-
由 Filipe Manana 提交于
When we have the no_holes feature enabled, if a we truncate a file to a smaller size, truncate it again but to a size greater than or equals to its original size and fsync it, the log tree will not have any information about the hole covering the range [truncate_1_offset, new_file_size[. Which means if the fsync log is replayed, the file will remain with the state it had before both truncate operations. Without the no_holes feature this does not happen, since when the inode is logged (full sync flag is set) it will find in the fs/subvol tree a leaf with a generation matching the current transaction id that has an explicit extent item representing the hole. Fix this by adding an explicit extent item representing a hole between the last extent and the inode's i_size if we are doing a full sync. The issue is easy to reproduce with the following test case for fstests: . ./common/rc . ./common/filter . ./common/dmflakey _need_to_be_root _supported_fs generic _supported_os Linux _require_scratch _require_dm_flakey # This test was motivated by an issue found in btrfs when the btrfs # no-holes feature is enabled (introduced in kernel 3.14). So enable # the feature if the fs being tested is btrfs. if [ $FSTYP == "btrfs" ]; then _require_btrfs_fs_feature "no_holes" _require_btrfs_mkfs_feature "no-holes" MKFS_OPTIONS="$MKFS_OPTIONS -O no-holes" fi rm -f $seqres.full _scratch_mkfs >>$seqres.full 2>&1 _init_flakey _mount_flakey # Create our test files and make sure everything is durably persisted. $XFS_IO_PROG -f -c "pwrite -S 0xaa 0 64K" \ -c "pwrite -S 0xbb 64K 61K" \ $SCRATCH_MNT/foo | _filter_xfs_io $XFS_IO_PROG -f -c "pwrite -S 0xee 0 64K" \ -c "pwrite -S 0xff 64K 61K" \ $SCRATCH_MNT/bar | _filter_xfs_io sync # Now truncate our file foo to a smaller size (64Kb) and then truncate # it to the size it had before the shrinking truncate (125Kb). Then # fsync our file. If a power failure happens after the fsync, we expect # our file to have a size of 125Kb, with the first 64Kb of data having # the value 0xaa and the second 61Kb of data having the value 0x00. $XFS_IO_PROG -c "truncate 64K" \ -c "truncate 125K" \ -c "fsync" \ $SCRATCH_MNT/foo # Do something similar to our file bar, but the first truncation sets # the file size to 0 and the second truncation expands the size to the # double of what it was initially. $XFS_IO_PROG -c "truncate 0" \ -c "truncate 253K" \ -c "fsync" \ $SCRATCH_MNT/bar _load_flakey_table $FLAKEY_DROP_WRITES _unmount_flakey # Allow writes again, mount to trigger log replay and validate file # contents. _load_flakey_table $FLAKEY_ALLOW_WRITES _mount_flakey # We expect foo to have a size of 125Kb, the first 64Kb of data all # having the value 0xaa and the remaining 61Kb to be a hole (all bytes # with value 0x00). echo "File foo content after log replay:" od -t x1 $SCRATCH_MNT/foo # We expect bar to have a size of 253Kb and no extents (any byte read # from bar has the value 0x00). echo "File bar content after log replay:" od -t x1 $SCRATCH_MNT/bar status=0 exit The expected file contents in the golden output are: File foo content after log replay: 0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa * 0200000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * 0372000 File bar content after log replay: 0000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * 0772000 Without this fix, their contents are: File foo content after log replay: 0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa * 0200000 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb * 0372000 File bar content after log replay: 0000000 ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee * 0200000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff * 0372000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * 0772000 A test case submission for fstests follows soon. Signed-off-by: NFilipe Manana <fdmanana@suse.com> Reviewed-by: NLiu Bo <bo.li.liu@oracle.com> Signed-off-by: NChris Mason <clm@fb.com>
a89ca6f2