mmzone.h 31.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
#ifndef _LINUX_MMZONE_H
#define _LINUX_MMZONE_H

#ifndef __ASSEMBLY__
C
Christoph Lameter 已提交
5
#ifndef __GENERATING_BOUNDS_H
L
Linus Torvalds 已提交
6 7 8 9

#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/wait.h>
10
#include <linux/bitops.h>
L
Linus Torvalds 已提交
11 12 13 14
#include <linux/cache.h>
#include <linux/threads.h>
#include <linux/numa.h>
#include <linux/init.h>
15
#include <linux/seqlock.h>
16
#include <linux/nodemask.h>
17
#include <linux/pageblock-flags.h>
C
Christoph Lameter 已提交
18
#include <linux/bounds.h>
L
Linus Torvalds 已提交
19
#include <asm/atomic.h>
R
Ralf Baechle 已提交
20
#include <asm/page.h>
L
Linus Torvalds 已提交
21 22 23 24 25 26 27

/* Free memory management - zoned buddy allocator.  */
#ifndef CONFIG_FORCE_MAX_ZONEORDER
#define MAX_ORDER 11
#else
#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
#endif
28
#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
L
Linus Torvalds 已提交
29

A
Andy Whitcroft 已提交
30 31 32 33 34 35 36 37
/*
 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
 * costly to service.  That is between allocation orders which should
 * coelesce naturally under reasonable reclaim pressure and those which
 * will not.
 */
#define PAGE_ALLOC_COSTLY_ORDER 3

38
#define MIGRATE_UNMOVABLE     0
39 40
#define MIGRATE_RECLAIMABLE   1
#define MIGRATE_MOVABLE       2
41
#define MIGRATE_RESERVE       3
K
KAMEZAWA Hiroyuki 已提交
42 43
#define MIGRATE_ISOLATE       4 /* can't allocate from here */
#define MIGRATE_TYPES         5
44 45 46 47 48

#define for_each_migratetype_order(order, type) \
	for (order = 0; order < MAX_ORDER; order++) \
		for (type = 0; type < MIGRATE_TYPES; type++)

49 50 51 52 53 54 55 56 57 58
extern int page_group_by_mobility_disabled;

static inline int get_pageblock_migratetype(struct page *page)
{
	if (unlikely(page_group_by_mobility_disabled))
		return MIGRATE_UNMOVABLE;

	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
}

L
Linus Torvalds 已提交
59
struct free_area {
60
	struct list_head	free_list[MIGRATE_TYPES];
L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74
	unsigned long		nr_free;
};

struct pglist_data;

/*
 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
 * So add a wild amount of padding here to ensure that they fall into separate
 * cachelines.  There are very few zone structures in the machine, so space
 * consumption is not a concern here.
 */
#if defined(CONFIG_SMP)
struct zone_padding {
	char x[0];
75
} ____cacheline_internodealigned_in_smp;
L
Linus Torvalds 已提交
76 77 78 79 80
#define ZONE_PADDING(name)	struct zone_padding name;
#else
#define ZONE_PADDING(name)
#endif

81
enum zone_stat_item {
82
	/* First 128 byte cacheline (assuming 64 bit words) */
83
	NR_FREE_PAGES,
84 85
	NR_INACTIVE,
	NR_ACTIVE,
86 87
	NR_ANON_PAGES,	/* Mapped anonymous pages */
	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
88
			   only modified from process context */
89
	NR_FILE_PAGES,
90
	NR_FILE_DIRTY,
91
	NR_WRITEBACK,
92 93 94 95
	/* Second 128 byte cacheline */
	NR_SLAB_RECLAIMABLE,
	NR_SLAB_UNRECLAIMABLE,
	NR_PAGETABLE,		/* used for pagetables */
96
	NR_UNSTABLE_NFS,	/* NFS unstable pages */
97
	NR_BOUNCE,
98
	NR_VMSCAN_WRITE,
99
	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
100 101 102 103 104 105 106 107
#ifdef CONFIG_NUMA
	NUMA_HIT,		/* allocated in intended node */
	NUMA_MISS,		/* allocated in non intended node */
	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
	NUMA_LOCAL,		/* allocation from local node */
	NUMA_OTHER,		/* allocation from other node */
#endif
108 109
	NR_VM_ZONE_STAT_ITEMS };

L
Linus Torvalds 已提交
110 111 112 113 114 115 116 117
struct per_cpu_pages {
	int count;		/* number of pages in the list */
	int high;		/* high watermark, emptying needed */
	int batch;		/* chunk size for buddy add/remove */
	struct list_head list;	/* the list of pages */
};

struct per_cpu_pageset {
118
	struct per_cpu_pages pcp;
119 120 121
#ifdef CONFIG_NUMA
	s8 expire;
#endif
122
#ifdef CONFIG_SMP
123
	s8 stat_threshold;
124 125
	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
#endif
L
Linus Torvalds 已提交
126 127
} ____cacheline_aligned_in_smp;

128 129 130 131 132 133
#ifdef CONFIG_NUMA
#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
#else
#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
#endif

C
Christoph Lameter 已提交
134 135
#endif /* !__GENERATING_BOUNDS.H */

136
enum zone_type {
137
#ifdef CONFIG_ZONE_DMA
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	/*
	 * ZONE_DMA is used when there are devices that are not able
	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
	 * carve out the portion of memory that is needed for these devices.
	 * The range is arch specific.
	 *
	 * Some examples
	 *
	 * Architecture		Limit
	 * ---------------------------
	 * parisc, ia64, sparc	<4G
	 * s390			<2G
	 * arm			Various
	 * alpha		Unlimited or 0-16MB.
	 *
	 * i386, x86_64 and multiple other arches
	 * 			<16M.
	 */
	ZONE_DMA,
157
#endif
158
#ifdef CONFIG_ZONE_DMA32
159 160 161 162 163 164
	/*
	 * x86_64 needs two ZONE_DMAs because it supports devices that are
	 * only able to do DMA to the lower 16M but also 32 bit devices that
	 * can only do DMA areas below 4G.
	 */
	ZONE_DMA32,
165
#endif
166 167 168 169 170 171
	/*
	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
	 * performed on pages in ZONE_NORMAL if the DMA devices support
	 * transfers to all addressable memory.
	 */
	ZONE_NORMAL,
172
#ifdef CONFIG_HIGHMEM
173 174 175 176 177 178 179 180 181
	/*
	 * A memory area that is only addressable by the kernel through
	 * mapping portions into its own address space. This is for example
	 * used by i386 to allow the kernel to address the memory beyond
	 * 900MB. The kernel will set up special mappings (page
	 * table entries on i386) for each page that the kernel needs to
	 * access.
	 */
	ZONE_HIGHMEM,
182
#endif
M
Mel Gorman 已提交
183
	ZONE_MOVABLE,
C
Christoph Lameter 已提交
184
	__MAX_NR_ZONES
185
};
L
Linus Torvalds 已提交
186

C
Christoph Lameter 已提交
187 188
#ifndef __GENERATING_BOUNDS_H

L
Linus Torvalds 已提交
189 190 191 192 193
/*
 * When a memory allocation must conform to specific limitations (such
 * as being suitable for DMA) the caller will pass in hints to the
 * allocator in the gfp_mask, in the zone modifier bits.  These bits
 * are used to select a priority ordered list of memory zones which
194
 * match the requested limits. See gfp_zone() in include/linux/gfp.h
L
Linus Torvalds 已提交
195
 */
196

C
Christoph Lameter 已提交
197
#if MAX_NR_ZONES < 2
198
#define ZONES_SHIFT 0
C
Christoph Lameter 已提交
199
#elif MAX_NR_ZONES <= 2
200
#define ZONES_SHIFT 1
C
Christoph Lameter 已提交
201
#elif MAX_NR_ZONES <= 4
202
#define ZONES_SHIFT 2
203 204
#else
#error ZONES_SHIFT -- too many zones configured adjust calculation
205
#endif
L
Linus Torvalds 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219

struct zone {
	/* Fields commonly accessed by the page allocator */
	unsigned long		pages_min, pages_low, pages_high;
	/*
	 * We don't know if the memory that we're going to allocate will be freeable
	 * or/and it will be released eventually, so to avoid totally wasting several
	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
	 * to run OOM on the lower zones despite there's tons of freeable ram
	 * on the higher zones). This array is recalculated at runtime if the
	 * sysctl_lowmem_reserve_ratio sysctl changes.
	 */
	unsigned long		lowmem_reserve[MAX_NR_ZONES];

220
#ifdef CONFIG_NUMA
221
	int node;
222 223 224
	/*
	 * zone reclaim becomes active if more unmapped pages exist.
	 */
225
	unsigned long		min_unmapped_pages;
226
	unsigned long		min_slab_pages;
227 228
	struct per_cpu_pageset	*pageset[NR_CPUS];
#else
L
Linus Torvalds 已提交
229
	struct per_cpu_pageset	pageset[NR_CPUS];
230
#endif
L
Linus Torvalds 已提交
231 232 233 234
	/*
	 * free areas of different sizes
	 */
	spinlock_t		lock;
235 236 237 238
#ifdef CONFIG_MEMORY_HOTPLUG
	/* see spanned/present_pages for more description */
	seqlock_t		span_seqlock;
#endif
L
Linus Torvalds 已提交
239 240
	struct free_area	free_area[MAX_ORDER];

241 242
#ifndef CONFIG_SPARSEMEM
	/*
243
	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
244 245 246 247 248
	 * In SPARSEMEM, this map is stored in struct mem_section
	 */
	unsigned long		*pageblock_flags;
#endif /* CONFIG_SPARSEMEM */

L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258

	ZONE_PADDING(_pad1_)

	/* Fields commonly accessed by the page reclaim scanner */
	spinlock_t		lru_lock;	
	struct list_head	active_list;
	struct list_head	inactive_list;
	unsigned long		nr_scan_active;
	unsigned long		nr_scan_inactive;
	unsigned long		pages_scanned;	   /* since last reclaim */
259
	unsigned long		flags;		   /* zone flags, see below */
M
Martin Hicks 已提交
260

261 262
	/* Zone statistics */
	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
263

L
Linus Torvalds 已提交
264 265 266 267 268 269 270 271 272 273
	/*
	 * prev_priority holds the scanning priority for this zone.  It is
	 * defined as the scanning priority at which we achieved our reclaim
	 * target at the previous try_to_free_pages() or balance_pgdat()
	 * invokation.
	 *
	 * We use prev_priority as a measure of how much stress page reclaim is
	 * under - it drives the swappiness decision: whether to unmap mapped
	 * pages.
	 *
274
	 * Access to both this field is quite racy even on uniprocessor.  But
L
Linus Torvalds 已提交
275 276 277 278 279 280 281 282 283 284
	 * it is expected to average out OK.
	 */
	int prev_priority;


	ZONE_PADDING(_pad2_)
	/* Rarely used or read-mostly fields */

	/*
	 * wait_table		-- the array holding the hash table
285
	 * wait_table_hash_nr_entries	-- the size of the hash table array
L
Linus Torvalds 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
	 *
	 * The purpose of all these is to keep track of the people
	 * waiting for a page to become available and make them
	 * runnable again when possible. The trouble is that this
	 * consumes a lot of space, especially when so few things
	 * wait on pages at a given time. So instead of using
	 * per-page waitqueues, we use a waitqueue hash table.
	 *
	 * The bucket discipline is to sleep on the same queue when
	 * colliding and wake all in that wait queue when removing.
	 * When something wakes, it must check to be sure its page is
	 * truly available, a la thundering herd. The cost of a
	 * collision is great, but given the expected load of the
	 * table, they should be so rare as to be outweighed by the
	 * benefits from the saved space.
	 *
	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
	 * primary users of these fields, and in mm/page_alloc.c
	 * free_area_init_core() performs the initialization of them.
	 */
	wait_queue_head_t	* wait_table;
308
	unsigned long		wait_table_hash_nr_entries;
L
Linus Torvalds 已提交
309 310 311 312 313 314 315 316 317
	unsigned long		wait_table_bits;

	/*
	 * Discontig memory support fields.
	 */
	struct pglist_data	*zone_pgdat;
	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
	unsigned long		zone_start_pfn;

318 319 320 321 322 323 324 325 326 327
	/*
	 * zone_start_pfn, spanned_pages and present_pages are all
	 * protected by span_seqlock.  It is a seqlock because it has
	 * to be read outside of zone->lock, and it is done in the main
	 * allocator path.  But, it is written quite infrequently.
	 *
	 * The lock is declared along with zone->lock because it is
	 * frequently read in proximity to zone->lock.  It's good to
	 * give them a chance of being in the same cacheline.
	 */
L
Linus Torvalds 已提交
328 329 330 331 332 333
	unsigned long		spanned_pages;	/* total size, including holes */
	unsigned long		present_pages;	/* amount of memory (excluding holes) */

	/*
	 * rarely used fields:
	 */
334
	const char		*name;
335
} ____cacheline_internodealigned_in_smp;
L
Linus Torvalds 已提交
336

337 338 339
typedef enum {
	ZONE_ALL_UNRECLAIMABLE,		/* all pages pinned */
	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
D
David Rientjes 已提交
340
	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
341 342 343 344 345 346
} zone_flags_t;

static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
{
	set_bit(flag, &zone->flags);
}
347 348 349 350 351 352

static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
{
	return test_and_set_bit(flag, &zone->flags);
}

353 354 355 356 357 358 359 360 361
static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
{
	clear_bit(flag, &zone->flags);
}

static inline int zone_is_all_unreclaimable(const struct zone *zone)
{
	return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
}
362

363 364 365 366
static inline int zone_is_reclaim_locked(const struct zone *zone)
{
	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
}
367

D
David Rientjes 已提交
368 369 370 371
static inline int zone_is_oom_locked(const struct zone *zone)
{
	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
}
372

L
Linus Torvalds 已提交
373 374 375 376 377 378 379
/*
 * The "priority" of VM scanning is how much of the queues we will scan in one
 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 * queues ("queue_length >> 12") during an aging round.
 */
#define DEF_PRIORITY 12

380 381 382 383
/* Maximum number of zones on a zonelist */
#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)

#ifdef CONFIG_NUMA
384 385 386 387 388

/*
 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
 * allocations to a single node for GFP_THISNODE.
 *
389 390
 * [0]	: Zonelist with fallback
 * [1]	: No fallback (GFP_THISNODE)
391
 */
392
#define MAX_ZONELISTS 2
393 394


395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
/*
 * We cache key information from each zonelist for smaller cache
 * footprint when scanning for free pages in get_page_from_freelist().
 *
 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
 *    up short of free memory since the last time (last_fullzone_zap)
 *    we zero'd fullzones.
 * 2) The array z_to_n[] maps each zone in the zonelist to its node
 *    id, so that we can efficiently evaluate whether that node is
 *    set in the current tasks mems_allowed.
 *
 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
 * indexed by a zones offset in the zonelist zones[] array.
 *
 * The get_page_from_freelist() routine does two scans.  During the
 * first scan, we skip zones whose corresponding bit in 'fullzones'
 * is set or whose corresponding node in current->mems_allowed (which
 * comes from cpusets) is not set.  During the second scan, we bypass
 * this zonelist_cache, to ensure we look methodically at each zone.
 *
 * Once per second, we zero out (zap) fullzones, forcing us to
 * reconsider nodes that might have regained more free memory.
 * The field last_full_zap is the time we last zapped fullzones.
 *
 * This mechanism reduces the amount of time we waste repeatedly
 * reexaming zones for free memory when they just came up low on
 * memory momentarilly ago.
 *
 * The zonelist_cache struct members logically belong in struct
 * zonelist.  However, the mempolicy zonelists constructed for
 * MPOL_BIND are intentionally variable length (and usually much
 * shorter).  A general purpose mechanism for handling structs with
 * multiple variable length members is more mechanism than we want
 * here.  We resort to some special case hackery instead.
 *
 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
 * part because they are shorter), so we put the fixed length stuff
 * at the front of the zonelist struct, ending in a variable length
 * zones[], as is needed by MPOL_BIND.
 *
 * Then we put the optional zonelist cache on the end of the zonelist
 * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
 * the fixed length portion at the front of the struct.  This pointer
 * both enables us to find the zonelist cache, and in the case of
 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
 * to know that the zonelist cache is not there.
 *
 * The end result is that struct zonelists come in two flavors:
 *  1) The full, fixed length version, shown below, and
 *  2) The custom zonelists for MPOL_BIND.
 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
 *
 * Even though there may be multiple CPU cores on a node modifying
 * fullzones or last_full_zap in the same zonelist_cache at the same
 * time, we don't lock it.  This is just hint data - if it is wrong now
 * and then, the allocator will still function, perhaps a bit slower.
 */


struct zonelist_cache {
	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
456
	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
457 458 459
	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
};
#else
460
#define MAX_ZONELISTS 1
461 462 463
struct zonelist_cache;
#endif

464 465 466 467 468 469 470 471 472
/*
 * This struct contains information about a zone in a zonelist. It is stored
 * here to avoid dereferences into large structures and lookups of tables
 */
struct zoneref {
	struct zone *zone;	/* Pointer to actual zone */
	int zone_idx;		/* zone_idx(zoneref->zone) */
};

L
Linus Torvalds 已提交
473 474 475 476 477 478
/*
 * One allocation request operates on a zonelist. A zonelist
 * is a list of zones, the first one is the 'goal' of the
 * allocation, the other zones are fallback zones, in decreasing
 * priority.
 *
479 480
 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
 * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
481 482 483 484 485 486 487 488
 * *
 * To speed the reading of the zonelist, the zonerefs contain the zone index
 * of the entry being read. Helper functions to access information given
 * a struct zoneref are
 *
 * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
 * zonelist_zone_idx()	- Return the index of the zone for an entry
 * zonelist_node_idx()	- Return the index of the node for an entry
L
Linus Torvalds 已提交
489 490
 */
struct zonelist {
491
	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
492
	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
493 494 495
#ifdef CONFIG_NUMA
	struct zonelist_cache zlcache;			     // optional ...
#endif
L
Linus Torvalds 已提交
496 497
};

498 499 500 501 502 503 504
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
struct node_active_region {
	unsigned long start_pfn;
	unsigned long end_pfn;
	int nid;
};
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
L
Linus Torvalds 已提交
505

506 507 508 509 510
#ifndef CONFIG_DISCONTIGMEM
/* The array of struct pages - for discontigmem use pgdat->lmem_map */
extern struct page *mem_map;
#endif

L
Linus Torvalds 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524
/*
 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
 * (mostly NUMA machines?) to denote a higher-level memory zone than the
 * zone denotes.
 *
 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 * it's memory layout.
 *
 * Memory statistics and page replacement data structures are maintained on a
 * per-zone basis.
 */
struct bootmem_data;
typedef struct pglist_data {
	struct zone node_zones[MAX_NR_ZONES];
525
	struct zonelist node_zonelists[MAX_ZONELISTS];
L
Linus Torvalds 已提交
526
	int nr_zones;
A
Andy Whitcroft 已提交
527
#ifdef CONFIG_FLAT_NODE_MEM_MAP
L
Linus Torvalds 已提交
528
	struct page *node_mem_map;
A
Andy Whitcroft 已提交
529
#endif
L
Linus Torvalds 已提交
530
	struct bootmem_data *bdata;
531 532 533 534 535 536 537 538 539 540
#ifdef CONFIG_MEMORY_HOTPLUG
	/*
	 * Must be held any time you expect node_start_pfn, node_present_pages
	 * or node_spanned_pages stay constant.  Holding this will also
	 * guarantee that any pfn_valid() stays that way.
	 *
	 * Nests above zone->lock and zone->size_seqlock.
	 */
	spinlock_t node_size_lock;
#endif
L
Linus Torvalds 已提交
541 542 543 544 545 546 547 548 549 550 551 552
	unsigned long node_start_pfn;
	unsigned long node_present_pages; /* total number of physical pages */
	unsigned long node_spanned_pages; /* total size of physical page
					     range, including holes */
	int node_id;
	wait_queue_head_t kswapd_wait;
	struct task_struct *kswapd;
	int kswapd_max_order;
} pg_data_t;

#define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
#define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
A
Andy Whitcroft 已提交
553
#ifdef CONFIG_FLAT_NODE_MEM_MAP
554
#define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
A
Andy Whitcroft 已提交
555 556 557
#else
#define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
#endif
558
#define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
L
Linus Torvalds 已提交
559

560 561
#include <linux/memory_hotplug.h>

L
Linus Torvalds 已提交
562 563 564 565 566
void get_zone_counts(unsigned long *active, unsigned long *inactive,
			unsigned long *free);
void build_all_zonelists(void);
void wakeup_kswapd(struct zone *zone, int order);
int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
R
Rohit Seth 已提交
567
		int classzone_idx, int alloc_flags);
D
Dave Hansen 已提交
568 569 570 571
enum memmap_context {
	MEMMAP_EARLY,
	MEMMAP_HOTPLUG,
};
572
extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
D
Dave Hansen 已提交
573 574
				     unsigned long size,
				     enum memmap_context context);
575

L
Linus Torvalds 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
#ifdef CONFIG_HAVE_MEMORY_PRESENT
void memory_present(int nid, unsigned long start, unsigned long end);
#else
static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
#endif

#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
#endif

/*
 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 */
#define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)

591 592 593 594 595
static inline int populated_zone(struct zone *zone)
{
	return (!!zone->present_pages);
}

M
Mel Gorman 已提交
596 597 598 599 600 601 602 603 604 605 606
extern int movable_zone;

static inline int zone_movable_is_highmem(void)
{
#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
	return movable_zone == ZONE_HIGHMEM;
#else
	return 0;
#endif
}

607
static inline int is_highmem_idx(enum zone_type idx)
L
Linus Torvalds 已提交
608
{
609
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
610 611
	return (idx == ZONE_HIGHMEM ||
		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
612 613 614
#else
	return 0;
#endif
L
Linus Torvalds 已提交
615 616
}

617
static inline int is_normal_idx(enum zone_type idx)
L
Linus Torvalds 已提交
618 619 620
{
	return (idx == ZONE_NORMAL);
}
N
Nick Piggin 已提交
621

L
Linus Torvalds 已提交
622 623 624 625 626 627 628 629
/**
 * is_highmem - helper function to quickly check if a struct zone is a 
 *              highmem zone or not.  This is an attempt to keep references
 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 * @zone - pointer to struct zone variable
 */
static inline int is_highmem(struct zone *zone)
{
630
#ifdef CONFIG_HIGHMEM
631 632 633 634
	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
		zone_movable_is_highmem());
635 636 637
#else
	return 0;
#endif
L
Linus Torvalds 已提交
638 639 640 641 642 643 644
}

static inline int is_normal(struct zone *zone)
{
	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
}

N
Nick Piggin 已提交
645 646
static inline int is_dma32(struct zone *zone)
{
647
#ifdef CONFIG_ZONE_DMA32
N
Nick Piggin 已提交
648
	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
649 650 651
#else
	return 0;
#endif
N
Nick Piggin 已提交
652 653 654 655
}

static inline int is_dma(struct zone *zone)
{
656
#ifdef CONFIG_ZONE_DMA
N
Nick Piggin 已提交
657
	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
658 659 660
#else
	return 0;
#endif
N
Nick Piggin 已提交
661 662
}

L
Linus Torvalds 已提交
663 664 665 666 667 668 669 670
/* These two functions are used to setup the per zone pages min values */
struct ctl_table;
struct file;
int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 
					void __user *, size_t *, loff_t *);
extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
					void __user *, size_t *, loff_t *);
671 672
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
					void __user *, size_t *, loff_t *);
673 674
int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
			struct file *, void __user *, size_t *, loff_t *);
675 676
int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
			struct file *, void __user *, size_t *, loff_t *);
L
Linus Torvalds 已提交
677

678 679 680 681 682
extern int numa_zonelist_order_handler(struct ctl_table *, int,
			struct file *, void __user *, size_t *, loff_t *);
extern char numa_zonelist_order[];
#define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */

L
Linus Torvalds 已提交
683 684
#include <linux/topology.h>
/* Returns the number of the current Node. */
685
#ifndef numa_node_id
I
Ingo Molnar 已提交
686
#define numa_node_id()		(cpu_to_node(raw_smp_processor_id()))
687
#endif
L
Linus Torvalds 已提交
688

689
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
690 691 692 693 694

extern struct pglist_data contig_page_data;
#define NODE_DATA(nid)		(&contig_page_data)
#define NODE_MEM_MAP(nid)	mem_map

695
#else /* CONFIG_NEED_MULTIPLE_NODES */
L
Linus Torvalds 已提交
696 697 698

#include <asm/mmzone.h>

699
#endif /* !CONFIG_NEED_MULTIPLE_NODES */
700

701 702 703
extern struct pglist_data *first_online_pgdat(void);
extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
extern struct zone *next_zone(struct zone *zone);
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724

/**
 * for_each_pgdat - helper macro to iterate over all nodes
 * @pgdat - pointer to a pg_data_t variable
 */
#define for_each_online_pgdat(pgdat)			\
	for (pgdat = first_online_pgdat();		\
	     pgdat;					\
	     pgdat = next_online_pgdat(pgdat))
/**
 * for_each_zone - helper macro to iterate over all memory zones
 * @zone - pointer to struct zone variable
 *
 * The user only needs to declare the zone variable, for_each_zone
 * fills it in.
 */
#define for_each_zone(zone)			        \
	for (zone = (first_online_pgdat())->node_zones; \
	     zone;					\
	     zone = next_zone(zone))

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
static inline struct zone *zonelist_zone(struct zoneref *zoneref)
{
	return zoneref->zone;
}

static inline int zonelist_zone_idx(struct zoneref *zoneref)
{
	return zoneref->zone_idx;
}

static inline int zonelist_node_idx(struct zoneref *zoneref)
{
#ifdef CONFIG_NUMA
	/* zone_to_nid not available in this context */
	return zoneref->zone->node;
#else
	return 0;
#endif /* CONFIG_NUMA */
}

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
/**
 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
 * @z - The cursor used as a starting point for the search
 * @highest_zoneidx - The zone index of the highest zone to return
 * @nodes - An optional nodemask to filter the zonelist with
 * @zone - The first suitable zone found is returned via this parameter
 *
 * This function returns the next zone at or below a given zone index that is
 * within the allowed nodemask using a cursor as the starting point for the
 * search. The zoneref returned is a cursor that is used as the next starting
 * point for future calls to next_zones_zonelist().
 */
struct zoneref *next_zones_zonelist(struct zoneref *z,
					enum zone_type highest_zoneidx,
					nodemask_t *nodes,
					struct zone **zone);
761

762 763 764 765 766 767 768 769 770 771 772 773 774
/**
 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
 * @zonelist - The zonelist to search for a suitable zone
 * @highest_zoneidx - The zone index of the highest zone to return
 * @nodes - An optional nodemask to filter the zonelist with
 * @zone - The first suitable zone found is returned via this parameter
 *
 * This function returns the first zone at or below a given zone index that is
 * within the allowed nodemask. The zoneref returned is a cursor that can be
 * used to iterate the zonelist with next_zones_zonelist. The cursor should
 * not be used by the caller as it does not match the value of the zone
 * returned.
 */
775
static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
776 777 778
					enum zone_type highest_zoneidx,
					nodemask_t *nodes,
					struct zone **zone)
779
{
780 781
	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
								zone);
782 783
}

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
/**
 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
 * @zone - The current zone in the iterator
 * @z - The current pointer within zonelist->zones being iterated
 * @zlist - The zonelist being iterated
 * @highidx - The zone index of the highest zone to return
 * @nodemask - Nodemask allowed by the allocator
 *
 * This iterator iterates though all zones at or below a given zone index and
 * within a given nodemask
 */
#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
		zone;							\
		z = next_zones_zonelist(z, highidx, nodemask, &zone))	\
799 800 801 802 803 804 805 806 807 808 809

/**
 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
 * @zone - The current zone in the iterator
 * @z - The current pointer within zonelist->zones being iterated
 * @zlist - The zonelist being iterated
 * @highidx - The zone index of the highest zone to return
 *
 * This iterator iterates though all zones at or below a given zone index.
 */
#define for_each_zone_zonelist(zone, z, zlist, highidx) \
810
	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
811

A
Andy Whitcroft 已提交
812 813 814 815
#ifdef CONFIG_SPARSEMEM
#include <asm/sparsemem.h>
#endif

816 817
#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
	!defined(CONFIG_ARCH_POPULATES_NODE_MAP)
818 819 820 821
static inline unsigned long early_pfn_to_nid(unsigned long pfn)
{
	return 0;
}
822 823
#endif

824 825 826 827
#ifdef CONFIG_FLATMEM
#define pfn_to_nid(pfn)		(0)
#endif

A
Andy Whitcroft 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)

#ifdef CONFIG_SPARSEMEM

/*
 * SECTION_SHIFT    		#bits space required to store a section #
 *
 * PA_SECTION_SHIFT		physical address to/from section number
 * PFN_SECTION_SHIFT		pfn to/from section number
 */
#define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)

#define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
#define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)

#define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)

#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
#define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))

849
#define SECTION_BLOCKFLAGS_BITS \
850
	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
851

A
Andy Whitcroft 已提交
852 853 854 855 856 857
#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
#error Allocator MAX_ORDER exceeds SECTION_SIZE
#endif

struct page;
struct mem_section {
A
Andy Whitcroft 已提交
858 859 860 861 862
	/*
	 * This is, logically, a pointer to an array of struct
	 * pages.  However, it is stored with some other magic.
	 * (see sparse.c::sparse_init_one_section())
	 *
863 864 865 866
	 * Additionally during early boot we encode node id of
	 * the location of the section here to guide allocation.
	 * (see sparse.c::memory_present())
	 *
A
Andy Whitcroft 已提交
867 868 869 870
	 * Making it a UL at least makes someone do a cast
	 * before using it wrong.
	 */
	unsigned long section_mem_map;
871 872 873

	/* See declaration of similar field in struct zone */
	unsigned long *pageblock_flags;
A
Andy Whitcroft 已提交
874 875
};

876 877 878 879 880
#ifdef CONFIG_SPARSEMEM_EXTREME
#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
#else
#define SECTIONS_PER_ROOT	1
#endif
B
Bob Picco 已提交
881

882 883 884
#define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
#define NR_SECTION_ROOTS	(NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
#define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
B
Bob Picco 已提交
885

886 887
#ifdef CONFIG_SPARSEMEM_EXTREME
extern struct mem_section *mem_section[NR_SECTION_ROOTS];
B
Bob Picco 已提交
888
#else
889 890
extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
#endif
A
Andy Whitcroft 已提交
891

A
Andy Whitcroft 已提交
892 893
static inline struct mem_section *__nr_to_section(unsigned long nr)
{
894 895 896
	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
		return NULL;
	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
A
Andy Whitcroft 已提交
897
}
898
extern int __section_nr(struct mem_section* ms);
899
extern unsigned long usemap_size(void);
A
Andy Whitcroft 已提交
900 901 902 903 904 905 906 907 908 909

/*
 * We use the lower bits of the mem_map pointer to store
 * a little bit of information.  There should be at least
 * 3 bits here due to 32-bit alignment.
 */
#define	SECTION_MARKED_PRESENT	(1UL<<0)
#define SECTION_HAS_MEM_MAP	(1UL<<1)
#define SECTION_MAP_LAST_BIT	(1UL<<2)
#define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
910
#define SECTION_NID_SHIFT	2
A
Andy Whitcroft 已提交
911 912 913 914 915 916 917 918

static inline struct page *__section_mem_map_addr(struct mem_section *section)
{
	unsigned long map = section->section_mem_map;
	map &= SECTION_MAP_MASK;
	return (struct page *)map;
}

919
static inline int present_section(struct mem_section *section)
A
Andy Whitcroft 已提交
920
{
B
Bob Picco 已提交
921
	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
A
Andy Whitcroft 已提交
922 923
}

924 925 926 927 928 929
static inline int present_section_nr(unsigned long nr)
{
	return present_section(__nr_to_section(nr));
}

static inline int valid_section(struct mem_section *section)
A
Andy Whitcroft 已提交
930
{
B
Bob Picco 已提交
931
	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
A
Andy Whitcroft 已提交
932 933 934 935 936 937 938
}

static inline int valid_section_nr(unsigned long nr)
{
	return valid_section(__nr_to_section(nr));
}

A
Andy Whitcroft 已提交
939 940
static inline struct mem_section *__pfn_to_section(unsigned long pfn)
{
A
Andy Whitcroft 已提交
941
	return __nr_to_section(pfn_to_section_nr(pfn));
A
Andy Whitcroft 已提交
942 943 944 945 946 947
}

static inline int pfn_valid(unsigned long pfn)
{
	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
		return 0;
A
Andy Whitcroft 已提交
948
	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
A
Andy Whitcroft 已提交
949 950
}

951 952 953 954 955 956 957
static inline int pfn_present(unsigned long pfn)
{
	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
		return 0;
	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
}

A
Andy Whitcroft 已提交
958 959 960 961 962 963
/*
 * These are _only_ used during initialisation, therefore they
 * can use __initdata ...  They could have names to indicate
 * this restriction.
 */
#ifdef CONFIG_NUMA
964 965 966 967 968
#define pfn_to_nid(pfn)							\
({									\
	unsigned long __pfn_to_nid_pfn = (pfn);				\
	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
})
969 970
#else
#define pfn_to_nid(pfn)		(0)
A
Andy Whitcroft 已提交
971 972 973 974 975 976
#endif

#define early_pfn_valid(pfn)	pfn_valid(pfn)
void sparse_init(void);
#else
#define sparse_init()	do {} while (0)
977
#define sparse_index_init(_sec, _nid)  do {} while (0)
A
Andy Whitcroft 已提交
978 979
#endif /* CONFIG_SPARSEMEM */

980 981 982 983 984 985
#ifdef CONFIG_NODES_SPAN_OTHER_NODES
#define early_pfn_in_nid(pfn, nid)	(early_pfn_to_nid(pfn) == (nid))
#else
#define early_pfn_in_nid(pfn, nid)	(1)
#endif

A
Andy Whitcroft 已提交
986 987 988 989 990 991 992
#ifndef early_pfn_valid
#define early_pfn_valid(pfn)	(1)
#endif

void memory_present(int nid, unsigned long start, unsigned long end);
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);

993 994 995 996 997 998 999 1000 1001 1002 1003 1004
/*
 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
 * pfn_valid_within() should be used in this case; we optimise this away
 * when we have no holes within a MAX_ORDER_NR_PAGES block.
 */
#ifdef CONFIG_HOLES_IN_ZONE
#define pfn_valid_within(pfn) pfn_valid(pfn)
#else
#define pfn_valid_within(pfn) (1)
#endif

C
Christoph Lameter 已提交
1005
#endif /* !__GENERATING_BOUNDS.H */
L
Linus Torvalds 已提交
1006 1007
#endif /* !__ASSEMBLY__ */
#endif /* _LINUX_MMZONE_H */