aops.c 47.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* -*- mode: c; c-basic-offset: 8; -*-
 * vim: noexpandtab sw=8 ts=8 sts=0:
 *
 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <asm/byteorder.h>
27
#include <linux/swap.h>
M
Mark Fasheh 已提交
28
#include <linux/pipe_fs_i.h>
29 30 31 32 33 34 35 36 37 38 39 40 41

#define MLOG_MASK_PREFIX ML_FILE_IO
#include <cluster/masklog.h>

#include "ocfs2.h"

#include "alloc.h"
#include "aops.h"
#include "dlmglue.h"
#include "extent_map.h"
#include "file.h"
#include "inode.h"
#include "journal.h"
42
#include "suballoc.h"
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
#include "super.h"
#include "symlink.h"

#include "buffer_head_io.h"

static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
	int err = -EIO;
	int status;
	struct ocfs2_dinode *fe = NULL;
	struct buffer_head *bh = NULL;
	struct buffer_head *buffer_cache_bh = NULL;
	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
	void *kaddr;

	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
		   (unsigned long long)iblock, bh_result, create);

	BUG_ON(ocfs2_inode_is_fast_symlink(inode));

	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
		     (unsigned long long)iblock);
		goto bail;
	}

	status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
				  OCFS2_I(inode)->ip_blkno,
				  &bh, OCFS2_BH_CACHED, inode);
	if (status < 0) {
		mlog_errno(status);
		goto bail;
	}
	fe = (struct ocfs2_dinode *) bh->b_data;

	if (!OCFS2_IS_VALID_DINODE(fe)) {
80
		mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
81 82
		     (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
		     fe->i_signature);
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
		goto bail;
	}

	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
						    le32_to_cpu(fe->i_clusters))) {
		mlog(ML_ERROR, "block offset is outside the allocated size: "
		     "%llu\n", (unsigned long long)iblock);
		goto bail;
	}

	/* We don't use the page cache to create symlink data, so if
	 * need be, copy it over from the buffer cache. */
	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
			    iblock;
		buffer_cache_bh = sb_getblk(osb->sb, blkno);
		if (!buffer_cache_bh) {
			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
			goto bail;
		}

		/* we haven't locked out transactions, so a commit
		 * could've happened. Since we've got a reference on
		 * the bh, even if it commits while we're doing the
		 * copy, the data is still good. */
		if (buffer_jbd(buffer_cache_bh)
		    && ocfs2_inode_is_new(inode)) {
			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
			if (!kaddr) {
				mlog(ML_ERROR, "couldn't kmap!\n");
				goto bail;
			}
			memcpy(kaddr + (bh_result->b_size * iblock),
			       buffer_cache_bh->b_data,
			       bh_result->b_size);
			kunmap_atomic(kaddr, KM_USER0);
			set_buffer_uptodate(bh_result);
		}
		brelse(buffer_cache_bh);
	}

	map_bh(bh_result, inode->i_sb,
	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);

	err = 0;

bail:
	if (bh)
		brelse(bh);

	mlog_exit(err);
	return err;
}

static int ocfs2_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh_result, int create)
{
	int err = 0;
141
	unsigned int ext_flags;
142
	u64 p_blkno, past_eof;
143
	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144 145 146 147 148 149 150 151 152 153 154 155 156 157

	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
		   (unsigned long long)iblock, bh_result, create);

	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
		     inode, inode->i_ino);

	if (S_ISLNK(inode->i_mode)) {
		/* this always does I/O for some reason. */
		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
		goto bail;
	}

158 159
	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
					  &ext_flags);
160 161
	if (err) {
		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162 163
		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
		     (unsigned long long)p_blkno);
164 165 166
		goto bail;
	}

167 168 169 170 171 172 173 174 175 176
	/*
	 * ocfs2 never allocates in this function - the only time we
	 * need to use BH_New is when we're extending i_size on a file
	 * system which doesn't support holes, in which case BH_New
	 * allows block_prepare_write() to zero.
	 */
	mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
			"ino %lu, iblock %llu\n", inode->i_ino,
			(unsigned long long)iblock);

177 178
	/* Treat the unwritten extent as a hole for zeroing purposes. */
	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
179 180 181 182 183 184 185 186 187 188 189 190 191
		map_bh(bh_result, inode->i_sb, p_blkno);

	if (!ocfs2_sparse_alloc(osb)) {
		if (p_blkno == 0) {
			err = -EIO;
			mlog(ML_ERROR,
			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
			     (unsigned long long)iblock,
			     (unsigned long long)p_blkno,
			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
			dump_stack();
		}
192

193 194 195
		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
		     (unsigned long long)past_eof);
196

197 198 199
		if (create && (iblock >= past_eof))
			set_buffer_new(bh_result);
	}
200 201 202 203 204 205 206 207 208

bail:
	if (err < 0)
		err = -EIO;

	mlog_exit(err);
	return err;
}

M
Mark Fasheh 已提交
209 210
int ocfs2_read_inline_data(struct inode *inode, struct page *page,
			   struct buffer_head *di_bh)
M
Mark Fasheh 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
{
	void *kaddr;
	unsigned int size;
	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;

	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
		return -EROFS;
	}

	size = i_size_read(inode);

	if (size > PAGE_CACHE_SIZE ||
	    size > ocfs2_max_inline_data(inode->i_sb)) {
		ocfs2_error(inode->i_sb,
			    "Inode %llu has with inline data has bad size: %u",
			    (unsigned long long)OCFS2_I(inode)->ip_blkno, size);
		return -EROFS;
	}

	kaddr = kmap_atomic(page, KM_USER0);
	if (size)
		memcpy(kaddr, di->id2.i_data.id_data, size);
	/* Clear the remaining part of the page */
	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
	flush_dcache_page(page);
	kunmap_atomic(kaddr, KM_USER0);

	SetPageUptodate(page);

	return 0;
}

static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
{
	int ret;
	struct buffer_head *di_bh = NULL;
	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);

	BUG_ON(!PageLocked(page));
	BUG_ON(!OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);

	ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh,
			       OCFS2_BH_CACHED, inode);
	if (ret) {
		mlog_errno(ret);
		goto out;
	}

	ret = ocfs2_read_inline_data(inode, page, di_bh);
out:
	unlock_page(page);

	brelse(di_bh);
	return ret;
}

269 270 271
static int ocfs2_readpage(struct file *file, struct page *page)
{
	struct inode *inode = page->mapping->host;
M
Mark Fasheh 已提交
272
	struct ocfs2_inode_info *oi = OCFS2_I(inode);
273 274 275 276 277
	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
	int ret, unlock = 1;

	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));

278
	ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
279 280 281 282 283 284 285
	if (ret != 0) {
		if (ret == AOP_TRUNCATED_PAGE)
			unlock = 0;
		mlog_errno(ret);
		goto out;
	}

M
Mark Fasheh 已提交
286
	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
M
Mark Fasheh 已提交
287 288 289
		ret = AOP_TRUNCATED_PAGE;
		goto out_meta_unlock;
	}
290 291 292 293 294 295

	/*
	 * i_size might have just been updated as we grabed the meta lock.  We
	 * might now be discovering a truncate that hit on another node.
	 * block_read_full_page->get_block freaks out if it is asked to read
	 * beyond the end of a file, so we check here.  Callers
296
	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
297 298 299 300 301
	 * and notice that the page they just read isn't needed.
	 *
	 * XXX sys_readahead() seems to get that wrong?
	 */
	if (start >= i_size_read(inode)) {
N
Nate Diller 已提交
302
		zero_user_page(page, 0, PAGE_SIZE, KM_USER0);
303 304 305 306 307 308 309 310 311 312 313 314 315
		SetPageUptodate(page);
		ret = 0;
		goto out_alloc;
	}

	ret = ocfs2_data_lock_with_page(inode, 0, page);
	if (ret != 0) {
		if (ret == AOP_TRUNCATED_PAGE)
			unlock = 0;
		mlog_errno(ret);
		goto out_alloc;
	}

M
Mark Fasheh 已提交
316 317 318 319
	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
		ret = ocfs2_readpage_inline(inode, page);
	else
		ret = block_read_full_page(page, ocfs2_get_block);
320 321 322 323 324
	unlock = 0;

	ocfs2_data_unlock(inode, 0);
out_alloc:
	up_read(&OCFS2_I(inode)->ip_alloc_sem);
M
Mark Fasheh 已提交
325
out_meta_unlock:
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	ocfs2_meta_unlock(inode, 0);
out:
	if (unlock)
		unlock_page(page);
	mlog_exit(ret);
	return ret;
}

/* Note: Because we don't support holes, our allocation has
 * already happened (allocation writes zeros to the file data)
 * so we don't have to worry about ordered writes in
 * ocfs2_writepage.
 *
 * ->writepage is called during the process of invalidating the page cache
 * during blocked lock processing.  It can't block on any cluster locks
 * to during block mapping.  It's relying on the fact that the block
 * mapping can't have disappeared under the dirty pages that it is
 * being asked to write back.
 */
static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
{
	int ret;

	mlog_entry("(0x%p)\n", page);

	ret = block_write_full_page(page, ocfs2_get_block, wbc);

	mlog_exit(ret);

	return ret;
}

358 359 360 361 362
/*
 * This is called from ocfs2_write_zero_page() which has handled it's
 * own cluster locking and has ensured allocation exists for those
 * blocks to be written.
 */
363 364 365 366 367 368 369 370 371 372
int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
			       unsigned from, unsigned to)
{
	int ret;

	ret = block_prepare_write(page, from, to, ocfs2_get_block);

	return ret;
}

373 374 375 376
/* Taken from ext3. We don't necessarily need the full blown
 * functionality yet, but IMHO it's better to cut and paste the whole
 * thing so we can avoid introducing our own bugs (and easily pick up
 * their fixes when they happen) --Mark */
377 378 379 380 381 382 383
int walk_page_buffers(	handle_t *handle,
			struct buffer_head *head,
			unsigned from,
			unsigned to,
			int *partial,
			int (*fn)(	handle_t *handle,
					struct buffer_head *bh))
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

	for (	bh = head, block_start = 0;
		ret == 0 && (bh != head || !block_start);
	    	block_start = block_end, bh = next)
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

409
handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
410 411 412 413 414
							 struct page *page,
							 unsigned from,
							 unsigned to)
{
	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
415
	handle_t *handle = NULL;
416 417
	int ret = 0;

418
	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
419 420 421 422 423 424 425
	if (!handle) {
		ret = -ENOMEM;
		mlog_errno(ret);
		goto out;
	}

	if (ocfs2_should_order_data(inode)) {
426
		ret = walk_page_buffers(handle,
427 428 429 430 431 432 433 434 435
					page_buffers(page),
					from, to, NULL,
					ocfs2_journal_dirty_data);
		if (ret < 0) 
			mlog_errno(ret);
	}
out:
	if (ret) {
		if (handle)
436
			ocfs2_commit_trans(osb, handle);
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
		handle = ERR_PTR(ret);
	}
	return handle;
}

static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
{
	sector_t status;
	u64 p_blkno = 0;
	int err = 0;
	struct inode *inode = mapping->host;

	mlog_entry("(block = %llu)\n", (unsigned long long)block);

	/* We don't need to lock journal system files, since they aren't
	 * accessed concurrently from multiple nodes.
	 */
	if (!INODE_JOURNAL(inode)) {
455
		err = ocfs2_meta_lock(inode, NULL, 0);
456 457 458 459 460 461 462 463
		if (err) {
			if (err != -ENOENT)
				mlog_errno(err);
			goto bail;
		}
		down_read(&OCFS2_I(inode)->ip_alloc_sem);
	}

M
Mark Fasheh 已提交
464 465 466
	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
						  NULL);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

	if (!INODE_JOURNAL(inode)) {
		up_read(&OCFS2_I(inode)->ip_alloc_sem);
		ocfs2_meta_unlock(inode, 0);
	}

	if (err) {
		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
		     (unsigned long long)block);
		mlog_errno(err);
		goto bail;
	}

bail:
	status = err ? 0 : p_blkno;

	mlog_exit((int)status);

	return status;
}

/*
 * TODO: Make this into a generic get_blocks function.
 *
 * From do_direct_io in direct-io.c:
 *  "So what we do is to permit the ->get_blocks function to populate
 *   bh.b_size with the size of IO which is permitted at this offset and
 *   this i_blkbits."
 *
 * This function is called directly from get_more_blocks in direct-io.c.
 *
 * called like this: dio->get_blocks(dio->inode, fs_startblk,
 * 					fs_count, map_bh, dio->rw == WRITE);
 */
static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
				     struct buffer_head *bh_result, int create)
{
	int ret;
505
	u64 p_blkno, inode_blocks, contig_blocks;
506
	unsigned int ext_flags;
507
	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
508
	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
509 510 511 512 513

	/* This function won't even be called if the request isn't all
	 * nicely aligned and of the right size, so there's no need
	 * for us to check any of that. */

514
	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
515 516 517 518 519

	/*
	 * Any write past EOF is not allowed because we'd be extending.
	 */
	if (create && (iblock + max_blocks) > inode_blocks) {
520 521 522 523 524 525
		ret = -EIO;
		goto bail;
	}

	/* This figures out the size of the next contiguous block, and
	 * our logical offset */
526
	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
527
					  &contig_blocks, &ext_flags);
528 529 530 531 532 533 534
	if (ret) {
		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
		     (unsigned long long)iblock);
		ret = -EIO;
		goto bail;
	}

535 536 537 538 539 540 541 542 543 544 545 546
	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
		ocfs2_error(inode->i_sb,
			    "Inode %llu has a hole at block %llu\n",
			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
			    (unsigned long long)iblock);
		ret = -EROFS;
		goto bail;
	}

	/*
	 * get_more_blocks() expects us to describe a hole by clearing
	 * the mapped bit on bh_result().
547 548
	 *
	 * Consider an unwritten extent as a hole.
549
	 */
550
	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
		map_bh(bh_result, inode->i_sb, p_blkno);
	else {
		/*
		 * ocfs2_prepare_inode_for_write() should have caught
		 * the case where we'd be filling a hole and triggered
		 * a buffered write instead.
		 */
		if (create) {
			ret = -EIO;
			mlog_errno(ret);
			goto bail;
		}

		clear_buffer_mapped(bh_result);
	}
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586

	/* make sure we don't map more than max_blocks blocks here as
	   that's all the kernel will handle at this point. */
	if (max_blocks < contig_blocks)
		contig_blocks = max_blocks;
	bh_result->b_size = contig_blocks << blocksize_bits;
bail:
	return ret;
}

/* 
 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
 * particularly interested in the aio/dio case.  Like the core uses
 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
 * truncation on another.
 */
static void ocfs2_dio_end_io(struct kiocb *iocb,
			     loff_t offset,
			     ssize_t bytes,
			     void *private)
{
J
Josef Sipek 已提交
587
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
588
	int level;
589 590 591

	/* this io's submitter should not have unlocked this before we could */
	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
592

593
	ocfs2_iocb_clear_rw_locked(iocb);
594 595 596 597 598

	level = ocfs2_iocb_rw_locked_level(iocb);
	if (!level)
		up_read(&inode->i_alloc_sem);
	ocfs2_rw_unlock(inode, level);
599 600
}

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
/*
 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
 * do journalled data.
 */
static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
{
	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;

	journal_invalidatepage(journal, page, offset);
}

static int ocfs2_releasepage(struct page *page, gfp_t wait)
{
	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;

	if (!page_has_buffers(page))
		return 0;
	return journal_try_to_free_buffers(journal, page, wait);
}

622 623 624 625 626 627 628
static ssize_t ocfs2_direct_IO(int rw,
			       struct kiocb *iocb,
			       const struct iovec *iov,
			       loff_t offset,
			       unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
J
Josef Sipek 已提交
629
	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
630 631 632
	int ret;

	mlog_entry_void();
633

M
Mark Fasheh 已提交
634 635 636 637 638 639 640
	/*
	 * Fallback to buffered I/O if we see an inode without
	 * extents.
	 */
	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
		return 0;

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
		/*
		 * We get PR data locks even for O_DIRECT.  This
		 * allows concurrent O_DIRECT I/O but doesn't let
		 * O_DIRECT with extending and buffered zeroing writes
		 * race.  If they did race then the buffered zeroing
		 * could be written back after the O_DIRECT I/O.  It's
		 * one thing to tell people not to mix buffered and
		 * O_DIRECT writes, but expecting them to understand
		 * that file extension is also an implicit buffered
		 * write is too much.  By getting the PR we force
		 * writeback of the buffered zeroing before
		 * proceeding.
		 */
		ret = ocfs2_data_lock(inode, 0);
		if (ret < 0) {
			mlog_errno(ret);
			goto out;
		}
		ocfs2_data_unlock(inode, 0);
661 662
	}

663 664 665 666 667
	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
					    inode->i_sb->s_bdev, iov, offset,
					    nr_segs, 
					    ocfs2_direct_IO_get_blocks,
					    ocfs2_dio_end_io);
668
out:
669 670 671 672
	mlog_exit(ret);
	return ret;
}

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
					    u32 cpos,
					    unsigned int *start,
					    unsigned int *end)
{
	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;

	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
		unsigned int cpp;

		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);

		cluster_start = cpos % cpp;
		cluster_start = cluster_start << osb->s_clustersize_bits;

		cluster_end = cluster_start + osb->s_clustersize;
	}

	BUG_ON(cluster_start > PAGE_SIZE);
	BUG_ON(cluster_end > PAGE_SIZE);

	if (start)
		*start = cluster_start;
	if (end)
		*end = cluster_end;
}

/*
 * 'from' and 'to' are the region in the page to avoid zeroing.
 *
 * If pagesize > clustersize, this function will avoid zeroing outside
 * of the cluster boundary.
 *
 * from == to == 0 is code for "zero the entire cluster region"
 */
static void ocfs2_clear_page_regions(struct page *page,
				     struct ocfs2_super *osb, u32 cpos,
				     unsigned from, unsigned to)
{
	void *kaddr;
	unsigned int cluster_start, cluster_end;

	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);

	kaddr = kmap_atomic(page, KM_USER0);

	if (from || to) {
		if (from > cluster_start)
			memset(kaddr + cluster_start, 0, from - cluster_start);
		if (to < cluster_end)
			memset(kaddr + to, 0, cluster_end - to);
	} else {
		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
	}

	kunmap_atomic(kaddr, KM_USER0);
}

/*
 * Some of this taken from block_prepare_write(). We already have our
 * mapping by now though, and the entire write will be allocating or
 * it won't, so not much need to use BH_New.
 *
 * This will also skip zeroing, which is handled externally.
 */
738 739 740
int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
			  struct inode *inode, unsigned int from,
			  unsigned int to, int new)
741 742 743 744 745 746 747 748 749 750 751 752 753 754
{
	int ret = 0;
	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
	unsigned int block_end, block_start;
	unsigned int bsize = 1 << inode->i_blkbits;

	if (!page_has_buffers(page))
		create_empty_buffers(page, bsize, 0);

	head = page_buffers(page);
	for (bh = head, block_start = 0; bh != head || !block_start;
	     bh = bh->b_this_page, block_start += bsize) {
		block_end = block_start + bsize;

755 756
		clear_buffer_new(bh);

757 758 759 760
		/*
		 * Ignore blocks outside of our i/o range -
		 * they may belong to unallocated clusters.
		 */
761
		if (block_start >= to || block_end <= from) {
762 763 764 765 766 767 768 769 770
			if (PageUptodate(page))
				set_buffer_uptodate(bh);
			continue;
		}

		/*
		 * For an allocating write with cluster size >= page
		 * size, we always write the entire page.
		 */
771 772
		if (new)
			set_buffer_new(bh);
773 774 775 776 777 778 779 780 781 782

		if (!buffer_mapped(bh)) {
			map_bh(bh, inode->i_sb, *p_blkno);
			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
		}

		if (PageUptodate(page)) {
			if (!buffer_uptodate(bh))
				set_buffer_uptodate(bh);
		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
783 784
			   !buffer_new(bh) &&
			   (block_start < from || block_end > to)) {
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
			ll_rw_block(READ, 1, &bh);
			*wait_bh++=bh;
		}

		*p_blkno = *p_blkno + 1;
	}

	/*
	 * If we issued read requests - let them complete.
	 */
	while(wait_bh > wait) {
		wait_on_buffer(*--wait_bh);
		if (!buffer_uptodate(*wait_bh))
			ret = -EIO;
	}

	if (ret == 0 || !new)
		return ret;

	/*
	 * If we get -EIO above, zero out any newly allocated blocks
	 * to avoid exposing stale data.
	 */
	bh = head;
	block_start = 0;
	do {
		block_end = block_start + bsize;
		if (block_end <= from)
			goto next_bh;
		if (block_start >= to)
			break;

817
		zero_user_page(page, block_start, bh->b_size, KM_USER0);
818 819 820 821 822 823 824 825 826 827 828
		set_buffer_uptodate(bh);
		mark_buffer_dirty(bh);

next_bh:
		block_start = block_end;
		bh = bh->b_this_page;
	} while (bh != head);

	return ret;
}

829 830 831 832 833 834 835 836
#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
#define OCFS2_MAX_CTXT_PAGES	1
#else
#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
#endif

#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)

M
Mark Fasheh 已提交
837
/*
838
 * Describe the state of a single cluster to be written to.
M
Mark Fasheh 已提交
839
 */
840 841 842 843 844 845 846 847
struct ocfs2_write_cluster_desc {
	u32		c_cpos;
	u32		c_phys;
	/*
	 * Give this a unique field because c_phys eventually gets
	 * filled.
	 */
	unsigned	c_new;
848
	unsigned	c_unwritten;
849
};
M
Mark Fasheh 已提交
850

851 852 853 854 855
static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
{
	return d->c_new || d->c_unwritten;
}

856 857 858 859
struct ocfs2_write_ctxt {
	/* Logical cluster position / len of write */
	u32				w_cpos;
	u32				w_clen;
M
Mark Fasheh 已提交
860

861
	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
M
Mark Fasheh 已提交
862

863 864 865 866 867 868 869
	/*
	 * This is true if page_size > cluster_size.
	 *
	 * It triggers a set of special cases during write which might
	 * have to deal with allocating writes to partial pages.
	 */
	unsigned int			w_large_pages;
M
Mark Fasheh 已提交
870

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
	/*
	 * Pages involved in this write.
	 *
	 * w_target_page is the page being written to by the user.
	 *
	 * w_pages is an array of pages which always contains
	 * w_target_page, and in the case of an allocating write with
	 * page_size < cluster size, it will contain zero'd and mapped
	 * pages adjacent to w_target_page which need to be written
	 * out in so that future reads from that region will get
	 * zero's.
	 */
	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
	unsigned int			w_num_pages;
	struct page			*w_target_page;
886

887 888 889 890 891 892 893 894 895 896 897 898 899 900
	/*
	 * ocfs2_write_end() uses this to know what the real range to
	 * write in the target should be.
	 */
	unsigned int			w_target_from;
	unsigned int			w_target_to;

	/*
	 * We could use journal_current_handle() but this is cleaner,
	 * IMHO -Mark
	 */
	handle_t			*w_handle;

	struct buffer_head		*w_di_bh;
901 902

	struct ocfs2_cached_dealloc_ctxt w_dealloc;
903 904
};

905
void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
906 907 908
{
	int i;

909 910 911 912 913 914
	for(i = 0; i < num_pages; i++) {
		if (pages[i]) {
			unlock_page(pages[i]);
			mark_page_accessed(pages[i]);
			page_cache_release(pages[i]);
		}
M
Mark Fasheh 已提交
915
	}
916 917 918 919 920
}

static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
{
	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
M
Mark Fasheh 已提交
921

922 923 924 925 926 927
	brelse(wc->w_di_bh);
	kfree(wc);
}

static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
				  struct ocfs2_super *osb, loff_t pos,
928
				  unsigned len, struct buffer_head *di_bh)
929
{
930
	u32 cend;
931 932 933 934 935
	struct ocfs2_write_ctxt *wc;

	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
	if (!wc)
		return -ENOMEM;
M
Mark Fasheh 已提交
936

937
	wc->w_cpos = pos >> osb->s_clustersize_bits;
938 939
	cend = (pos + len - 1) >> osb->s_clustersize_bits;
	wc->w_clen = cend - wc->w_cpos + 1;
940 941
	get_bh(di_bh);
	wc->w_di_bh = di_bh;
M
Mark Fasheh 已提交
942

943 944 945 946 947
	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
		wc->w_large_pages = 1;
	else
		wc->w_large_pages = 0;

948 949
	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);

950
	*wcp = wc;
M
Mark Fasheh 已提交
951

952
	return 0;
M
Mark Fasheh 已提交
953 954
}

955
/*
956 957 958
 * If a page has any new buffers, zero them out here, and mark them uptodate
 * and dirty so they'll be written out (in order to prevent uninitialised
 * block data from leaking). And clear the new bit.
959
 */
960
static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
961
{
962 963
	unsigned int block_start, block_end;
	struct buffer_head *head, *bh;
964

965 966 967
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		return;
968

969 970 971 972 973 974 975 976 977 978 979 980 981
	bh = head = page_buffers(page);
	block_start = 0;
	do {
		block_end = block_start + bh->b_size;

		if (buffer_new(bh)) {
			if (block_end > from && block_start < to) {
				if (!PageUptodate(page)) {
					unsigned start, end;

					start = max(from, block_start);
					end = min(to, block_end);

982
					zero_user_page(page, start, end - start, KM_USER0);
983 984 985 986 987 988 989
					set_buffer_uptodate(bh);
				}

				clear_buffer_new(bh);
				mark_buffer_dirty(bh);
			}
		}
990

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
		block_start = block_end;
		bh = bh->b_this_page;
	} while (bh != head);
}

/*
 * Only called when we have a failure during allocating write to write
 * zero's to the newly allocated region.
 */
static void ocfs2_write_failure(struct inode *inode,
				struct ocfs2_write_ctxt *wc,
				loff_t user_pos, unsigned user_len)
{
	int i;
1005 1006
	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
		to = user_pos + user_len;
1007 1008
	struct page *tmppage;

1009
	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1010

1011 1012
	for(i = 0; i < wc->w_num_pages; i++) {
		tmppage = wc->w_pages[i];
1013

1014 1015 1016 1017
		if (ocfs2_should_order_data(inode))
			walk_page_buffers(wc->w_handle, page_buffers(tmppage),
					  from, to, NULL,
					  ocfs2_journal_dirty_data);
1018

1019
		block_commit_write(tmppage, from, to);
1020 1021 1022
	}
}

1023 1024 1025 1026 1027
static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
					struct ocfs2_write_ctxt *wc,
					struct page *page, u32 cpos,
					loff_t user_pos, unsigned user_len,
					int new)
1028
{
1029 1030
	int ret;
	unsigned int map_from = 0, map_to = 0;
1031
	unsigned int cluster_start, cluster_end;
1032
	unsigned int user_data_from = 0, user_data_to = 0;
1033

1034
	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1035 1036
					&cluster_start, &cluster_end);

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	if (page == wc->w_target_page) {
		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
		map_to = map_from + user_len;

		if (new)
			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
						    cluster_start, cluster_end,
						    new);
		else
			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
						    map_from, map_to, new);
		if (ret) {
1049 1050 1051 1052
			mlog_errno(ret);
			goto out;
		}

1053 1054
		user_data_from = map_from;
		user_data_to = map_to;
1055
		if (new) {
1056 1057
			map_from = cluster_start;
			map_to = cluster_end;
1058 1059 1060 1061 1062 1063 1064 1065 1066
		}
	} else {
		/*
		 * If we haven't allocated the new page yet, we
		 * shouldn't be writing it out without copying user
		 * data. This is likely a math error from the caller.
		 */
		BUG_ON(!new);

1067 1068
		map_from = cluster_start;
		map_to = cluster_end;
1069 1070

		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1071
					    cluster_start, cluster_end, new);
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
		if (ret) {
			mlog_errno(ret);
			goto out;
		}
	}

	/*
	 * Parts of newly allocated pages need to be zero'd.
	 *
	 * Above, we have also rewritten 'to' and 'from' - as far as
	 * the rest of the function is concerned, the entire cluster
	 * range inside of a page needs to be written.
	 *
	 * We can skip this if the page is up to date - it's already
	 * been zero'd from being read in as a hole.
	 */
	if (new && !PageUptodate(page))
		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1090
					 cpos, user_data_from, user_data_to);
1091 1092 1093 1094

	flush_dcache_page(page);

out:
1095
	return ret;
1096 1097 1098
}

/*
1099
 * This function will only grab one clusters worth of pages.
1100
 */
1101 1102
static int ocfs2_grab_pages_for_write(struct address_space *mapping,
				      struct ocfs2_write_ctxt *wc,
M
Mark Fasheh 已提交
1103 1104
				      u32 cpos, loff_t user_pos, int new,
				      struct page *mmap_page)
1105
{
1106 1107
	int ret = 0, i;
	unsigned long start, target_index, index;
1108 1109
	struct inode *inode = mapping->host;

1110
	target_index = user_pos >> PAGE_CACHE_SHIFT;
1111 1112 1113

	/*
	 * Figure out how many pages we'll be manipulating here. For
1114 1115
	 * non allocating write, we just change the one
	 * page. Otherwise, we'll need a whole clusters worth.
1116 1117
	 */
	if (new) {
1118 1119
		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1120
	} else {
1121 1122
		wc->w_num_pages = 1;
		start = target_index;
1123 1124
	}

1125
	for(i = 0; i < wc->w_num_pages; i++) {
1126 1127
		index = start + i;

M
Mark Fasheh 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
		if (index == target_index && mmap_page) {
			/*
			 * ocfs2_pagemkwrite() is a little different
			 * and wants us to directly use the page
			 * passed in.
			 */
			lock_page(mmap_page);

			if (mmap_page->mapping != mapping) {
				unlock_page(mmap_page);
				/*
				 * Sanity check - the locking in
				 * ocfs2_pagemkwrite() should ensure
				 * that this code doesn't trigger.
				 */
				ret = -EINVAL;
				mlog_errno(ret);
				goto out;
			}

			page_cache_get(mmap_page);
			wc->w_pages[i] = mmap_page;
		} else {
			wc->w_pages[i] = find_or_create_page(mapping, index,
							     GFP_NOFS);
			if (!wc->w_pages[i]) {
				ret = -ENOMEM;
				mlog_errno(ret);
				goto out;
			}
1158
		}
1159 1160 1161

		if (index == target_index)
			wc->w_target_page = wc->w_pages[i];
1162
	}
1163 1164 1165 1166 1167 1168 1169 1170
out:
	return ret;
}

/*
 * Prepare a single cluster for write one cluster into the file.
 */
static int ocfs2_write_cluster(struct address_space *mapping,
1171 1172
			       u32 phys, unsigned int unwritten,
			       struct ocfs2_alloc_context *data_ac,
1173 1174 1175 1176
			       struct ocfs2_alloc_context *meta_ac,
			       struct ocfs2_write_ctxt *wc, u32 cpos,
			       loff_t user_pos, unsigned user_len)
{
1177
	int ret, i, new, should_zero = 0;
1178 1179 1180 1181
	u64 v_blkno, p_blkno;
	struct inode *inode = mapping->host;

	new = phys == 0 ? 1 : 0;
1182 1183
	if (new || unwritten)
		should_zero = 1;
1184 1185

	if (new) {
1186 1187
		u32 tmp_pos;

1188 1189 1190 1191
		/*
		 * This is safe to call with the page locks - it won't take
		 * any additional semaphores or cluster locks.
		 */
1192
		tmp_pos = cpos;
1193
		ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1194
						 &tmp_pos, 1, 0, wc->w_di_bh,
1195 1196
						 wc->w_handle, data_ac,
						 meta_ac, NULL);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
		/*
		 * This shouldn't happen because we must have already
		 * calculated the correct meta data allocation required. The
		 * internal tree allocation code should know how to increase
		 * transaction credits itself.
		 *
		 * If need be, we could handle -EAGAIN for a
		 * RESTART_TRANS here.
		 */
		mlog_bug_on_msg(ret == -EAGAIN,
				"Inode %llu: EAGAIN return during allocation.\n",
				(unsigned long long)OCFS2_I(inode)->ip_blkno);
		if (ret < 0) {
			mlog_errno(ret);
			goto out;
		}
1213 1214 1215 1216 1217 1218 1219 1220 1221
	} else if (unwritten) {
		ret = ocfs2_mark_extent_written(inode, wc->w_di_bh,
						wc->w_handle, cpos, 1, phys,
						meta_ac, &wc->w_dealloc);
		if (ret < 0) {
			mlog_errno(ret);
			goto out;
		}
	}
1222

1223
	if (should_zero)
1224
		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1225
	else
1226
		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1227

1228 1229 1230 1231
	/*
	 * The only reason this should fail is due to an inability to
	 * find the extent added.
	 */
1232 1233
	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
					  NULL);
1234
	if (ret < 0) {
1235 1236 1237 1238
		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
			    "at logical block %llu",
			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
			    (unsigned long long)v_blkno);
1239 1240 1241 1242 1243
		goto out;
	}

	BUG_ON(p_blkno == 0);

1244 1245
	for(i = 0; i < wc->w_num_pages; i++) {
		int tmpret;
1246

1247 1248
		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
						      wc->w_pages[i], cpos,
1249 1250
						      user_pos, user_len,
						      should_zero);
1251 1252 1253 1254 1255
		if (tmpret) {
			mlog_errno(tmpret);
			if (ret == 0)
				tmpret = ret;
		}
1256 1257
	}

1258 1259 1260 1261 1262 1263
	/*
	 * We only have cleanup to do in case of allocating write.
	 */
	if (ret && new)
		ocfs2_write_failure(inode, wc, user_pos, user_len);

1264 1265
out:

1266
	return ret;
1267 1268
}

1269 1270 1271 1272 1273 1274 1275
static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
				       struct ocfs2_alloc_context *data_ac,
				       struct ocfs2_alloc_context *meta_ac,
				       struct ocfs2_write_ctxt *wc,
				       loff_t pos, unsigned len)
{
	int ret, i;
1276 1277
	loff_t cluster_off;
	unsigned int local_len = len;
1278
	struct ocfs2_write_cluster_desc *desc;
1279
	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1280 1281 1282 1283

	for (i = 0; i < wc->w_clen; i++) {
		desc = &wc->w_desc[i];

1284 1285 1286 1287 1288 1289 1290 1291 1292
		/*
		 * We have to make sure that the total write passed in
		 * doesn't extend past a single cluster.
		 */
		local_len = len;
		cluster_off = pos & (osb->s_clustersize - 1);
		if ((cluster_off + local_len) > osb->s_clustersize)
			local_len = osb->s_clustersize - cluster_off;

1293 1294
		ret = ocfs2_write_cluster(mapping, desc->c_phys,
					  desc->c_unwritten, data_ac, meta_ac,
1295
					  wc, desc->c_cpos, pos, local_len);
1296 1297 1298 1299
		if (ret) {
			mlog_errno(ret);
			goto out;
		}
1300 1301 1302

		len -= local_len;
		pos += local_len;
1303 1304 1305 1306 1307 1308 1309
	}

	ret = 0;
out:
	return ret;
}

1310 1311 1312 1313 1314 1315 1316 1317
/*
 * ocfs2_write_end() wants to know which parts of the target page it
 * should complete the write on. It's easiest to compute them ahead of
 * time when a more complete view of the write is available.
 */
static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
					struct ocfs2_write_ctxt *wc,
					loff_t pos, unsigned len, int alloc)
1318
{
1319
	struct ocfs2_write_cluster_desc *desc;
1320

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
	wc->w_target_to = wc->w_target_from + len;

	if (alloc == 0)
		return;

	/*
	 * Allocating write - we may have different boundaries based
	 * on page size and cluster size.
	 *
	 * NOTE: We can no longer compute one value from the other as
	 * the actual write length and user provided length may be
	 * different.
	 */
1335

1336 1337 1338
	if (wc->w_large_pages) {
		/*
		 * We only care about the 1st and last cluster within
1339
		 * our range and whether they should be zero'd or not. Either
1340 1341 1342 1343
		 * value may be extended out to the start/end of a
		 * newly allocated cluster.
		 */
		desc = &wc->w_desc[0];
1344
		if (ocfs2_should_zero_cluster(desc))
1345 1346 1347 1348 1349 1350
			ocfs2_figure_cluster_boundaries(osb,
							desc->c_cpos,
							&wc->w_target_from,
							NULL);

		desc = &wc->w_desc[wc->w_clen - 1];
1351
		if (ocfs2_should_zero_cluster(desc))
1352 1353 1354 1355 1356 1357 1358 1359
			ocfs2_figure_cluster_boundaries(osb,
							desc->c_cpos,
							NULL,
							&wc->w_target_to);
	} else {
		wc->w_target_from = 0;
		wc->w_target_to = PAGE_CACHE_SIZE;
	}
1360 1361
}

1362 1363 1364
/*
 * Populate each single-cluster write descriptor in the write context
 * with information about the i/o to be done.
1365 1366 1367 1368
 *
 * Returns the number of clusters that will have to be allocated, as
 * well as a worst case estimate of the number of extent records that
 * would have to be created during a write to an unwritten region.
1369 1370 1371
 */
static int ocfs2_populate_write_desc(struct inode *inode,
				     struct ocfs2_write_ctxt *wc,
1372 1373
				     unsigned int *clusters_to_alloc,
				     unsigned int *extents_to_split)
1374
{
1375
	int ret;
1376
	struct ocfs2_write_cluster_desc *desc;
1377
	unsigned int num_clusters = 0;
1378
	unsigned int ext_flags = 0;
1379 1380
	u32 phys = 0;
	int i;
1381

1382 1383 1384
	*clusters_to_alloc = 0;
	*extents_to_split = 0;

1385 1386 1387 1388 1389
	for (i = 0; i < wc->w_clen; i++) {
		desc = &wc->w_desc[i];
		desc->c_cpos = wc->w_cpos + i;

		if (num_clusters == 0) {
1390 1391 1392
			/*
			 * Need to look up the next extent record.
			 */
1393
			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1394
						 &num_clusters, &ext_flags);
1395 1396
			if (ret) {
				mlog_errno(ret);
1397
				goto out;
1398
			}
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

			/*
			 * Assume worst case - that we're writing in
			 * the middle of the extent.
			 *
			 * We can assume that the write proceeds from
			 * left to right, in which case the extent
			 * insert code is smart enough to coalesce the
			 * next splits into the previous records created.
			 */
			if (ext_flags & OCFS2_EXT_UNWRITTEN)
				*extents_to_split = *extents_to_split + 2;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
		} else if (phys) {
			/*
			 * Only increment phys if it doesn't describe
			 * a hole.
			 */
			phys++;
		}

		desc->c_phys = phys;
		if (phys == 0) {
			desc->c_new = 1;
1422
			*clusters_to_alloc = *clusters_to_alloc + 1;
1423
		}
1424 1425
		if (ext_flags & OCFS2_EXT_UNWRITTEN)
			desc->c_unwritten = 1;
1426 1427

		num_clusters--;
1428 1429
	}

1430 1431 1432 1433 1434
	ret = 0;
out:
	return ret;
}

M
Mark Fasheh 已提交
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
static int ocfs2_write_begin_inline(struct address_space *mapping,
				    struct inode *inode,
				    struct ocfs2_write_ctxt *wc)
{
	int ret;
	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
	struct page *page;
	handle_t *handle;
	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;

	page = find_or_create_page(mapping, 0, GFP_NOFS);
	if (!page) {
		ret = -ENOMEM;
		mlog_errno(ret);
		goto out;
	}
	/*
	 * If we don't set w_num_pages then this page won't get unlocked
	 * and freed on cleanup of the write context.
	 */
	wc->w_pages[0] = wc->w_target_page = page;
	wc->w_num_pages = 1;

	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		mlog_errno(ret);
		goto out;
	}

	ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
				   OCFS2_JOURNAL_ACCESS_WRITE);
	if (ret) {
		ocfs2_commit_trans(osb, handle);

		mlog_errno(ret);
		goto out;
	}

	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
		ocfs2_set_inode_data_inline(inode, di);

	if (!PageUptodate(page)) {
		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
		if (ret) {
			ocfs2_commit_trans(osb, handle);

			goto out;
		}
	}

	wc->w_handle = handle;
out:
	return ret;
}

int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
{
	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;

	if (new_size < le16_to_cpu(di->id2.i_data.id_count))
		return 1;
	return 0;
}

static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
					  struct inode *inode, loff_t pos,
					  unsigned len, struct page *mmap_page,
					  struct ocfs2_write_ctxt *wc)
{
	int ret, written = 0;
	loff_t end = pos + len;
	struct ocfs2_inode_info *oi = OCFS2_I(inode);

	mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
	     (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
	     oi->ip_dyn_features);

	/*
	 * Handle inodes which already have inline data 1st.
	 */
	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
		if (mmap_page == NULL &&
		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
			goto do_inline_write;

		/*
		 * The write won't fit - we have to give this inode an
		 * inline extent list now.
		 */
		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
		if (ret)
			mlog_errno(ret);
		goto out;
	}

	/*
	 * Check whether the inode can accept inline data.
	 */
	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
		return 0;

	/*
	 * Check whether the write can fit.
	 */
	if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
		return 0;

do_inline_write:
	ret = ocfs2_write_begin_inline(mapping, inode, wc);
	if (ret) {
		mlog_errno(ret);
		goto out;
	}

	/*
	 * This signals to the caller that the data can be written
	 * inline.
	 */
	written = 1;
out:
	return written ? written : ret;
}

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
/*
 * This function only does anything for file systems which can't
 * handle sparse files.
 *
 * What we want to do here is fill in any hole between the current end
 * of allocation and the end of our write. That way the rest of the
 * write path can treat it as an non-allocating write, which has no
 * special case code for sparse/nonsparse files.
 */
static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
					unsigned len,
					struct ocfs2_write_ctxt *wc)
{
	int ret;
	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
	loff_t newsize = pos + len;

	if (ocfs2_sparse_alloc(osb))
		return 0;

	if (newsize <= i_size_read(inode))
		return 0;

	ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
	if (ret)
		mlog_errno(ret);

	return ret;
}

1589 1590 1591 1592 1593 1594
int ocfs2_write_begin_nolock(struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned flags,
			     struct page **pagep, void **fsdata,
			     struct buffer_head *di_bh, struct page *mmap_page)
{
	int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1595
	unsigned int clusters_to_alloc, extents_to_split;
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
	struct ocfs2_write_ctxt *wc;
	struct inode *inode = mapping->host;
	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
	struct ocfs2_dinode *di;
	struct ocfs2_alloc_context *data_ac = NULL;
	struct ocfs2_alloc_context *meta_ac = NULL;
	handle_t *handle;

	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
	if (ret) {
		mlog_errno(ret);
		return ret;
	}

M
Mark Fasheh 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	if (ocfs2_supports_inline_data(osb)) {
		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
						     mmap_page, wc);
		if (ret == 1) {
			ret = 0;
			goto success;
		}
		if (ret < 0) {
			mlog_errno(ret);
			goto out;
		}
	}

1623 1624 1625 1626 1627 1628
	ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
	if (ret) {
		mlog_errno(ret);
		goto out;
	}

1629 1630
	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
					&extents_to_split);
1631 1632 1633 1634 1635 1636 1637
	if (ret) {
		mlog_errno(ret);
		goto out;
	}

	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;

1638 1639 1640 1641 1642 1643
	/*
	 * We set w_target_from, w_target_to here so that
	 * ocfs2_write_end() knows which range in the target page to
	 * write out. An allocation requires that we write the entire
	 * cluster range.
	 */
1644
	if (clusters_to_alloc || extents_to_split) {
1645 1646
		/*
		 * XXX: We are stretching the limits of
1647
		 * ocfs2_lock_allocators(). It greatly over-estimates
1648 1649 1650
		 * the work to be done.
		 */
		ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
1651
					    extents_to_split, &data_ac, &meta_ac);
1652 1653
		if (ret) {
			mlog_errno(ret);
1654
			goto out;
1655 1656
		}

1657 1658 1659
		credits = ocfs2_calc_extend_credits(inode->i_sb, di,
						    clusters_to_alloc);

1660 1661
	}

1662 1663
	ocfs2_set_target_boundaries(osb, wc, pos, len,
				    clusters_to_alloc + extents_to_split);
1664

1665 1666 1667 1668
	handle = ocfs2_start_trans(osb, credits);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		mlog_errno(ret);
1669
		goto out;
1670 1671
	}

1672 1673 1674 1675 1676 1677 1678 1679 1680
	wc->w_handle = handle;

	/*
	 * We don't want this to fail in ocfs2_write_end(), so do it
	 * here.
	 */
	ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
				   OCFS2_JOURNAL_ACCESS_WRITE);
	if (ret) {
1681 1682 1683 1684
		mlog_errno(ret);
		goto out_commit;
	}

1685 1686 1687 1688 1689 1690
	/*
	 * Fill our page array first. That way we've grabbed enough so
	 * that we can zero and flush if we error after adding the
	 * extent.
	 */
	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1691 1692
					 clusters_to_alloc + extents_to_split,
					 mmap_page);
1693 1694 1695 1696 1697
	if (ret) {
		mlog_errno(ret);
		goto out_commit;
	}

1698 1699 1700 1701 1702
	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
					  len);
	if (ret) {
		mlog_errno(ret);
		goto out_commit;
1703 1704
	}

1705 1706 1707 1708
	if (data_ac)
		ocfs2_free_alloc_context(data_ac);
	if (meta_ac)
		ocfs2_free_alloc_context(meta_ac);
1709

M
Mark Fasheh 已提交
1710
success:
1711 1712 1713
	*pagep = wc->w_target_page;
	*fsdata = wc;
	return 0;
1714 1715 1716 1717
out_commit:
	ocfs2_commit_trans(osb, handle);

out:
1718 1719
	ocfs2_free_write_ctxt(wc);

1720 1721 1722 1723
	if (data_ac)
		ocfs2_free_alloc_context(data_ac);
	if (meta_ac)
		ocfs2_free_alloc_context(meta_ac);
1724 1725 1726
	return ret;
}

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
int ocfs2_write_begin(struct file *file, struct address_space *mapping,
		      loff_t pos, unsigned len, unsigned flags,
		      struct page **pagep, void **fsdata)
{
	int ret;
	struct buffer_head *di_bh = NULL;
	struct inode *inode = mapping->host;

	ret = ocfs2_meta_lock(inode, &di_bh, 1);
	if (ret) {
		mlog_errno(ret);
		return ret;
	}

	/*
	 * Take alloc sem here to prevent concurrent lookups. That way
	 * the mapping, zeroing and tree manipulation within
	 * ocfs2_write() will be safe against ->readpage(). This
	 * should also serve to lock out allocation from a shared
	 * writeable region.
	 */
	down_write(&OCFS2_I(inode)->ip_alloc_sem);

	ret = ocfs2_data_lock(inode, 1);
	if (ret) {
		mlog_errno(ret);
		goto out_fail;
	}

	ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
M
Mark Fasheh 已提交
1757
				       fsdata, di_bh, NULL);
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	if (ret) {
		mlog_errno(ret);
		goto out_fail_data;
	}

	brelse(di_bh);

	return 0;

out_fail_data:
	ocfs2_data_unlock(inode, 1);
out_fail:
	up_write(&OCFS2_I(inode)->ip_alloc_sem);

	brelse(di_bh);
	ocfs2_meta_unlock(inode, 1);

	return ret;
}

M
Mark Fasheh 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
				   unsigned len, unsigned *copied,
				   struct ocfs2_dinode *di,
				   struct ocfs2_write_ctxt *wc)
{
	void *kaddr;

	if (unlikely(*copied < len)) {
		if (!PageUptodate(wc->w_target_page)) {
			*copied = 0;
			return;
		}
	}

	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
	kunmap_atomic(kaddr, KM_USER0);

	mlog(0, "Data written to inode at offset %llu. "
	     "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
	     (unsigned long long)pos, *copied,
	     le16_to_cpu(di->id2.i_data.id_count),
	     le16_to_cpu(di->i_dyn_features));
}

M
Mark Fasheh 已提交
1803 1804 1805
int ocfs2_write_end_nolock(struct address_space *mapping,
			   loff_t pos, unsigned len, unsigned copied,
			   struct page *page, void *fsdata)
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
{
	int i;
	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
	struct inode *inode = mapping->host;
	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
	struct ocfs2_write_ctxt *wc = fsdata;
	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
	handle_t *handle = wc->w_handle;
	struct page *tmppage;

M
Mark Fasheh 已提交
1816 1817 1818 1819 1820
	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
		goto out_write_size;
	}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	if (unlikely(copied < len)) {
		if (!PageUptodate(wc->w_target_page))
			copied = 0;

		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
				       start+len);
	}
	flush_dcache_page(wc->w_target_page);

	for(i = 0; i < wc->w_num_pages; i++) {
		tmppage = wc->w_pages[i];

		if (tmppage == wc->w_target_page) {
			from = wc->w_target_from;
			to = wc->w_target_to;

			BUG_ON(from > PAGE_CACHE_SIZE ||
			       to > PAGE_CACHE_SIZE ||
			       to < from);
		} else {
			/*
			 * Pages adjacent to the target (if any) imply
			 * a hole-filling write in which case we want
			 * to flush their entire range.
			 */
			from = 0;
			to = PAGE_CACHE_SIZE;
		}

		if (ocfs2_should_order_data(inode))
			walk_page_buffers(wc->w_handle, page_buffers(tmppage),
					  from, to, NULL,
					  ocfs2_journal_dirty_data);

		block_commit_write(tmppage, from, to);
	}

M
Mark Fasheh 已提交
1858
out_write_size:
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	pos += copied;
	if (pos > inode->i_size) {
		i_size_write(inode, pos);
		mark_inode_dirty(inode);
	}
	inode->i_blocks = ocfs2_inode_sector_count(inode);
	di->i_size = cpu_to_le64((u64)i_size_read(inode));
	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
	ocfs2_journal_dirty(handle, wc->w_di_bh);

	ocfs2_commit_trans(osb, handle);
1872

1873 1874
	ocfs2_run_deallocs(osb, &wc->w_dealloc);

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	ocfs2_free_write_ctxt(wc);

	return copied;
}

int ocfs2_write_end(struct file *file, struct address_space *mapping,
		    loff_t pos, unsigned len, unsigned copied,
		    struct page *page, void *fsdata)
{
	int ret;
	struct inode *inode = mapping->host;

	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);

1889 1890 1891
	ocfs2_data_unlock(inode, 1);
	up_write(&OCFS2_I(inode)->ip_alloc_sem);
	ocfs2_meta_unlock(inode, 1);
1892

1893
	return ret;
1894 1895
}

1896
const struct address_space_operations ocfs2_aops = {
1897 1898 1899 1900
	.readpage	= ocfs2_readpage,
	.writepage	= ocfs2_writepage,
	.bmap		= ocfs2_bmap,
	.sync_page	= block_sync_page,
1901 1902 1903 1904
	.direct_IO	= ocfs2_direct_IO,
	.invalidatepage	= ocfs2_invalidatepage,
	.releasepage	= ocfs2_releasepage,
	.migratepage	= buffer_migrate_page,
1905
};