL"
);
MODULE_FIRMWARE
(
I2400MU_FW_FILE_NAME_v1_4
);
MODULE_FIRMWARE
(
I2400MU_FW_FILE_NAME_v1_5
);
MODULE_FIRMWARE
(
I6050U_FW_FILE_NAME_v1_5
);
net/wimax/stack.c
浏览文件 @
1cdc5abf
...
...
@@ -315,7 +315,7 @@ void __wimax_state_change(struct wimax_dev *wimax_dev, enum wimax_st new_state)
BUG
();
}
__wimax_state_set
(
wimax_dev
,
new_state
);
if
(
stch_skb
)
if
(
!
IS_ERR
(
stch_skb
)
)
wimax_gnl_re_state_change_send
(
wimax_dev
,
stch_skb
,
header
);
out:
d_fnend
(
3
,
dev
,
"(wimax_dev %p new_state %u [old %u]) = void
\n
"
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录