padlock-sha.c 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Cryptographic API.
 *
 * Support for VIA PadLock hardware crypto engine.
 *
 * Copyright (c) 2006  Michal Ludvig <michal@logix.cz>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 */

15 16
#include <crypto/algapi.h>
#include <linux/err.h>
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/cryptohash.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/scatterlist.h>
#include "padlock.h"

#define SHA1_DEFAULT_FALLBACK	"sha1-generic"
#define SHA1_DIGEST_SIZE        20
#define SHA1_HMAC_BLOCK_SIZE    64

#define SHA256_DEFAULT_FALLBACK "sha256-generic"
#define SHA256_DIGEST_SIZE      32
#define SHA256_HMAC_BLOCK_SIZE  64

struct padlock_sha_ctx {
	char		*data;
	size_t		used;
	int		bypass;
	void (*f_sha_padlock)(const char *in, char *out, int count);
39
	struct hash_desc fallback;
40 41 42 43
};

static inline struct padlock_sha_ctx *ctx(struct crypto_tfm *tfm)
{
44
	return crypto_tfm_ctx(tfm);
45 46 47 48 49 50 51 52 53 54 55 56 57
}

/* We'll need aligned address on the stack */
#define NEAREST_ALIGNED(ptr) \
	((void *)ALIGN((size_t)(ptr), PADLOCK_ALIGNMENT))

static struct crypto_alg sha1_alg, sha256_alg;

static void padlock_sha_bypass(struct crypto_tfm *tfm)
{
	if (ctx(tfm)->bypass)
		return;

58
	crypto_hash_init(&ctx(tfm)->fallback);
59 60 61 62
	if (ctx(tfm)->data && ctx(tfm)->used) {
		struct scatterlist sg;

		sg_set_buf(&sg, ctx(tfm)->data, ctx(tfm)->used);
63
		crypto_hash_update(&ctx(tfm)->fallback, &sg, sg.length);
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
	}

	ctx(tfm)->used = 0;
	ctx(tfm)->bypass = 1;
}

static void padlock_sha_init(struct crypto_tfm *tfm)
{
	ctx(tfm)->used = 0;
	ctx(tfm)->bypass = 0;
}

static void padlock_sha_update(struct crypto_tfm *tfm,
			const uint8_t *data, unsigned int length)
{
	/* Our buffer is always one page. */
	if (unlikely(!ctx(tfm)->bypass &&
		     (ctx(tfm)->used + length > PAGE_SIZE)))
		padlock_sha_bypass(tfm);

	if (unlikely(ctx(tfm)->bypass)) {
		struct scatterlist sg;
		sg_set_buf(&sg, (uint8_t *)data, length);
87
		crypto_hash_update(&ctx(tfm)->fallback, &sg, length);
88 89 90 91 92 93 94 95 96 97 98 99 100 101
		return;
	}

	memcpy(ctx(tfm)->data + ctx(tfm)->used, data, length);
	ctx(tfm)->used += length;
}

static inline void padlock_output_block(uint32_t *src,
		 	uint32_t *dst, size_t count)
{
	while (count--)
		*dst++ = swab32(*src++);
}

102
static void padlock_do_sha1(const char *in, char *out, int count)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
{
	/* We can't store directly to *out as it may be unaligned. */
	/* BTW Don't reduce the buffer size below 128 Bytes!
	 *     PadLock microcode needs it that big. */
	char buf[128+16];
	char *result = NEAREST_ALIGNED(buf);

	((uint32_t *)result)[0] = 0x67452301;
	((uint32_t *)result)[1] = 0xEFCDAB89;
	((uint32_t *)result)[2] = 0x98BADCFE;
	((uint32_t *)result)[3] = 0x10325476;
	((uint32_t *)result)[4] = 0xC3D2E1F0;
 
	asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */
		      : "+S"(in), "+D"(result)
		      : "c"(count), "a"(0));

	padlock_output_block((uint32_t *)result, (uint32_t *)out, 5);
}

123
static void padlock_do_sha256(const char *in, char *out, int count)
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
{
	/* We can't store directly to *out as it may be unaligned. */
	/* BTW Don't reduce the buffer size below 128 Bytes!
	 *     PadLock microcode needs it that big. */
	char buf[128+16];
	char *result = NEAREST_ALIGNED(buf);

	((uint32_t *)result)[0] = 0x6A09E667;
	((uint32_t *)result)[1] = 0xBB67AE85;
	((uint32_t *)result)[2] = 0x3C6EF372;
	((uint32_t *)result)[3] = 0xA54FF53A;
	((uint32_t *)result)[4] = 0x510E527F;
	((uint32_t *)result)[5] = 0x9B05688C;
	((uint32_t *)result)[6] = 0x1F83D9AB;
	((uint32_t *)result)[7] = 0x5BE0CD19;

	asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */
		      : "+S"(in), "+D"(result)
		      : "c"(count), "a"(0));

	padlock_output_block((uint32_t *)result, (uint32_t *)out, 8);
}

static void padlock_sha_final(struct crypto_tfm *tfm, uint8_t *out)
{
	if (unlikely(ctx(tfm)->bypass)) {
150
		crypto_hash_final(&ctx(tfm)->fallback, out);
151 152 153 154 155 156 157 158 159 160
		ctx(tfm)->bypass = 0;
		return;
	}

	/* Pass the input buffer to PadLock microcode... */
	ctx(tfm)->f_sha_padlock(ctx(tfm)->data, out, ctx(tfm)->used);

	ctx(tfm)->used = 0;
}

161
static int padlock_cra_init(struct crypto_tfm *tfm)
162
{
163 164 165
	const char *fallback_driver_name = tfm->__crt_alg->cra_name;
	struct crypto_hash *fallback_tfm;

166 167 168 169 170 171 172
	/* For now we'll allocate one page. This
	 * could eventually be configurable one day. */
	ctx(tfm)->data = (char *)__get_free_page(GFP_KERNEL);
	if (!ctx(tfm)->data)
		return -ENOMEM;

	/* Allocate a fallback and abort if it failed. */
173 174 175 176
	fallback_tfm = crypto_alloc_hash(fallback_driver_name, 0,
					 CRYPTO_ALG_ASYNC |
					 CRYPTO_ALG_NEED_FALLBACK);
	if (IS_ERR(fallback_tfm)) {
177 178 179
		printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n",
		       fallback_driver_name);
		free_page((unsigned long)(ctx(tfm)->data));
180
		return PTR_ERR(fallback_tfm);
181 182
	}

183
	ctx(tfm)->fallback.tfm = fallback_tfm;
184 185 186 187 188 189 190
	return 0;
}

static int padlock_sha1_cra_init(struct crypto_tfm *tfm)
{
	ctx(tfm)->f_sha_padlock = padlock_do_sha1;

191
	return padlock_cra_init(tfm);
192 193 194 195 196 197
}

static int padlock_sha256_cra_init(struct crypto_tfm *tfm)
{
	ctx(tfm)->f_sha_padlock = padlock_do_sha256;

198
	return padlock_cra_init(tfm);
199 200 201 202 203 204 205 206 207
}

static void padlock_cra_exit(struct crypto_tfm *tfm)
{
	if (ctx(tfm)->data) {
		free_page((unsigned long)(ctx(tfm)->data));
		ctx(tfm)->data = NULL;
	}

208 209
	crypto_free_hash(ctx(tfm)->fallback.tfm);
	ctx(tfm)->fallback.tfm = NULL;
210 211 212 213 214 215
}

static struct crypto_alg sha1_alg = {
	.cra_name		=	"sha1",
	.cra_driver_name	=	"sha1-padlock",
	.cra_priority		=	PADLOCK_CRA_PRIORITY,
216 217
	.cra_flags		=	CRYPTO_ALG_TYPE_DIGEST |
					CRYPTO_ALG_NEED_FALLBACK,
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	.cra_blocksize		=	SHA1_HMAC_BLOCK_SIZE,
	.cra_ctxsize		=	sizeof(struct padlock_sha_ctx),
	.cra_module		=	THIS_MODULE,
	.cra_list		=	LIST_HEAD_INIT(sha1_alg.cra_list),
	.cra_init		=	padlock_sha1_cra_init,
	.cra_exit		=	padlock_cra_exit,
	.cra_u			=	{
		.digest = {
			.dia_digestsize	=	SHA1_DIGEST_SIZE,
			.dia_init   	= 	padlock_sha_init,
			.dia_update 	=	padlock_sha_update,
			.dia_final  	=	padlock_sha_final,
		}
	}
};

static struct crypto_alg sha256_alg = {
	.cra_name		=	"sha256",
	.cra_driver_name	=	"sha256-padlock",
	.cra_priority		=	PADLOCK_CRA_PRIORITY,
238 239
	.cra_flags		=	CRYPTO_ALG_TYPE_DIGEST |
					CRYPTO_ALG_NEED_FALLBACK,
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	.cra_blocksize		=	SHA256_HMAC_BLOCK_SIZE,
	.cra_ctxsize		=	sizeof(struct padlock_sha_ctx),
	.cra_module		=	THIS_MODULE,
	.cra_list		=	LIST_HEAD_INIT(sha256_alg.cra_list),
	.cra_init		=	padlock_sha256_cra_init,
	.cra_exit		=	padlock_cra_exit,
	.cra_u			=	{
		.digest = {
			.dia_digestsize	=	SHA256_DIGEST_SIZE,
			.dia_init   	= 	padlock_sha_init,
			.dia_update 	=	padlock_sha_update,
			.dia_final  	=	padlock_sha_final,
		}
	}
};

static void __init padlock_sha_check_fallbacks(void)
{
258 259 260 261 262 263 264 265 266
	if (!crypto_has_hash("sha1", 0, CRYPTO_ALG_ASYNC |
					CRYPTO_ALG_NEED_FALLBACK))
		printk(KERN_WARNING PFX
		       "Couldn't load fallback module for sha1.\n");

	if (!crypto_has_hash("sha256", 0, CRYPTO_ALG_ASYNC |
					CRYPTO_ALG_NEED_FALLBACK))
		printk(KERN_WARNING PFX
		       "Couldn't load fallback module for sha256.\n");
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
}

static int __init padlock_init(void)
{
	int rc = -ENODEV;

	if (!cpu_has_phe) {
		printk(KERN_ERR PFX "VIA PadLock Hash Engine not detected.\n");
		return -ENODEV;
	}

	if (!cpu_has_phe_enabled) {
		printk(KERN_ERR PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
		return -ENODEV;
	}

	padlock_sha_check_fallbacks();

	rc = crypto_register_alg(&sha1_alg);
	if (rc)
		goto out;

	rc = crypto_register_alg(&sha256_alg);
	if (rc)
		goto out_unreg1;

	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n");

	return 0;

out_unreg1:
	crypto_unregister_alg(&sha1_alg);
out:
	printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n");
	return rc;
}

static void __exit padlock_fini(void)
{
	crypto_unregister_alg(&sha1_alg);
	crypto_unregister_alg(&sha256_alg);
}

module_init(padlock_init);
module_exit(padlock_fini);

MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support.");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michal Ludvig");

MODULE_ALIAS("sha1-padlock");
MODULE_ALIAS("sha256-padlock");