relocs.c 18.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <elf.h>
#include <byteswap.h>
#define USE_BSD
#include <endian.h>
12
#include <regex.h>
13
#include <tools/le_byteshift.h>
14 15

static void die(char *fmt, ...);
16

17
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
18 19 20
static Elf32_Ehdr ehdr;
static unsigned long reloc_count, reloc_idx;
static unsigned long *relocs;
21 22
static unsigned long reloc16_count, reloc16_idx;
static unsigned long *relocs16;
23

24 25 26 27 28 29 30 31 32
struct section {
	Elf32_Shdr     shdr;
	struct section *link;
	Elf32_Sym      *symtab;
	Elf32_Rel      *reltab;
	char           *strtab;
};
static struct section *secs;

33 34 35 36 37 38 39 40 41
enum symtype {
	S_ABS,
	S_REL,
	S_SEG,
	S_LIN,
	S_NSYMTYPES
};

static const char * const sym_regex_kernel[S_NSYMTYPES] = {
42 43 44 45 46 47
/*
 * Following symbols have been audited. There values are constant and do
 * not change if bzImage is loaded at a different physical address than
 * the address for which it has been compiled. Don't warn user about
 * absolute relocations present w.r.t these symbols.
 */
48
	[S_ABS] =
49 50 51
	"^(xen_irq_disable_direct_reloc$|"
	"xen_save_fl_direct_reloc$|"
	"VDSO|"
52
	"__crc_)",
53

54 55 56 57
/*
 * These symbols are known to be relative, even if the linker marks them
 * as absolute (typically defined outside any section in the linker script.)
 */
58 59 60 61 62 63
	[S_REL] =
	"^_end$",
};


static const char * const sym_regex_realmode[S_NSYMTYPES] = {
64 65 66 67 68 69 70
/*
 * These symbols are known to be relative, even if the linker marks them
 * as absolute (typically defined outside any section in the linker script.)
 */
	[S_REL] =
	"^pa_",

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/*
 * These are 16-bit segment symbols when compiling 16-bit code.
 */
	[S_SEG] =
	"^real_mode_seg$",

/*
 * These are offsets belonging to segments, as opposed to linear addresses,
 * when compiling 16-bit code.
 */
	[S_LIN] =
	"^pa_",
};

static const char * const *sym_regex;

static regex_t sym_regex_c[S_NSYMTYPES];
static int is_reloc(enum symtype type, const char *sym_name)
89
{
90 91
	return sym_regex[type] &&
		!regexec(&sym_regex_c[type], sym_name, 0, NULL, 0);
92
}
93

94
static void regex_init(int use_real_mode)
95 96 97
{
        char errbuf[128];
        int err;
98
	int i;
99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
	if (use_real_mode)
		sym_regex = sym_regex_realmode;
	else
		sym_regex = sym_regex_kernel;

	for (i = 0; i < S_NSYMTYPES; i++) {
		if (!sym_regex[i])
			continue;

		err = regcomp(&sym_regex_c[i], sym_regex[i],
			      REG_EXTENDED|REG_NOSUB);

		if (err) {
			regerror(err, &sym_regex_c[i], errbuf, sizeof errbuf);
			die("%s", errbuf);
		}
116
        }
117 118
}

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
static void die(char *fmt, ...)
{
	va_list ap;
	va_start(ap, fmt);
	vfprintf(stderr, fmt, ap);
	va_end(ap);
	exit(1);
}

static const char *sym_type(unsigned type)
{
	static const char *type_name[] = {
#define SYM_TYPE(X) [X] = #X
		SYM_TYPE(STT_NOTYPE),
		SYM_TYPE(STT_OBJECT),
		SYM_TYPE(STT_FUNC),
		SYM_TYPE(STT_SECTION),
		SYM_TYPE(STT_FILE),
		SYM_TYPE(STT_COMMON),
		SYM_TYPE(STT_TLS),
#undef SYM_TYPE
	};
	const char *name = "unknown sym type name";
142
	if (type < ARRAY_SIZE(type_name)) {
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
		name = type_name[type];
	}
	return name;
}

static const char *sym_bind(unsigned bind)
{
	static const char *bind_name[] = {
#define SYM_BIND(X) [X] = #X
		SYM_BIND(STB_LOCAL),
		SYM_BIND(STB_GLOBAL),
		SYM_BIND(STB_WEAK),
#undef SYM_BIND
	};
	const char *name = "unknown sym bind name";
158
	if (bind < ARRAY_SIZE(bind_name)) {
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
		name = bind_name[bind];
	}
	return name;
}

static const char *sym_visibility(unsigned visibility)
{
	static const char *visibility_name[] = {
#define SYM_VISIBILITY(X) [X] = #X
		SYM_VISIBILITY(STV_DEFAULT),
		SYM_VISIBILITY(STV_INTERNAL),
		SYM_VISIBILITY(STV_HIDDEN),
		SYM_VISIBILITY(STV_PROTECTED),
#undef SYM_VISIBILITY
	};
	const char *name = "unknown sym visibility name";
175
	if (visibility < ARRAY_SIZE(visibility_name)) {
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
		name = visibility_name[visibility];
	}
	return name;
}

static const char *rel_type(unsigned type)
{
	static const char *type_name[] = {
#define REL_TYPE(X) [X] = #X
		REL_TYPE(R_386_NONE),
		REL_TYPE(R_386_32),
		REL_TYPE(R_386_PC32),
		REL_TYPE(R_386_GOT32),
		REL_TYPE(R_386_PLT32),
		REL_TYPE(R_386_COPY),
		REL_TYPE(R_386_GLOB_DAT),
		REL_TYPE(R_386_JMP_SLOT),
		REL_TYPE(R_386_RELATIVE),
		REL_TYPE(R_386_GOTOFF),
		REL_TYPE(R_386_GOTPC),
196 197 198 199
		REL_TYPE(R_386_8),
		REL_TYPE(R_386_PC8),
		REL_TYPE(R_386_16),
		REL_TYPE(R_386_PC16),
200 201 202
#undef REL_TYPE
	};
	const char *name = "unknown type rel type name";
203
	if (type < ARRAY_SIZE(type_name) && type_name[type]) {
204 205 206 207 208 209 210 211 212
		name = type_name[type];
	}
	return name;
}

static const char *sec_name(unsigned shndx)
{
	const char *sec_strtab;
	const char *name;
213
	sec_strtab = secs[ehdr.e_shstrndx].strtab;
214 215
	name = "<noname>";
	if (shndx < ehdr.e_shnum) {
216
		name = sec_strtab + secs[shndx].shdr.sh_name;
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
	}
	else if (shndx == SHN_ABS) {
		name = "ABSOLUTE";
	}
	else if (shndx == SHN_COMMON) {
		name = "COMMON";
	}
	return name;
}

static const char *sym_name(const char *sym_strtab, Elf32_Sym *sym)
{
	const char *name;
	name = "<noname>";
	if (sym->st_name) {
		name = sym_strtab + sym->st_name;
	}
	else {
235
		name = sec_name(sym->st_shndx);
236 237 238 239 240 241
	}
	return name;
}



242
#if BYTE_ORDER == LITTLE_ENDIAN
243 244 245
#define le16_to_cpu(val) (val)
#define le32_to_cpu(val) (val)
#endif
246
#if BYTE_ORDER == BIG_ENDIAN
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
#define le16_to_cpu(val) bswap_16(val)
#define le32_to_cpu(val) bswap_32(val)
#endif

static uint16_t elf16_to_cpu(uint16_t val)
{
	return le16_to_cpu(val);
}

static uint32_t elf32_to_cpu(uint32_t val)
{
	return le32_to_cpu(val);
}

static void read_ehdr(FILE *fp)
{
	if (fread(&ehdr, sizeof(ehdr), 1, fp) != 1) {
		die("Cannot read ELF header: %s\n",
			strerror(errno));
	}
267
	if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0) {
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
		die("No ELF magic\n");
	}
	if (ehdr.e_ident[EI_CLASS] != ELFCLASS32) {
		die("Not a 32 bit executable\n");
	}
	if (ehdr.e_ident[EI_DATA] != ELFDATA2LSB) {
		die("Not a LSB ELF executable\n");
	}
	if (ehdr.e_ident[EI_VERSION] != EV_CURRENT) {
		die("Unknown ELF version\n");
	}
	/* Convert the fields to native endian */
	ehdr.e_type      = elf16_to_cpu(ehdr.e_type);
	ehdr.e_machine   = elf16_to_cpu(ehdr.e_machine);
	ehdr.e_version   = elf32_to_cpu(ehdr.e_version);
	ehdr.e_entry     = elf32_to_cpu(ehdr.e_entry);
	ehdr.e_phoff     = elf32_to_cpu(ehdr.e_phoff);
	ehdr.e_shoff     = elf32_to_cpu(ehdr.e_shoff);
	ehdr.e_flags     = elf32_to_cpu(ehdr.e_flags);
	ehdr.e_ehsize    = elf16_to_cpu(ehdr.e_ehsize);
	ehdr.e_phentsize = elf16_to_cpu(ehdr.e_phentsize);
	ehdr.e_phnum     = elf16_to_cpu(ehdr.e_phnum);
	ehdr.e_shentsize = elf16_to_cpu(ehdr.e_shentsize);
	ehdr.e_shnum     = elf16_to_cpu(ehdr.e_shnum);
	ehdr.e_shstrndx  = elf16_to_cpu(ehdr.e_shstrndx);

	if ((ehdr.e_type != ET_EXEC) && (ehdr.e_type != ET_DYN)) {
		die("Unsupported ELF header type\n");
	}
	if (ehdr.e_machine != EM_386) {
		die("Not for x86\n");
	}
	if (ehdr.e_version != EV_CURRENT) {
		die("Unknown ELF version\n");
	}
	if (ehdr.e_ehsize != sizeof(Elf32_Ehdr)) {
		die("Bad Elf header size\n");
	}
	if (ehdr.e_phentsize != sizeof(Elf32_Phdr)) {
		die("Bad program header entry\n");
	}
	if (ehdr.e_shentsize != sizeof(Elf32_Shdr)) {
		die("Bad section header entry\n");
	}
	if (ehdr.e_shstrndx >= ehdr.e_shnum) {
		die("String table index out of bounds\n");
	}
}

static void read_shdrs(FILE *fp)
{
	int i;
320 321 322 323 324 325
	Elf32_Shdr shdr;

	secs = calloc(ehdr.e_shnum, sizeof(struct section));
	if (!secs) {
		die("Unable to allocate %d section headers\n",
		    ehdr.e_shnum);
326 327 328 329 330
	}
	if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0) {
		die("Seek to %d failed: %s\n",
			ehdr.e_shoff, strerror(errno));
	}
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
	for (i = 0; i < ehdr.e_shnum; i++) {
		struct section *sec = &secs[i];
		if (fread(&shdr, sizeof shdr, 1, fp) != 1)
			die("Cannot read ELF section headers %d/%d: %s\n",
			    i, ehdr.e_shnum, strerror(errno));
		sec->shdr.sh_name      = elf32_to_cpu(shdr.sh_name);
		sec->shdr.sh_type      = elf32_to_cpu(shdr.sh_type);
		sec->shdr.sh_flags     = elf32_to_cpu(shdr.sh_flags);
		sec->shdr.sh_addr      = elf32_to_cpu(shdr.sh_addr);
		sec->shdr.sh_offset    = elf32_to_cpu(shdr.sh_offset);
		sec->shdr.sh_size      = elf32_to_cpu(shdr.sh_size);
		sec->shdr.sh_link      = elf32_to_cpu(shdr.sh_link);
		sec->shdr.sh_info      = elf32_to_cpu(shdr.sh_info);
		sec->shdr.sh_addralign = elf32_to_cpu(shdr.sh_addralign);
		sec->shdr.sh_entsize   = elf32_to_cpu(shdr.sh_entsize);
		if (sec->shdr.sh_link < ehdr.e_shnum)
			sec->link = &secs[sec->shdr.sh_link];
348 349 350 351 352 353 354
	}

}

static void read_strtabs(FILE *fp)
{
	int i;
355 356 357
	for (i = 0; i < ehdr.e_shnum; i++) {
		struct section *sec = &secs[i];
		if (sec->shdr.sh_type != SHT_STRTAB) {
358 359
			continue;
		}
360 361
		sec->strtab = malloc(sec->shdr.sh_size);
		if (!sec->strtab) {
362
			die("malloc of %d bytes for strtab failed\n",
363
				sec->shdr.sh_size);
364
		}
365
		if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
366
			die("Seek to %d failed: %s\n",
367
				sec->shdr.sh_offset, strerror(errno));
368
		}
369 370
		if (fread(sec->strtab, 1, sec->shdr.sh_size, fp)
		    != sec->shdr.sh_size) {
371 372 373 374 375 376 377 378 379
			die("Cannot read symbol table: %s\n",
				strerror(errno));
		}
	}
}

static void read_symtabs(FILE *fp)
{
	int i,j;
380 381 382
	for (i = 0; i < ehdr.e_shnum; i++) {
		struct section *sec = &secs[i];
		if (sec->shdr.sh_type != SHT_SYMTAB) {
383 384
			continue;
		}
385 386
		sec->symtab = malloc(sec->shdr.sh_size);
		if (!sec->symtab) {
387
			die("malloc of %d bytes for symtab failed\n",
388
				sec->shdr.sh_size);
389
		}
390
		if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
391
			die("Seek to %d failed: %s\n",
392
				sec->shdr.sh_offset, strerror(errno));
393
		}
394 395
		if (fread(sec->symtab, 1, sec->shdr.sh_size, fp)
		    != sec->shdr.sh_size) {
396 397 398
			die("Cannot read symbol table: %s\n",
				strerror(errno));
		}
399 400 401 402 403 404
		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf32_Sym); j++) {
			Elf32_Sym *sym = &sec->symtab[j];
			sym->st_name  = elf32_to_cpu(sym->st_name);
			sym->st_value = elf32_to_cpu(sym->st_value);
			sym->st_size  = elf32_to_cpu(sym->st_size);
			sym->st_shndx = elf16_to_cpu(sym->st_shndx);
405 406 407 408 409 410 411 412
		}
	}
}


static void read_relocs(FILE *fp)
{
	int i,j;
413 414 415
	for (i = 0; i < ehdr.e_shnum; i++) {
		struct section *sec = &secs[i];
		if (sec->shdr.sh_type != SHT_REL) {
416 417
			continue;
		}
418 419
		sec->reltab = malloc(sec->shdr.sh_size);
		if (!sec->reltab) {
420
			die("malloc of %d bytes for relocs failed\n",
421
				sec->shdr.sh_size);
422
		}
423
		if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
424
			die("Seek to %d failed: %s\n",
425
				sec->shdr.sh_offset, strerror(errno));
426
		}
427 428
		if (fread(sec->reltab, 1, sec->shdr.sh_size, fp)
		    != sec->shdr.sh_size) {
429 430 431
			die("Cannot read symbol table: %s\n",
				strerror(errno));
		}
432 433 434 435
		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf32_Rel); j++) {
			Elf32_Rel *rel = &sec->reltab[j];
			rel->r_offset = elf32_to_cpu(rel->r_offset);
			rel->r_info   = elf32_to_cpu(rel->r_info);
436 437 438 439 440 441 442 443 444 445
		}
	}
}


static void print_absolute_symbols(void)
{
	int i;
	printf("Absolute symbols\n");
	printf(" Num:    Value Size  Type       Bind        Visibility  Name\n");
446 447
	for (i = 0; i < ehdr.e_shnum; i++) {
		struct section *sec = &secs[i];
448 449
		char *sym_strtab;
		int j;
450 451

		if (sec->shdr.sh_type != SHT_SYMTAB) {
452 453
			continue;
		}
454 455
		sym_strtab = sec->link->strtab;
		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf32_Sym); j++) {
456 457
			Elf32_Sym *sym;
			const char *name;
458
			sym = &sec->symtab[j];
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
			name = sym_name(sym_strtab, sym);
			if (sym->st_shndx != SHN_ABS) {
				continue;
			}
			printf("%5d %08x %5d %10s %10s %12s %s\n",
				j, sym->st_value, sym->st_size,
				sym_type(ELF32_ST_TYPE(sym->st_info)),
				sym_bind(ELF32_ST_BIND(sym->st_info)),
				sym_visibility(ELF32_ST_VISIBILITY(sym->st_other)),
				name);
		}
	}
	printf("\n");
}

static void print_absolute_relocs(void)
{
476 477
	int i, printed = 0;

478 479 480
	for (i = 0; i < ehdr.e_shnum; i++) {
		struct section *sec = &secs[i];
		struct section *sec_applies, *sec_symtab;
481 482 483
		char *sym_strtab;
		Elf32_Sym *sh_symtab;
		int j;
484
		if (sec->shdr.sh_type != SHT_REL) {
485 486
			continue;
		}
487 488 489
		sec_symtab  = sec->link;
		sec_applies = &secs[sec->shdr.sh_info];
		if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) {
490 491
			continue;
		}
492 493 494
		sh_symtab  = sec_symtab->symtab;
		sym_strtab = sec_symtab->link->strtab;
		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf32_Rel); j++) {
495 496 497
			Elf32_Rel *rel;
			Elf32_Sym *sym;
			const char *name;
498
			rel = &sec->reltab[j];
499 500 501 502 503
			sym = &sh_symtab[ELF32_R_SYM(rel->r_info)];
			name = sym_name(sym_strtab, sym);
			if (sym->st_shndx != SHN_ABS) {
				continue;
			}
504 505 506 507 508 509 510 511 512 513 514 515 516 517

			/* Absolute symbols are not relocated if bzImage is
			 * loaded at a non-compiled address. Display a warning
			 * to user at compile time about the absolute
			 * relocations present.
			 *
			 * User need to audit the code to make sure
			 * some symbols which should have been section
			 * relative have not become absolute because of some
			 * linker optimization or wrong programming usage.
			 *
			 * Before warning check if this absolute symbol
			 * relocation is harmless.
			 */
518
			if (is_reloc(S_ABS, name) || is_reloc(S_REL, name))
519 520 521 522 523 524 525 526 527 528
				continue;

			if (!printed) {
				printf("WARNING: Absolute relocations"
					" present\n");
				printf("Offset     Info     Type     Sym.Value "
					"Sym.Name\n");
				printed = 1;
			}

529 530 531 532 533 534 535 536
			printf("%08x %08x %10s %08x  %s\n",
				rel->r_offset,
				rel->r_info,
				rel_type(ELF32_R_TYPE(rel->r_info)),
				sym->st_value,
				name);
		}
	}
537 538 539

	if (printed)
		printf("\n");
540 541
}

542 543
static void walk_relocs(void (*visit)(Elf32_Rel *rel, Elf32_Sym *sym),
			int use_real_mode)
544 545 546
{
	int i;
	/* Walk through the relocations */
547
	for (i = 0; i < ehdr.e_shnum; i++) {
548 549
		char *sym_strtab;
		Elf32_Sym *sh_symtab;
550
		struct section *sec_applies, *sec_symtab;
551
		int j;
552 553 554
		struct section *sec = &secs[i];

		if (sec->shdr.sh_type != SHT_REL) {
555 556
			continue;
		}
557 558 559
		sec_symtab  = sec->link;
		sec_applies = &secs[sec->shdr.sh_info];
		if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) {
560 561
			continue;
		}
562
		sh_symtab = sec_symtab->symtab;
563
		sym_strtab = sec_symtab->link->strtab;
564
		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf32_Rel); j++) {
565 566 567
			Elf32_Rel *rel;
			Elf32_Sym *sym;
			unsigned r_type;
568
			const char *symname;
569
			rel = &sec->reltab[j];
570 571
			sym = &sh_symtab[ELF32_R_SYM(rel->r_info)];
			r_type = ELF32_R_TYPE(rel->r_info);
572

573 574 575
			switch (r_type) {
			case R_386_NONE:
			case R_386_PC32:
576 577
			case R_386_PC16:
			case R_386_PC8:
578 579 580 581
				/*
				 * NONE can be ignored and and PC relative
				 * relocations don't need to be adjusted.
				 */
582
				break;
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

			case R_386_16:
				symname = sym_name(sym_strtab, sym);
				if (!use_real_mode)
					goto bad;
				if (sym->st_shndx == SHN_ABS) {
					if (is_reloc(S_ABS, symname))
						break;
					else if (!is_reloc(S_SEG, symname))
						goto bad;
				} else {
					if (is_reloc(S_LIN, symname))
						goto bad;
					else
						break;
				}
				visit(rel, sym);
				break;

602
			case R_386_32:
603 604 605 606 607 608 609 610 611 612 613
				symname = sym_name(sym_strtab, sym);
				if (sym->st_shndx == SHN_ABS) {
					if (is_reloc(S_ABS, symname))
						break;
					else if (!is_reloc(S_REL, symname))
						goto bad;
				} else {
					if (use_real_mode &&
					    !is_reloc(S_LIN, symname))
						break;
				}
614
				visit(rel, sym);
615 616 617 618 619
				break;
			default:
				die("Unsupported relocation type: %s (%d)\n",
				    rel_type(r_type), r_type);
				break;
620 621 622 623
			bad:
				symname = sym_name(sym_strtab, sym);
				die("Invalid %s relocation: %s\n",
				    rel_type(r_type), symname);
624 625 626 627 628 629 630
			}
		}
	}
}

static void count_reloc(Elf32_Rel *rel, Elf32_Sym *sym)
{
631 632 633 634
	if (ELF32_R_TYPE(rel->r_info) == R_386_16)
		reloc16_count++;
	else
		reloc_count++;
635 636 637 638 639
}

static void collect_reloc(Elf32_Rel *rel, Elf32_Sym *sym)
{
	/* Remember the address that needs to be adjusted. */
640 641 642 643
	if (ELF32_R_TYPE(rel->r_info) == R_386_16)
		relocs16[reloc16_idx++] = rel->r_offset;
	else
		relocs[reloc_idx++] = rel->r_offset;
644 645 646 647 648 649 650 651 652
}

static int cmp_relocs(const void *va, const void *vb)
{
	const unsigned long *a, *b;
	a = va; b = vb;
	return (*a == *b)? 0 : (*a > *b)? 1 : -1;
}

653 654 655 656 657 658 659 660 661
static int write32(unsigned int v, FILE *f)
{
	unsigned char buf[4];

	put_unaligned_le32(v, buf);
	return fwrite(buf, 1, 4, f) == 4 ? 0 : -1;
}

static void emit_relocs(int as_text, int use_real_mode)
662 663 664 665
{
	int i;
	/* Count how many relocations I have and allocate space for them. */
	reloc_count = 0;
666
	walk_relocs(count_reloc, use_real_mode);
667 668 669 670 671
	relocs = malloc(reloc_count * sizeof(relocs[0]));
	if (!relocs) {
		die("malloc of %d entries for relocs failed\n",
			reloc_count);
	}
672 673 674 675 676 677

	relocs16 = malloc(reloc16_count * sizeof(relocs[0]));
	if (!relocs16) {
		die("malloc of %d entries for relocs16 failed\n",
			reloc16_count);
	}
678 679
	/* Collect up the relocations */
	reloc_idx = 0;
680 681 682 683
	walk_relocs(collect_reloc, use_real_mode);

	if (reloc16_count && !use_real_mode)
		die("Segment relocations found but --realmode not specified\n");
684 685 686

	/* Order the relocations for more efficient processing */
	qsort(relocs, reloc_count, sizeof(relocs[0]), cmp_relocs);
687
	qsort(relocs16, reloc16_count, sizeof(relocs16[0]), cmp_relocs);
688 689 690 691 692 693 694 695

	/* Print the relocations */
	if (as_text) {
		/* Print the relocations in a form suitable that
		 * gas will like.
		 */
		printf(".section \".data.reloc\",\"a\"\n");
		printf(".balign 4\n");
696 697 698 699 700 701 702 703 704 705 706 707 708 709
		if (use_real_mode) {
			printf("\t.long %lu\n", reloc16_count);
			for (i = 0; i < reloc16_count; i++)
				printf("\t.long 0x%08lx\n", relocs16[i]);
			printf("\t.long %lu\n", reloc_count);
			for (i = 0; i < reloc_count; i++) {
				printf("\t.long 0x%08lx\n", relocs[i]);
			}
		} else {
			/* Print a stop */
			printf("\t.long 0x%08lx\n", (unsigned long)0);
			for (i = 0; i < reloc_count; i++) {
				printf("\t.long 0x%08lx\n", relocs[i]);
			}
710
		}
711

712 713 714
		printf("\n");
	}
	else {
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
		if (use_real_mode) {
			write32(reloc16_count, stdout);
			for (i = 0; i < reloc16_count; i++)
				write32(relocs16[i], stdout);
			write32(reloc_count, stdout);

			/* Now print each relocation */
			for (i = 0; i < reloc_count; i++)
				write32(relocs[i], stdout);
		} else {
			/* Print a stop */
			write32(0, stdout);

			/* Now print each relocation */
			for (i = 0; i < reloc_count; i++) {
				write32(relocs[i], stdout);
			}
732 733 734 735 736 737
		}
	}
}

static void usage(void)
{
738
	die("relocs [--abs-syms|--abs-relocs|--text|--realmode] vmlinux\n");
739 740 741 742
}

int main(int argc, char **argv)
{
743
	int show_absolute_syms, show_absolute_relocs;
744
	int as_text, use_real_mode;
745 746 747 748
	const char *fname;
	FILE *fp;
	int i;

749 750
	show_absolute_syms = 0;
	show_absolute_relocs = 0;
751
	as_text = 0;
752
	use_real_mode = 0;
753
	fname = NULL;
754
	for (i = 1; i < argc; i++) {
755 756
		char *arg = argv[i];
		if (*arg == '-') {
757
			if (strcmp(arg, "--abs-syms") == 0) {
758 759 760
				show_absolute_syms = 1;
				continue;
			}
761
			if (strcmp(arg, "--abs-relocs") == 0) {
762
				show_absolute_relocs = 1;
763 764
				continue;
			}
765
			if (strcmp(arg, "--text") == 0) {
766 767 768
				as_text = 1;
				continue;
			}
769 770 771 772
			if (strcmp(arg, "--realmode") == 0) {
				use_real_mode = 1;
				continue;
			}
773 774 775 776 777 778 779 780 781 782
		}
		else if (!fname) {
			fname = arg;
			continue;
		}
		usage();
	}
	if (!fname) {
		usage();
	}
783
	regex_init(use_real_mode);
784 785 786 787 788 789 790 791 792 793
	fp = fopen(fname, "r");
	if (!fp) {
		die("Cannot open %s: %s\n",
			fname, strerror(errno));
	}
	read_ehdr(fp);
	read_shdrs(fp);
	read_strtabs(fp);
	read_symtabs(fp);
	read_relocs(fp);
794
	if (show_absolute_syms) {
795
		print_absolute_symbols();
796 797 798
		return 0;
	}
	if (show_absolute_relocs) {
799 800 801
		print_absolute_relocs();
		return 0;
	}
802
	emit_relocs(as_text, use_real_mode);
803 804
	return 0;
}