ipw2200.c 196.8 KB
Newer Older
J
James Ketrenos 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
/******************************************************************************
  
  Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.

  802.11 status code portion of this file from ethereal-0.10.6:
    Copyright 2000, Axis Communications AB
    Ethereal - Network traffic analyzer
    By Gerald Combs <gerald@ethereal.com>
    Copyright 1998 Gerald Combs

  This program is free software; you can redistribute it and/or modify it 
  under the terms of version 2 of the GNU General Public License as 
  published by the Free Software Foundation.
  
  This program is distributed in the hope that it will be useful, but WITHOUT 
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
  more details.
  
  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc., 59 
  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  
  The full GNU General Public License is included in this distribution in the
  file called LICENSE.
  
  Contact Information:
  James P. Ketrenos <ipw2100-admin@linux.intel.com>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

******************************************************************************/

#include "ipw2200.h"

#define IPW2200_VERSION "1.0.0"
#define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2200/2915 Network Driver"
#define DRV_COPYRIGHT	"Copyright(c) 2003-2004 Intel Corporation"
#define DRV_VERSION     IPW2200_VERSION

MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_VERSION(DRV_VERSION);
MODULE_AUTHOR(DRV_COPYRIGHT);
MODULE_LICENSE("GPL");

static int debug = 0;
static int channel = 0;
static char *ifname;
static int mode = 0;

static u32 ipw_debug_level;
static int associate = 1;
static int auto_create = 1;
static int disable = 0;
static const char ipw_modes[] = {
	'a', 'b', 'g', '?'
};

static void ipw_rx(struct ipw_priv *priv);
static int ipw_queue_tx_reclaim(struct ipw_priv *priv, 
				struct clx2_tx_queue *txq, int qindex);
static int ipw_queue_reset(struct ipw_priv *priv);

static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
			     int len, int sync);

static void ipw_tx_queue_free(struct ipw_priv *);

static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
static void ipw_rx_queue_replenish(void *);

static int ipw_up(struct ipw_priv *);
static void ipw_down(struct ipw_priv *);
static int ipw_config(struct ipw_priv *);
static int init_supported_rates(struct ipw_priv *priv, struct ipw_supported_rates *prates);

static u8 band_b_active_channel[MAX_B_CHANNELS] = {
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0
};
static u8 band_a_active_channel[MAX_A_CHANNELS] = {
	36, 40, 44, 48, 149, 153, 157, 161, 165, 52, 56, 60, 64, 0
};

static int is_valid_channel(int mode_mask, int channel)
{
	int i;

	if (!channel)
		return 0;

	if (mode_mask & IEEE_A)
		for (i = 0; i < MAX_A_CHANNELS; i++)
			if (band_a_active_channel[i] == channel)
				return IEEE_A;

	if (mode_mask & (IEEE_B | IEEE_G))
		for (i = 0; i < MAX_B_CHANNELS; i++)
			if (band_b_active_channel[i] == channel)
				return mode_mask & (IEEE_B | IEEE_G);

	return 0;
}

static char *snprint_line(char *buf, size_t count, 
			  const u8 *data, u32 len, u32 ofs)
{
	int out, i, j, l;
	char c;
	
	out = snprintf(buf, count, "%08X", ofs);

	for (l = 0, i = 0; i < 2; i++) {
		out += snprintf(buf + out, count - out, " ");
		for (j = 0; j < 8 && l < len; j++, l++) 
			out += snprintf(buf + out, count - out, "%02X ", 
					data[(i * 8 + j)]);
		for (; j < 8; j++)
			out += snprintf(buf + out, count - out, "   ");
	}
	
	out += snprintf(buf + out, count - out, " ");
	for (l = 0, i = 0; i < 2; i++) {
		out += snprintf(buf + out, count - out, " ");
		for (j = 0; j < 8 && l < len; j++, l++) {
			c = data[(i * 8 + j)];
			if (!isascii(c) || !isprint(c))
				c = '.';
			
			out += snprintf(buf + out, count - out, "%c", c);
		}

		for (; j < 8; j++)
			out += snprintf(buf + out, count - out, " ");
	}
	
	return buf;
}

static void printk_buf(int level, const u8 *data, u32 len)
{
	char line[81];
	u32 ofs = 0;
	if (!(ipw_debug_level & level))
		return;

	while (len) {
		printk(KERN_DEBUG "%s\n",
		       snprint_line(line, sizeof(line), &data[ofs], 
				    min(len, 16U), ofs));
		ofs += 16;
		len -= min(len, 16U);
	}
}

static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
#define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)

static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
#define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)

static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
{
	IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(b), (u32)(c)); 
	_ipw_write_reg8(a, b, c);
}

static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
{
	IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(b), (u32)(c)); 
	_ipw_write_reg16(a, b, c);
}

static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
{
	IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(b), (u32)(c)); 	
	_ipw_write_reg32(a, b, c);
}

#define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
#define ipw_write8(ipw, ofs, val) \
 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
 _ipw_write8(ipw, ofs, val)

#define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
#define ipw_write16(ipw, ofs, val) \
 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
 _ipw_write16(ipw, ofs, val)

#define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
#define ipw_write32(ipw, ofs, val) \
 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
 _ipw_write32(ipw, ofs, val)

#define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs) {
	IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32)(ofs));
	return _ipw_read8(ipw, ofs);
}
#define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)

#define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs) {
	IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32)(ofs));
	return _ipw_read16(ipw, ofs);
}
#define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)

#define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs) {
	IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32)(ofs));
	return _ipw_read32(ipw, ofs);
}
#define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)

static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
#define ipw_read_indirect(a, b, c, d) \
	IPW_DEBUG_IO("%s %d: read_inddirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
	_ipw_read_indirect(a, b, c, d)

static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 *data, int num);
#define ipw_write_indirect(a, b, c, d) \
	IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
        _ipw_write_indirect(a, b, c, d)

/* indirect write s */
static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg,
			     u32 value)
{
	IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", 
		     priv, reg, value);
	_ipw_write32(priv, CX2_INDIRECT_ADDR, reg);
	_ipw_write32(priv, CX2_INDIRECT_DATA, value);
}


static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
{
	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
	_ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK);
	_ipw_write8(priv, CX2_INDIRECT_DATA, value);
244 245
	IPW_DEBUG_IO(" reg = 0x%8lX : value = 0x%8X\n", 
		     (unsigned long)(priv->hw_base + CX2_INDIRECT_DATA),
J
James Ketrenos 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
		     value);
}

static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg,
			     u16 value)
{
	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
	_ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK);
	_ipw_write16(priv, CX2_INDIRECT_DATA, value);
}

/* indirect read s */

static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
{
	u32 word;
	_ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK);
	IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
	word = _ipw_read32(priv, CX2_INDIRECT_DATA);
	return (word >> ((reg & 0x3)*8)) & 0xff;
}

static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
{
	u32 value;

	IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);

	_ipw_write32(priv, CX2_INDIRECT_ADDR, reg);
	value = _ipw_read32(priv, CX2_INDIRECT_DATA);
	IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
	return value;
}

/* iterative/auto-increment 32 bit reads and writes */
static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
			       int num)
{
	u32 aligned_addr = addr & CX2_INDIRECT_ADDR_MASK;
	u32 dif_len = addr - aligned_addr;
	u32 aligned_len;
	u32 i;
	
	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);

	/* Read the first nibble byte by byte */
	if (unlikely(dif_len)) {
		/* Start reading at aligned_addr + dif_len */
		_ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
		for (i = dif_len; i < 4; i++, buf++)
			*buf = _ipw_read8(priv, CX2_INDIRECT_DATA + i);
		num -= dif_len;
		aligned_addr += 4;
	}

	/* Read DWs through autoinc register */
	_ipw_write32(priv, CX2_AUTOINC_ADDR, aligned_addr);
	aligned_len = num & CX2_INDIRECT_ADDR_MASK;
	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
		*(u32*)buf = ipw_read32(priv, CX2_AUTOINC_DATA);
	
	/* Copy the last nibble */
	dif_len = num - aligned_len;
	_ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
	for (i = 0; i < dif_len; i++, buf++)
		*buf = ipw_read8(priv, CX2_INDIRECT_DATA + i);
}

static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 *buf, 
				int num)
{
	u32 aligned_addr = addr & CX2_INDIRECT_ADDR_MASK;
	u32 dif_len = addr - aligned_addr;
	u32 aligned_len;
	u32 i;
	
	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
	
	/* Write the first nibble byte by byte */
	if (unlikely(dif_len)) {
		/* Start writing at aligned_addr + dif_len */
		_ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
		for (i = dif_len; i < 4; i++, buf++)
			_ipw_write8(priv, CX2_INDIRECT_DATA + i, *buf);
		num -= dif_len;
		aligned_addr += 4;
	}
	
	/* Write DWs through autoinc register */
	_ipw_write32(priv, CX2_AUTOINC_ADDR, aligned_addr);
	aligned_len = num & CX2_INDIRECT_ADDR_MASK;
	for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
		_ipw_write32(priv, CX2_AUTOINC_DATA, *(u32*)buf);
	
	/* Copy the last nibble */
	dif_len = num - aligned_len;
	_ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
	for (i = 0; i < dif_len; i++, buf++)
		_ipw_write8(priv, CX2_INDIRECT_DATA + i, *buf);
}

static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf, 
			     int num)
{
	memcpy_toio((priv->hw_base + addr), buf, num);
}

static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
{
	ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
}

static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
{
	ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
}

static inline void ipw_enable_interrupts(struct ipw_priv *priv)
{
	if (priv->status & STATUS_INT_ENABLED)
		return;
	priv->status |= STATUS_INT_ENABLED;
	ipw_write32(priv, CX2_INTA_MASK_R, CX2_INTA_MASK_ALL);
}

static inline void ipw_disable_interrupts(struct ipw_priv *priv)
{
	if (!(priv->status & STATUS_INT_ENABLED))
		return;
	priv->status &= ~STATUS_INT_ENABLED;
	ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL);
}

static char *ipw_error_desc(u32 val)
{
	switch (val) {
	case IPW_FW_ERROR_OK: 
		return "ERROR_OK";
	case IPW_FW_ERROR_FAIL: 
		return "ERROR_FAIL";
	case IPW_FW_ERROR_MEMORY_UNDERFLOW: 
		return "MEMORY_UNDERFLOW";
	case IPW_FW_ERROR_MEMORY_OVERFLOW: 
		return "MEMORY_OVERFLOW";
	case IPW_FW_ERROR_BAD_PARAM: 
		return "ERROR_BAD_PARAM";
	case IPW_FW_ERROR_BAD_CHECKSUM: 
		return "ERROR_BAD_CHECKSUM";
	case IPW_FW_ERROR_NMI_INTERRUPT: 
		return "ERROR_NMI_INTERRUPT";
	case IPW_FW_ERROR_BAD_DATABASE: 
		return "ERROR_BAD_DATABASE";
	case IPW_FW_ERROR_ALLOC_FAIL: 
		return "ERROR_ALLOC_FAIL";
	case IPW_FW_ERROR_DMA_UNDERRUN: 
		return "ERROR_DMA_UNDERRUN";
	case IPW_FW_ERROR_DMA_STATUS: 
		return "ERROR_DMA_STATUS";
	case IPW_FW_ERROR_DINOSTATUS_ERROR: 
		return "ERROR_DINOSTATUS_ERROR";
	case IPW_FW_ERROR_EEPROMSTATUS_ERROR: 
		return "ERROR_EEPROMSTATUS_ERROR";
	case IPW_FW_ERROR_SYSASSERT: 
		return "ERROR_SYSASSERT";
	case IPW_FW_ERROR_FATAL_ERROR: 
		return "ERROR_FATALSTATUS_ERROR";
	default: 
		return "UNKNOWNSTATUS_ERROR";
	}
}

static void ipw_dump_nic_error_log(struct ipw_priv *priv)
{
	u32 desc, time, blink1, blink2, ilink1, ilink2, idata, i, count, base;

	base = ipw_read32(priv, IPWSTATUS_ERROR_LOG);
	count = ipw_read_reg32(priv, base);
	
	if (ERROR_START_OFFSET <= count * ERROR_ELEM_SIZE) {
		IPW_ERROR("Start IPW Error Log Dump:\n");
		IPW_ERROR("Status: 0x%08X, Config: %08X\n",
			  priv->status, priv->config);
	}

	for (i = ERROR_START_OFFSET; 
	     i <= count * ERROR_ELEM_SIZE; 
	     i += ERROR_ELEM_SIZE) {
		desc   = ipw_read_reg32(priv, base + i);
		time   = ipw_read_reg32(priv, base + i + 1*sizeof(u32));
		blink1 = ipw_read_reg32(priv, base + i + 2*sizeof(u32));
		blink2 = ipw_read_reg32(priv, base + i + 3*sizeof(u32));
		ilink1 = ipw_read_reg32(priv, base + i + 4*sizeof(u32));
		ilink2 = ipw_read_reg32(priv, base + i + 5*sizeof(u32));
		idata =  ipw_read_reg32(priv, base + i + 6*sizeof(u32));

		IPW_ERROR(
			"%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n", 
			ipw_error_desc(desc), time, blink1, blink2, 
			ilink1, ilink2, idata);
	}
}

static void ipw_dump_nic_event_log(struct ipw_priv *priv)
{
	u32 ev, time, data, i, count, base;

	base = ipw_read32(priv, IPW_EVENT_LOG);
	count = ipw_read_reg32(priv, base);
	
	if (EVENT_START_OFFSET <= count * EVENT_ELEM_SIZE)
		IPW_ERROR("Start IPW Event Log Dump:\n");

	for (i = EVENT_START_OFFSET; 
	     i <= count * EVENT_ELEM_SIZE; 
	     i += EVENT_ELEM_SIZE) {
		ev = ipw_read_reg32(priv, base + i);
		time  = ipw_read_reg32(priv, base + i + 1*sizeof(u32));
		data  = ipw_read_reg32(priv, base + i + 2*sizeof(u32));

#ifdef CONFIG_IPW_DEBUG
		IPW_ERROR("%i\t0x%08x\t%i\n", time, data, ev);
#endif
	}
}

static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val,
			   u32 *len)
{
	u32 addr, field_info, field_len, field_count, total_len;

	IPW_DEBUG_ORD("ordinal = %i\n", ord);

	if (!priv || !val || !len) {
		IPW_DEBUG_ORD("Invalid argument\n");
		return -EINVAL;
	}
	
	/* verify device ordinal tables have been initialized */
	if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
		IPW_DEBUG_ORD("Access ordinals before initialization\n");
		return -EINVAL;
	}

	switch (IPW_ORD_TABLE_ID_MASK & ord) {
	case IPW_ORD_TABLE_0_MASK:
		/*
		 * TABLE 0: Direct access to a table of 32 bit values
		 *
		 * This is a very simple table with the data directly 
		 * read from the table
		 */

		/* remove the table id from the ordinal */
		ord &= IPW_ORD_TABLE_VALUE_MASK;

		/* boundary check */
		if (ord > priv->table0_len) {
			IPW_DEBUG_ORD("ordinal value (%i) longer then "
				      "max (%i)\n", ord, priv->table0_len);
			return -EINVAL;
		}

		/* verify we have enough room to store the value */
		if (*len < sizeof(u32)) {
			IPW_DEBUG_ORD("ordinal buffer length too small, "
511
				      "need %zd\n", sizeof(u32));
J
James Ketrenos 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
			return -EINVAL;
		}

		IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
			      ord, priv->table0_addr + (ord  << 2));

		*len = sizeof(u32);
		ord <<= 2;
		*((u32 *)val) = ipw_read32(priv, priv->table0_addr + ord);
		break;

	case IPW_ORD_TABLE_1_MASK:
		/*
		 * TABLE 1: Indirect access to a table of 32 bit values
		 * 
		 * This is a fairly large table of u32 values each 
		 * representing starting addr for the data (which is
		 * also a u32)
		 */

		/* remove the table id from the ordinal */
		ord &= IPW_ORD_TABLE_VALUE_MASK;
		
		/* boundary check */
		if (ord > priv->table1_len) {
			IPW_DEBUG_ORD("ordinal value too long\n");
			return -EINVAL;
		}

		/* verify we have enough room to store the value */
		if (*len < sizeof(u32)) {
			IPW_DEBUG_ORD("ordinal buffer length too small, "
544
				      "need %zd\n", sizeof(u32));
J
James Ketrenos 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
			return -EINVAL;
		}

		*((u32 *)val) = ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
		*len = sizeof(u32);
		break;

	case IPW_ORD_TABLE_2_MASK:
		/*
		 * TABLE 2: Indirect access to a table of variable sized values
		 *
		 * This table consist of six values, each containing
		 *     - dword containing the starting offset of the data
		 *     - dword containing the lengh in the first 16bits
		 *       and the count in the second 16bits
		 */

		/* remove the table id from the ordinal */
		ord &= IPW_ORD_TABLE_VALUE_MASK;

		/* boundary check */
		if (ord > priv->table2_len) {
			IPW_DEBUG_ORD("ordinal value too long\n");
			return -EINVAL;
		}

		/* get the address of statistic */
		addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
		
		/* get the second DW of statistics ; 
		 * two 16-bit words - first is length, second is count */
		field_info = ipw_read_reg32(priv, priv->table2_addr + (ord << 3) + sizeof(u32));
		
		/* get each entry length */
		field_len = *((u16 *)&field_info);
		
		/* get number of entries */
		field_count = *(((u16 *)&field_info) + 1);
		
		/* abort if not enought memory */
		total_len = field_len * field_count;
		if (total_len > *len) {
			*len = total_len;
			return -EINVAL;
		}
		
		*len = total_len;
		if (!total_len)
			return 0;

		IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
			      "field_info = 0x%08x\n", 
			      addr, total_len, field_info);
		ipw_read_indirect(priv, addr, val, total_len);
		break;

	default:
		IPW_DEBUG_ORD("Invalid ordinal!\n");
		return -EINVAL;

	}

	
	return 0;
}

static void ipw_init_ordinals(struct ipw_priv *priv)
{
	priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
	priv->table0_len = ipw_read32(priv, priv->table0_addr); 

	IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
		      priv->table0_addr, priv->table0_len);

	priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
	priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);

	IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
		      priv->table1_addr, priv->table1_len);

	priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
	priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
	priv->table2_len &= 0x0000ffff; /* use first two bytes */

	IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
		      priv->table2_addr, priv->table2_len);

}

/*
 * The following adds a new attribute to the sysfs representation
 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
 * used for controling the debug level.
 * 
 * See the level definitions in ipw for details.
 */
static ssize_t show_debug_level(struct device_driver *d, char *buf)
{
	return sprintf(buf, "0x%08X\n", ipw_debug_level);
}
static ssize_t store_debug_level(struct device_driver *d, const char *buf, 
				 size_t count)
{
	char *p = (char *)buf;
	u32 val;

	if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
		p++;
		if (p[0] == 'x' || p[0] == 'X')
			p++;
		val = simple_strtoul(p, &p, 16);
	} else
		val = simple_strtoul(p, &p, 10);
	if (p == buf) 
		printk(KERN_INFO DRV_NAME 
		       ": %s is not in hex or decimal form.\n", buf);
	else
		ipw_debug_level = val;

	return strnlen(buf, count);
}

static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, 
		   show_debug_level, store_debug_level);

static ssize_t show_status(struct device *d, char *buf)
{
	struct ipw_priv *p = (struct ipw_priv *)d->driver_data;
	return sprintf(buf, "0x%08x\n", (int)p->status);
}
static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);

static ssize_t show_cfg(struct device *d, char *buf)
{
	struct ipw_priv *p = (struct ipw_priv *)d->driver_data;
	return sprintf(buf, "0x%08x\n", (int)p->config);
}
static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);

static ssize_t show_nic_type(struct device *d, char *buf)
{
	struct ipw_priv *p = (struct ipw_priv *)d->driver_data;
	u8 type = p->eeprom[EEPROM_NIC_TYPE];

	switch (type) {
	case EEPROM_NIC_TYPE_STANDARD:
		return sprintf(buf, "STANDARD\n");
	case EEPROM_NIC_TYPE_DELL:
		return sprintf(buf, "DELL\n");
	case EEPROM_NIC_TYPE_FUJITSU:
		return sprintf(buf, "FUJITSU\n");
	case EEPROM_NIC_TYPE_IBM:
		return sprintf(buf, "IBM\n");
	case EEPROM_NIC_TYPE_HP:
		return sprintf(buf, "HP\n");
	}
		
	return sprintf(buf, "UNKNOWN\n");
}
static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);

static ssize_t dump_error_log(struct device *d, const char *buf,
			      size_t count)
{
	char *p = (char *)buf;

	if (p[0] == '1') 
		ipw_dump_nic_error_log((struct ipw_priv*)d->driver_data);

	return strnlen(buf, count);
}
static DEVICE_ATTR(dump_errors, S_IWUSR, NULL, dump_error_log);

static ssize_t dump_event_log(struct device *d, const char *buf,
			      size_t count)
{
	char *p = (char *)buf;

	if (p[0] == '1') 
		ipw_dump_nic_event_log((struct ipw_priv*)d->driver_data);

	return strnlen(buf, count);
}
static DEVICE_ATTR(dump_events, S_IWUSR, NULL, dump_event_log);

static ssize_t show_ucode_version(struct device *d, char *buf)
{
	u32 len = sizeof(u32), tmp = 0;
	struct ipw_priv *p = (struct ipw_priv*)d->driver_data;

	if(ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
		return 0;

	return sprintf(buf, "0x%08x\n", tmp);
}
static DEVICE_ATTR(ucode_version, S_IWUSR|S_IRUGO, show_ucode_version, NULL);

static ssize_t show_rtc(struct device *d, char *buf)
{
	u32 len = sizeof(u32), tmp = 0;
	struct ipw_priv *p = (struct ipw_priv*)d->driver_data;

	if(ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
		return 0;

	return sprintf(buf, "0x%08x\n", tmp);
}
static DEVICE_ATTR(rtc, S_IWUSR|S_IRUGO, show_rtc, NULL);

/*
 * Add a device attribute to view/control the delay between eeprom
 * operations.
 */
static ssize_t show_eeprom_delay(struct device *d, char *buf)
{
	int n = ((struct ipw_priv*)d->driver_data)->eeprom_delay;
	return sprintf(buf, "%i\n", n);
}
static ssize_t store_eeprom_delay(struct device *d, const char *buf, 
				  size_t count)
{
	struct ipw_priv *p = (struct ipw_priv*)d->driver_data;
	sscanf(buf, "%i", &p->eeprom_delay);
	return strnlen(buf, count);
}
static DEVICE_ATTR(eeprom_delay, S_IWUSR|S_IRUGO, 
		   show_eeprom_delay,store_eeprom_delay);

static ssize_t show_command_event_reg(struct device *d, char *buf)
{
	u32 reg = 0;
	struct ipw_priv *p = (struct ipw_priv *)d->driver_data;

	reg = ipw_read_reg32(p, CX2_INTERNAL_CMD_EVENT);
	return sprintf(buf, "0x%08x\n", reg);
}
static ssize_t store_command_event_reg(struct device *d, 
				       const char *buf, 
				       size_t count)
{
	u32 reg;
	struct ipw_priv *p = (struct ipw_priv *)d->driver_data;

	sscanf(buf, "%x", &reg);
	ipw_write_reg32(p, CX2_INTERNAL_CMD_EVENT, reg);
	return strnlen(buf, count);
}
static DEVICE_ATTR(command_event_reg, S_IWUSR|S_IRUGO, 
		   show_command_event_reg,store_command_event_reg);

static ssize_t show_mem_gpio_reg(struct device *d, char *buf)
{
	u32 reg = 0;
	struct ipw_priv *p = (struct ipw_priv *)d->driver_data;

	reg = ipw_read_reg32(p, 0x301100);
	return sprintf(buf, "0x%08x\n", reg);
}
static ssize_t store_mem_gpio_reg(struct device *d, 
				  const char *buf, 
				  size_t count)
{
	u32 reg;
	struct ipw_priv *p = (struct ipw_priv *)d->driver_data;

	sscanf(buf, "%x", &reg);
	ipw_write_reg32(p, 0x301100, reg);
	return strnlen(buf, count);
}
static DEVICE_ATTR(mem_gpio_reg, S_IWUSR|S_IRUGO,
		   show_mem_gpio_reg,store_mem_gpio_reg);

static ssize_t show_indirect_dword(struct device *d, char *buf)
{
	u32 reg = 0;
	struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
	if (priv->status & STATUS_INDIRECT_DWORD) 
		reg = ipw_read_reg32(priv, priv->indirect_dword);
	else 
		reg = 0;
	
	return sprintf(buf, "0x%08x\n", reg);
}
static ssize_t store_indirect_dword(struct device *d, 
				   const char *buf, 
				   size_t count)
{
	struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;

	sscanf(buf, "%x", &priv->indirect_dword);
	priv->status |= STATUS_INDIRECT_DWORD;
	return strnlen(buf, count);
}
static DEVICE_ATTR(indirect_dword, S_IWUSR|S_IRUGO, 
		   show_indirect_dword,store_indirect_dword);

static ssize_t show_indirect_byte(struct device *d, char *buf)
{
	u8 reg = 0;
	struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
	if (priv->status & STATUS_INDIRECT_BYTE) 
		reg = ipw_read_reg8(priv, priv->indirect_byte);
	else 
		reg = 0;

	return sprintf(buf, "0x%02x\n", reg);
}
static ssize_t store_indirect_byte(struct device *d, 
				   const char *buf, 
				   size_t count)
{
	struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;

	sscanf(buf, "%x", &priv->indirect_byte);
	priv->status |= STATUS_INDIRECT_BYTE;
	return strnlen(buf, count);
}
static DEVICE_ATTR(indirect_byte, S_IWUSR|S_IRUGO, 
		   show_indirect_byte, store_indirect_byte);

static ssize_t show_direct_dword(struct device *d, char *buf)
{
	u32 reg = 0;
	struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;

	if (priv->status & STATUS_DIRECT_DWORD) 
		reg = ipw_read32(priv, priv->direct_dword);
	else 
		reg = 0;

	return sprintf(buf, "0x%08x\n", reg);
}
static ssize_t store_direct_dword(struct device *d, 
				 const char *buf, 
				 size_t count)
{
	struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;

	sscanf(buf, "%x", &priv->direct_dword);
	priv->status |= STATUS_DIRECT_DWORD;
	return strnlen(buf, count);
}
static DEVICE_ATTR(direct_dword, S_IWUSR|S_IRUGO, 
		   show_direct_dword,store_direct_dword);


static inline int rf_kill_active(struct ipw_priv *priv)
{
	if (0 == (ipw_read32(priv, 0x30) & 0x10000))
		priv->status |= STATUS_RF_KILL_HW;
	else
		priv->status &= ~STATUS_RF_KILL_HW;

	return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
}

static ssize_t show_rf_kill(struct device *d, char *buf)
{
	/* 0 - RF kill not enabled
	   1 - SW based RF kill active (sysfs) 
	   2 - HW based RF kill active
	   3 - Both HW and SW baed RF kill active */
	struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
		(rf_kill_active(priv) ? 0x2 : 0x0);
	return sprintf(buf, "%i\n", val);
}

static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
{
	if ((disable_radio ? 1 : 0) == 
	    (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
		return 0 ;

	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
			  disable_radio ? "OFF" : "ON");

	if (disable_radio) {
		priv->status |= STATUS_RF_KILL_SW;

		if (priv->workqueue) { 
			cancel_delayed_work(&priv->request_scan);
		}
		wake_up_interruptible(&priv->wait_command_queue);
		queue_work(priv->workqueue, &priv->down);
	} else {
		priv->status &= ~STATUS_RF_KILL_SW;
		if (rf_kill_active(priv)) {
			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
					  "disabled by HW switch\n");
			/* Make sure the RF_KILL check timer is running */
			cancel_delayed_work(&priv->rf_kill);
			queue_delayed_work(priv->workqueue, &priv->rf_kill, 
					   2 * HZ);
		} else 
			queue_work(priv->workqueue, &priv->up);
	}

	return 1;
}

static ssize_t store_rf_kill(struct device *d, const char *buf, size_t count)
{
	struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
	
	ipw_radio_kill_sw(priv, buf[0] == '1');

	return count;
}
static DEVICE_ATTR(rf_kill, S_IWUSR|S_IRUGO, show_rf_kill, store_rf_kill);

static void ipw_irq_tasklet(struct ipw_priv *priv)
{
	u32 inta, inta_mask, handled = 0;
	unsigned long flags;
	int rc = 0;

	spin_lock_irqsave(&priv->lock, flags);

	inta = ipw_read32(priv, CX2_INTA_RW);
	inta_mask = ipw_read32(priv, CX2_INTA_MASK_R);
	inta &= (CX2_INTA_MASK_ALL & inta_mask);

	/* Add any cached INTA values that need to be handled */
	inta |= priv->isr_inta;

	/* handle all the justifications for the interrupt */
	if (inta & CX2_INTA_BIT_RX_TRANSFER) {
		ipw_rx(priv);
		handled |= CX2_INTA_BIT_RX_TRANSFER;
	}

	if (inta & CX2_INTA_BIT_TX_CMD_QUEUE) {
		IPW_DEBUG_HC("Command completed.\n");
		rc = ipw_queue_tx_reclaim( priv, &priv->txq_cmd, -1);
		priv->status &= ~STATUS_HCMD_ACTIVE;
		wake_up_interruptible(&priv->wait_command_queue);
		handled |= CX2_INTA_BIT_TX_CMD_QUEUE;
	}

	if (inta & CX2_INTA_BIT_TX_QUEUE_1) {
		IPW_DEBUG_TX("TX_QUEUE_1\n");
		rc = ipw_queue_tx_reclaim( priv, &priv->txq[0], 0);
		handled |= CX2_INTA_BIT_TX_QUEUE_1;
	}

	if (inta & CX2_INTA_BIT_TX_QUEUE_2) {
		IPW_DEBUG_TX("TX_QUEUE_2\n");
		rc = ipw_queue_tx_reclaim( priv, &priv->txq[1], 1);
		handled |= CX2_INTA_BIT_TX_QUEUE_2;
	}

	if (inta & CX2_INTA_BIT_TX_QUEUE_3) {
		IPW_DEBUG_TX("TX_QUEUE_3\n");
		rc = ipw_queue_tx_reclaim( priv, &priv->txq[2], 2);
		handled |= CX2_INTA_BIT_TX_QUEUE_3;
	}

	if (inta & CX2_INTA_BIT_TX_QUEUE_4) {
		IPW_DEBUG_TX("TX_QUEUE_4\n");
		rc = ipw_queue_tx_reclaim( priv, &priv->txq[3], 3);
		handled |= CX2_INTA_BIT_TX_QUEUE_4;
	}

	if (inta & CX2_INTA_BIT_STATUS_CHANGE) {
		IPW_WARNING("STATUS_CHANGE\n");
		handled |= CX2_INTA_BIT_STATUS_CHANGE;
	}

	if (inta & CX2_INTA_BIT_BEACON_PERIOD_EXPIRED) {
		IPW_WARNING("TX_PERIOD_EXPIRED\n");
		handled |= CX2_INTA_BIT_BEACON_PERIOD_EXPIRED;
	}

	if (inta & CX2_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
		IPW_WARNING("HOST_CMD_DONE\n");
		handled |= CX2_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
	}

	if (inta & CX2_INTA_BIT_FW_INITIALIZATION_DONE) {
		IPW_WARNING("FW_INITIALIZATION_DONE\n");
		handled |= CX2_INTA_BIT_FW_INITIALIZATION_DONE;
	}

	if (inta & CX2_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
		IPW_WARNING("PHY_OFF_DONE\n");
		handled |= CX2_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
	}

	if (inta & CX2_INTA_BIT_RF_KILL_DONE) {
		IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
		priv->status |= STATUS_RF_KILL_HW;
		wake_up_interruptible(&priv->wait_command_queue);
		netif_carrier_off(priv->net_dev);
		netif_stop_queue(priv->net_dev);
		cancel_delayed_work(&priv->request_scan);
		queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
		handled |= CX2_INTA_BIT_RF_KILL_DONE;
	}
	
	if (inta & CX2_INTA_BIT_FATAL_ERROR) {
		IPW_ERROR("Firmware error detected.  Restarting.\n");
#ifdef CONFIG_IPW_DEBUG
		if (ipw_debug_level & IPW_DL_FW_ERRORS) {
			ipw_dump_nic_error_log(priv);
			ipw_dump_nic_event_log(priv);
		}
#endif
		queue_work(priv->workqueue, &priv->adapter_restart);
		handled |= CX2_INTA_BIT_FATAL_ERROR;
	}

	if (inta & CX2_INTA_BIT_PARITY_ERROR) {
		IPW_ERROR("Parity error\n");
		handled |= CX2_INTA_BIT_PARITY_ERROR;
	}

	if (handled != inta) {
		IPW_ERROR("Unhandled INTA bits 0x%08x\n", 
				inta & ~handled);
	}

	/* enable all interrupts */
	ipw_enable_interrupts(priv);

	spin_unlock_irqrestore(&priv->lock, flags);
}
 
#ifdef CONFIG_IPW_DEBUG
#define IPW_CMD(x) case IPW_CMD_ ## x : return #x
static char *get_cmd_string(u8 cmd)
{
	switch (cmd) {
		IPW_CMD(HOST_COMPLETE);
		IPW_CMD(POWER_DOWN); 
		IPW_CMD(SYSTEM_CONFIG); 
		IPW_CMD(MULTICAST_ADDRESS); 
		IPW_CMD(SSID); 
		IPW_CMD(ADAPTER_ADDRESS); 
		IPW_CMD(PORT_TYPE); 
		IPW_CMD(RTS_THRESHOLD); 
		IPW_CMD(FRAG_THRESHOLD); 
		IPW_CMD(POWER_MODE); 
		IPW_CMD(WEP_KEY); 
		IPW_CMD(TGI_TX_KEY); 
		IPW_CMD(SCAN_REQUEST); 
		IPW_CMD(SCAN_REQUEST_EXT); 
		IPW_CMD(ASSOCIATE); 
		IPW_CMD(SUPPORTED_RATES); 
		IPW_CMD(SCAN_ABORT); 
		IPW_CMD(TX_FLUSH); 
		IPW_CMD(QOS_PARAMETERS); 
		IPW_CMD(DINO_CONFIG); 
		IPW_CMD(RSN_CAPABILITIES); 
		IPW_CMD(RX_KEY); 
		IPW_CMD(CARD_DISABLE); 
		IPW_CMD(SEED_NUMBER); 
		IPW_CMD(TX_POWER); 
		IPW_CMD(COUNTRY_INFO); 
		IPW_CMD(AIRONET_INFO); 
		IPW_CMD(AP_TX_POWER); 
		IPW_CMD(CCKM_INFO); 
		IPW_CMD(CCX_VER_INFO); 
		IPW_CMD(SET_CALIBRATION); 
		IPW_CMD(SENSITIVITY_CALIB); 
		IPW_CMD(RETRY_LIMIT); 
		IPW_CMD(IPW_PRE_POWER_DOWN); 
		IPW_CMD(VAP_BEACON_TEMPLATE); 
		IPW_CMD(VAP_DTIM_PERIOD); 
		IPW_CMD(EXT_SUPPORTED_RATES); 
		IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT); 
		IPW_CMD(VAP_QUIET_INTERVALS); 
		IPW_CMD(VAP_CHANNEL_SWITCH); 
		IPW_CMD(VAP_MANDATORY_CHANNELS); 
		IPW_CMD(VAP_CELL_PWR_LIMIT); 
		IPW_CMD(VAP_CF_PARAM_SET); 
		IPW_CMD(VAP_SET_BEACONING_STATE); 
		IPW_CMD(MEASUREMENT); 
		IPW_CMD(POWER_CAPABILITY); 
		IPW_CMD(SUPPORTED_CHANNELS); 
		IPW_CMD(TPC_REPORT); 
		IPW_CMD(WME_INFO); 
		IPW_CMD(PRODUCTION_COMMAND); 
	default: 
		return "UNKNOWN";
	}
}
#endif /* CONFIG_IPW_DEBUG */

#define HOST_COMPLETE_TIMEOUT HZ
static int ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
{
	int rc = 0;

	if (priv->status & STATUS_HCMD_ACTIVE) {
		IPW_ERROR("Already sending a command\n");
		return -1;
	}

	priv->status |= STATUS_HCMD_ACTIVE;
	
	IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n", 
		     get_cmd_string(cmd->cmd), cmd->cmd, cmd->len);
	printk_buf(IPW_DL_HOST_COMMAND, (u8*)cmd->param, cmd->len);

	rc = ipw_queue_tx_hcmd(priv, cmd->cmd, &cmd->param, cmd->len, 0);
	if (rc)
		return rc;

	rc = wait_event_interruptible_timeout(
		priv->wait_command_queue, !(priv->status & STATUS_HCMD_ACTIVE),
		HOST_COMPLETE_TIMEOUT);
	if (rc == 0) {
		IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
			       HOST_COMPLETE_TIMEOUT / (HZ / 1000));
		priv->status &= ~STATUS_HCMD_ACTIVE;
		return -EIO;
	}
	if (priv->status & STATUS_RF_KILL_MASK) {
		IPW_DEBUG_INFO("Command aborted due to RF Kill Switch\n");
		return -EIO;
	}

	return 0;
}

static int ipw_send_host_complete(struct ipw_priv *priv)
{
	struct host_cmd cmd = {
		.cmd = IPW_CMD_HOST_COMPLETE,
		.len = 0
	};

	if (!priv) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	if (ipw_send_cmd(priv, &cmd)) {
		IPW_ERROR("failed to send HOST_COMPLETE command\n");
		return -1;
	}
	
	return 0;
}

static int ipw_send_system_config(struct ipw_priv *priv, 
				  struct ipw_sys_config *config)
{
	struct host_cmd cmd = {
		.cmd = IPW_CMD_SYSTEM_CONFIG,
		.len = sizeof(*config)
	};

	if (!priv || !config) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	memcpy(&cmd.param,config,sizeof(*config));
	if (ipw_send_cmd(priv, &cmd)) {
		IPW_ERROR("failed to send SYSTEM_CONFIG command\n");
		return -1;
	}

	return 0;
}

static int ipw_send_ssid(struct ipw_priv *priv, u8 *ssid, int len)
{
	struct host_cmd cmd = {
		.cmd = IPW_CMD_SSID,
		.len = min(len, IW_ESSID_MAX_SIZE)
	};

	if (!priv || !ssid) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	memcpy(&cmd.param, ssid, cmd.len);
	if (ipw_send_cmd(priv, &cmd)) {
		IPW_ERROR("failed to send SSID command\n");
		return -1;
	}
	
	return 0;
}

static int ipw_send_adapter_address(struct ipw_priv *priv, u8 *mac)
{
	struct host_cmd cmd = {
		.cmd = IPW_CMD_ADAPTER_ADDRESS,
		.len = ETH_ALEN
	};

	if (!priv || !mac) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
		       priv->net_dev->name, MAC_ARG(mac));

	memcpy(&cmd.param, mac, ETH_ALEN);

	if (ipw_send_cmd(priv, &cmd)) {
		IPW_ERROR("failed to send ADAPTER_ADDRESS command\n");
		return -1;
	}
	
	return 0;
}

static void ipw_adapter_restart(void *adapter)
{
	struct ipw_priv *priv = adapter;

	if (priv->status & STATUS_RF_KILL_MASK)
		return;

	ipw_down(priv);
	if (ipw_up(priv)) {
		IPW_ERROR("Failed to up device\n");
		return;
	}
}




#define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)

static void ipw_scan_check(void *data)
{
	struct ipw_priv *priv = data;
	if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
		IPW_DEBUG_SCAN("Scan completion watchdog resetting "
			       "adapter (%dms).\n", 
			       IPW_SCAN_CHECK_WATCHDOG / 100);
		ipw_adapter_restart(priv);
	}
}

static int ipw_send_scan_request_ext(struct ipw_priv *priv,
				     struct ipw_scan_request_ext *request)
{
	struct host_cmd cmd = {
		.cmd = IPW_CMD_SCAN_REQUEST_EXT,
		.len = sizeof(*request)
	};

	if (!priv || !request) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	memcpy(&cmd.param,request,sizeof(*request));
	if (ipw_send_cmd(priv, &cmd)) {
		IPW_ERROR("failed to send SCAN_REQUEST_EXT command\n");
		return -1;
	}
	
	queue_delayed_work(priv->workqueue, &priv->scan_check, 
			   IPW_SCAN_CHECK_WATCHDOG);
	return 0;
}

static int ipw_send_scan_abort(struct ipw_priv *priv)
{
	struct host_cmd cmd = {
		.cmd = IPW_CMD_SCAN_ABORT,
		.len = 0
	};

	if (!priv) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	if (ipw_send_cmd(priv, &cmd)) {
		IPW_ERROR("failed to send SCAN_ABORT command\n");
		return -1;
	}
	
	return 0;
}

static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
{
	struct host_cmd cmd = {
		.cmd = IPW_CMD_SENSITIVITY_CALIB,
		.len = sizeof(struct ipw_sensitivity_calib)
	};
	struct ipw_sensitivity_calib *calib = (struct ipw_sensitivity_calib *)
		&cmd.param;
	calib->beacon_rssi_raw = sens;
	if (ipw_send_cmd(priv, &cmd)) {
		IPW_ERROR("failed to send SENSITIVITY CALIB command\n");
		return -1;
	}

	return 0;
}

static int ipw_send_associate(struct ipw_priv *priv,
			      struct ipw_associate *associate)
{
	struct host_cmd cmd = {
		.cmd = IPW_CMD_ASSOCIATE,
		.len = sizeof(*associate)
	};

	if (!priv || !associate) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	memcpy(&cmd.param,associate,sizeof(*associate));
	if (ipw_send_cmd(priv, &cmd)) {
		IPW_ERROR("failed to send ASSOCIATE command\n");
		return -1;
	}
	
	return 0;
}

static int ipw_send_supported_rates(struct ipw_priv *priv,
				    struct ipw_supported_rates *rates)
{
	struct host_cmd cmd = {
		.cmd = IPW_CMD_SUPPORTED_RATES,
		.len = sizeof(*rates)
	};

	if (!priv || !rates) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	memcpy(&cmd.param,rates,sizeof(*rates));
	if (ipw_send_cmd(priv, &cmd)) {
		IPW_ERROR("failed to send SUPPORTED_RATES command\n");
		return -1;
	}
	
	return 0;
}

static int ipw_set_random_seed(struct ipw_priv *priv)
{
	struct host_cmd cmd = {
		.cmd = IPW_CMD_SEED_NUMBER,
		.len = sizeof(u32)
	};

	if (!priv) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	get_random_bytes(&cmd.param, sizeof(u32));

	if (ipw_send_cmd(priv, &cmd)) {
		IPW_ERROR("failed to send SEED_NUMBER command\n");
		return -1;
	}
	
	return 0;
}

#if 0
static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
{
	struct host_cmd cmd = {
		.cmd = IPW_CMD_CARD_DISABLE,
		.len = sizeof(u32)
	};

	if (!priv) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	*((u32*)&cmd.param) = phy_off;

	if (ipw_send_cmd(priv, &cmd)) {
		IPW_ERROR("failed to send CARD_DISABLE command\n");
		return -1;
	}
	
	return 0;
}
#endif

static int ipw_send_tx_power(struct ipw_priv *priv,
			     struct ipw_tx_power *power)
{
	struct host_cmd cmd = {
		.cmd = IPW_CMD_TX_POWER,
		.len = sizeof(*power)
	};

	if (!priv || !power) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	memcpy(&cmd.param,power,sizeof(*power));
	if (ipw_send_cmd(priv, &cmd)) {
		IPW_ERROR("failed to send TX_POWER command\n");
		return -1;
	}
	
	return 0;
}

static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
{
	struct ipw_rts_threshold rts_threshold = {
		.rts_threshold = rts,
	};
	struct host_cmd cmd = {
		.cmd = IPW_CMD_RTS_THRESHOLD,
		.len = sizeof(rts_threshold)
	};

	if (!priv) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	memcpy(&cmd.param, &rts_threshold, sizeof(rts_threshold));
	if (ipw_send_cmd(priv, &cmd)) {
		IPW_ERROR("failed to send RTS_THRESHOLD command\n");
		return -1;
	}

	return 0;
}

static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
{
	struct ipw_frag_threshold frag_threshold = {
		.frag_threshold = frag,
	};
	struct host_cmd cmd = {
		.cmd = IPW_CMD_FRAG_THRESHOLD,
		.len = sizeof(frag_threshold)
	};

	if (!priv) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}

	memcpy(&cmd.param, &frag_threshold, sizeof(frag_threshold));
	if (ipw_send_cmd(priv, &cmd)) {
		IPW_ERROR("failed to send FRAG_THRESHOLD command\n");
		return -1;
	}

	return 0;
}

static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
{
	struct host_cmd cmd = {
		.cmd = IPW_CMD_POWER_MODE,
		.len = sizeof(u32)
	};
	u32 *param = (u32*)(&cmd.param);

	if (!priv) {
		IPW_ERROR("Invalid args\n");
		return -1;
	}
	
	/* If on battery, set to 3, if AC set to CAM, else user
	 * level */
	switch (mode) {
	case IPW_POWER_BATTERY:
		*param = IPW_POWER_INDEX_3;
		break;
	case IPW_POWER_AC:
		*param = IPW_POWER_MODE_CAM;
		break;
	default:
		*param = mode;
		break;
	}

	if (ipw_send_cmd(priv, &cmd)) {
		IPW_ERROR("failed to send POWER_MODE command\n");
		return -1;
	}

	return 0;
}

/*
 * The IPW device contains a Microwire compatible EEPROM that stores
 * various data like the MAC address.  Usually the firmware has exclusive
 * access to the eeprom, but during device initialization (before the
 * device driver has sent the HostComplete command to the firmware) the
 * device driver has read access to the EEPROM by way of indirect addressing
 * through a couple of memory mapped registers.
 *
 * The following is a simplified implementation for pulling data out of the
 * the eeprom, along with some helper functions to find information in
 * the per device private data's copy of the eeprom.
 *
 * NOTE: To better understand how these functions work (i.e what is a chip
 *       select and why do have to keep driving the eeprom clock?), read
 *       just about any data sheet for a Microwire compatible EEPROM.
 */

/* write a 32 bit value into the indirect accessor register */
static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
{
	ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
	
	/* the eeprom requires some time to complete the operation */
	udelay(p->eeprom_delay);

	return;
}

/* perform a chip select operation */
static inline void eeprom_cs(struct ipw_priv* priv)
{
	eeprom_write_reg(priv,0);
	eeprom_write_reg(priv,EEPROM_BIT_CS);
	eeprom_write_reg(priv,EEPROM_BIT_CS|EEPROM_BIT_SK);
	eeprom_write_reg(priv,EEPROM_BIT_CS);
}

/* perform a chip select operation */
static inline void eeprom_disable_cs(struct ipw_priv* priv)
{
	eeprom_write_reg(priv,EEPROM_BIT_CS);
	eeprom_write_reg(priv,0);
	eeprom_write_reg(priv,EEPROM_BIT_SK);
}

/* push a single bit down to the eeprom */
static inline void eeprom_write_bit(struct ipw_priv *p,u8 bit)
{
	int d = ( bit ? EEPROM_BIT_DI : 0);
	eeprom_write_reg(p,EEPROM_BIT_CS|d);
	eeprom_write_reg(p,EEPROM_BIT_CS|d|EEPROM_BIT_SK);
}

/* push an opcode followed by an address down to the eeprom */
static void eeprom_op(struct ipw_priv* priv, u8 op, u8 addr)
{
	int i;

	eeprom_cs(priv);
	eeprom_write_bit(priv,1);
	eeprom_write_bit(priv,op&2);
	eeprom_write_bit(priv,op&1);
	for ( i=7; i>=0; i-- ) {
		eeprom_write_bit(priv,addr&(1<<i));
	}
}

/* pull 16 bits off the eeprom, one bit at a time */
static u16 eeprom_read_u16(struct ipw_priv* priv, u8 addr)
{
	int i;
	u16 r=0;
	
	/* Send READ Opcode */
	eeprom_op(priv,EEPROM_CMD_READ,addr);

	/* Send dummy bit */
	eeprom_write_reg(priv,EEPROM_BIT_CS);

	/* Read the byte off the eeprom one bit at a time */
	for ( i=0; i<16; i++ ) {
		u32 data = 0;
		eeprom_write_reg(priv,EEPROM_BIT_CS|EEPROM_BIT_SK);
		eeprom_write_reg(priv,EEPROM_BIT_CS);
		data = ipw_read_reg32(priv,FW_MEM_REG_EEPROM_ACCESS);
		r = (r<<1) | ((data & EEPROM_BIT_DO)?1:0);
	}
	
	/* Send another dummy bit */
	eeprom_write_reg(priv,0);
	eeprom_disable_cs(priv);
	
	return r;
}

/* helper function for pulling the mac address out of the private */
/* data's copy of the eeprom data                                 */
static void eeprom_parse_mac(struct ipw_priv* priv, u8* mac)
{
	u8* ee = (u8*)priv->eeprom;
	memcpy(mac, &ee[EEPROM_MAC_ADDRESS], 6);
}

/*
 * Either the device driver (i.e. the host) or the firmware can
 * load eeprom data into the designated region in SRAM.  If neither
 * happens then the FW will shutdown with a fatal error.
 *
 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
 * bit needs region of shared SRAM needs to be non-zero.
 */
static void ipw_eeprom_init_sram(struct ipw_priv *priv)
{
	int i;
	u16 *eeprom = (u16 *)priv->eeprom;
  
	IPW_DEBUG_TRACE(">>\n");

	/* read entire contents of eeprom into private buffer */
	for ( i=0; i<128; i++ )
		eeprom[i] = eeprom_read_u16(priv,(u8)i);

	/* 
	   If the data looks correct, then copy it to our private 
	   copy.  Otherwise let the firmware know to perform the operation
	   on it's own
	*/
	if ((priv->eeprom + EEPROM_VERSION) != 0) {
		IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");

		/* write the eeprom data to sram */
		for( i=0; i<CX2_EEPROM_IMAGE_SIZE; i++ )
			ipw_write8(priv, IPW_EEPROM_DATA + i, 
				   priv->eeprom[i]);

		/* Do not load eeprom data on fatal error or suspend */
		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
	} else {
		IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");

		/* Load eeprom data on fatal error or suspend */
		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
	}

	IPW_DEBUG_TRACE("<<\n");
}


static inline void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
{
	count >>= 2;
	if (!count) return;
	_ipw_write32(priv, CX2_AUTOINC_ADDR, start);
	while (count--) 
		_ipw_write32(priv, CX2_AUTOINC_DATA, 0);
}

static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
{
	ipw_zero_memory(priv, CX2_SHARED_SRAM_DMA_CONTROL,
			CB_NUMBER_OF_ELEMENTS_SMALL * 
			sizeof(struct command_block));
}

static int ipw_fw_dma_enable(struct ipw_priv *priv)
{ /* start dma engine but no transfers yet*/

	IPW_DEBUG_FW(">> : \n");
    
	/* Start the dma */
	ipw_fw_dma_reset_command_blocks(priv);
	
	/* Write CB base address */
	ipw_write_reg32(priv, CX2_DMA_I_CB_BASE, CX2_SHARED_SRAM_DMA_CONTROL);

	IPW_DEBUG_FW("<< : \n");
	return 0;
}

static void ipw_fw_dma_abort(struct ipw_priv *priv)
{
	u32 control = 0;

	IPW_DEBUG_FW(">> :\n");
    
	//set the Stop and Abort bit	
	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
	ipw_write_reg32(priv, CX2_DMA_I_DMA_CONTROL, control);
	priv->sram_desc.last_cb_index = 0;
	
	IPW_DEBUG_FW("<< \n");
}

static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index, struct command_block *cb)
{
	u32 address = CX2_SHARED_SRAM_DMA_CONTROL + (sizeof(struct command_block) * index); 
	IPW_DEBUG_FW(">> :\n");

1743
	ipw_write_indirect(priv, address, (u8*)cb, (int)sizeof(struct command_block));
J
James Ketrenos 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344

	IPW_DEBUG_FW("<< :\n");
	return 0;

}

static int ipw_fw_dma_kick(struct ipw_priv *priv)
{
	u32 control = 0;
	u32 index=0;

	IPW_DEBUG_FW(">> :\n");
    
	for (index = 0; index < priv->sram_desc.last_cb_index; index++)
		ipw_fw_dma_write_command_block(priv, index, &priv->sram_desc.cb_list[index]);

	/* Enable the DMA in the CSR register */
	ipw_clear_bit(priv, CX2_RESET_REG,CX2_RESET_REG_MASTER_DISABLED | CX2_RESET_REG_STOP_MASTER);
	
        /* Set the Start bit. */
	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
	ipw_write_reg32(priv, CX2_DMA_I_DMA_CONTROL, control);

	IPW_DEBUG_FW("<< :\n");
	return 0;
}

static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
{
	u32 address;
	u32 register_value=0;
	u32 cb_fields_address=0;

	IPW_DEBUG_FW(">> :\n");
	address = ipw_read_reg32(priv,CX2_DMA_I_CURRENT_CB);
	IPW_DEBUG_FW_INFO("Current CB is 0x%x \n",address);

	/* Read the DMA Controlor register */
	register_value = ipw_read_reg32(priv, CX2_DMA_I_DMA_CONTROL);
	IPW_DEBUG_FW_INFO("CX2_DMA_I_DMA_CONTROL is 0x%x \n",register_value);

	/* Print the CB values*/
	cb_fields_address = address;
	register_value = ipw_read_reg32(priv, cb_fields_address);
	IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n",register_value);

	cb_fields_address += sizeof(u32);
	register_value = ipw_read_reg32(priv, cb_fields_address);
	IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n",register_value);

	cb_fields_address += sizeof(u32);
	register_value = ipw_read_reg32(priv, cb_fields_address);
	IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
			  register_value);

	cb_fields_address += sizeof(u32);
	register_value = ipw_read_reg32(priv, cb_fields_address);
	IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n",register_value);

	IPW_DEBUG_FW(">> :\n");
}

static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
{
	u32 current_cb_address = 0;
	u32 current_cb_index = 0;

	IPW_DEBUG_FW("<< :\n");
	current_cb_address= ipw_read_reg32(priv, CX2_DMA_I_CURRENT_CB);
	
	current_cb_index = (current_cb_address - CX2_SHARED_SRAM_DMA_CONTROL )/
		sizeof (struct command_block);
	
	IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
			  current_cb_index, current_cb_address );

	IPW_DEBUG_FW(">> :\n");
	return current_cb_index;

}

static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
					u32 src_address,
					u32 dest_address,
					u32 length,
					int interrupt_enabled,
					int is_last)
{

	u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC | 
		CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG | 
		CB_DEST_SIZE_LONG;
	struct command_block *cb;
	u32 last_cb_element=0;

	IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
			  src_address, dest_address, length);

	if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
		return -1;

	last_cb_element = priv->sram_desc.last_cb_index;
	cb = &priv->sram_desc.cb_list[last_cb_element];
	priv->sram_desc.last_cb_index++;

	/* Calculate the new CB control word */
	if (interrupt_enabled )
		control |= CB_INT_ENABLED;

	if (is_last)
		control |= CB_LAST_VALID;
	
	control |= length;

	/* Calculate the CB Element's checksum value */
	cb->status = control ^src_address ^dest_address;

	/* Copy the Source and Destination addresses */
	cb->dest_addr = dest_address;
	cb->source_addr = src_address;

	/* Copy the Control Word last */
	cb->control = control;

	return 0;
}

static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
				 u32 src_phys,
				 u32 dest_address,
				 u32 length)
{
	u32 bytes_left = length;
	u32 src_offset=0;
	u32 dest_offset=0;
	int status = 0;
	IPW_DEBUG_FW(">> \n");
	IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
			  src_phys, dest_address, length);
	while (bytes_left > CB_MAX_LENGTH) {
		status = ipw_fw_dma_add_command_block( priv,
						       src_phys + src_offset,
						       dest_address + dest_offset,
						       CB_MAX_LENGTH, 0, 0);
		if (status) {
			IPW_DEBUG_FW_INFO(": Failed\n");
			return -1;
		} else 
			IPW_DEBUG_FW_INFO(": Added new cb\n");

		src_offset += CB_MAX_LENGTH;
		dest_offset += CB_MAX_LENGTH;
		bytes_left -= CB_MAX_LENGTH;
	}

	/* add the buffer tail */
	if (bytes_left > 0) {
		status = ipw_fw_dma_add_command_block(
			priv, src_phys + src_offset,
			dest_address + dest_offset,
			bytes_left, 0, 0);
		if (status) {
			IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
			return -1;
		} else 
			IPW_DEBUG_FW_INFO(": Adding new cb - the buffer tail\n");
	}
	
	
	IPW_DEBUG_FW("<< \n");
	return 0;
}

static int ipw_fw_dma_wait(struct ipw_priv *priv)
{
	u32 current_index = 0;
	u32 watchdog = 0;

	IPW_DEBUG_FW(">> : \n");

	current_index = ipw_fw_dma_command_block_index(priv);
	IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%8X\n", 
			  (int) priv->sram_desc.last_cb_index);

	while (current_index < priv->sram_desc.last_cb_index) {
		udelay(50);
		current_index = ipw_fw_dma_command_block_index(priv);

		watchdog++;

		if (watchdog > 400) {
			IPW_DEBUG_FW_INFO("Timeout\n");
			ipw_fw_dma_dump_command_block(priv);
			ipw_fw_dma_abort(priv);
			return -1;
		}
	}

	ipw_fw_dma_abort(priv);

	/*Disable the DMA in the CSR register*/
 	ipw_set_bit(priv, CX2_RESET_REG, 
		    CX2_RESET_REG_MASTER_DISABLED | CX2_RESET_REG_STOP_MASTER);

	IPW_DEBUG_FW("<< dmaWaitSync \n");
	return 0;
}

static void ipw_remove_current_network(struct ipw_priv *priv) 
{
	struct list_head *element, *safe;
	struct ieee80211_network *network = NULL;	
	list_for_each_safe(element, safe, &priv->ieee->network_list) {
		network = list_entry(element, struct ieee80211_network, list);
		if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
			list_del(element);
			list_add_tail(&network->list, 
				      &priv->ieee->network_free_list);
		}
	}
}

/**
 * Check that card is still alive. 
 * Reads debug register from domain0.
 * If card is present, pre-defined value should
 * be found there.
 * 
 * @param priv
 * @return 1 if card is present, 0 otherwise
 */
static inline int ipw_alive(struct ipw_priv *priv)
{
	return ipw_read32(priv, 0x90) == 0xd55555d5;
}

static inline int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
			       int timeout)
{
	int i = 0;

	do {
		if ((ipw_read32(priv, addr) & mask) == mask) 
			return i;
		mdelay(10);
		i += 10;
	} while (i < timeout);
	
	return -ETIME;
}

/* These functions load the firmware and micro code for the operation of 
 * the ipw hardware.  It assumes the buffer has all the bits for the
 * image and the caller is handling the memory allocation and clean up.
 */


static int ipw_stop_master(struct ipw_priv * priv)
{
	int rc;
	
	IPW_DEBUG_TRACE(">> \n");
	/* stop master. typical delay - 0 */
	ipw_set_bit(priv, CX2_RESET_REG, CX2_RESET_REG_STOP_MASTER);

	rc = ipw_poll_bit(priv, CX2_RESET_REG,
			  CX2_RESET_REG_MASTER_DISABLED, 100);
	if (rc < 0) {
		IPW_ERROR("stop master failed in 10ms\n");
		return -1;
	}

	IPW_DEBUG_INFO("stop master %dms\n", rc);

	return rc;
}

static void ipw_arc_release(struct ipw_priv *priv)
{
	IPW_DEBUG_TRACE(">> \n");
	mdelay(5);

	ipw_clear_bit(priv, CX2_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);

	/* no one knows timing, for safety add some delay */
	mdelay(5);
}

struct fw_header {
	u32 version;
	u32 mode;
};

struct fw_chunk {
	u32 address;
	u32 length;
};

#define IPW_FW_MAJOR_VERSION 2
#define IPW_FW_MINOR_VERSION 2

#define IPW_FW_MINOR(x) ((x & 0xff) >> 8)
#define IPW_FW_MAJOR(x) (x & 0xff)

#define IPW_FW_VERSION ((IPW_FW_MINOR_VERSION << 8) | \
                         IPW_FW_MAJOR_VERSION)

#define IPW_FW_PREFIX "ipw-" __stringify(IPW_FW_MAJOR_VERSION) \
"." __stringify(IPW_FW_MINOR_VERSION) "-"

#if IPW_FW_MAJOR_VERSION >= 2 && IPW_FW_MINOR_VERSION > 0
#define IPW_FW_NAME(x) IPW_FW_PREFIX "" x ".fw"
#else
#define IPW_FW_NAME(x) "ipw2200_" x ".fw"
#endif

static int ipw_load_ucode(struct ipw_priv *priv, u8 * data,
			  size_t len)
{
	int rc = 0, i, addr;
	u8 cr = 0;
	u16 *image;

	image = (u16 *)data;
	
	IPW_DEBUG_TRACE(">> \n");

	rc = ipw_stop_master(priv);

	if (rc < 0)
		return rc;
	
//	spin_lock_irqsave(&priv->lock, flags);
	
	for (addr = CX2_SHARED_LOWER_BOUND;
	     addr < CX2_REGISTER_DOMAIN1_END; addr += 4) {
		ipw_write32(priv, addr, 0);
	}

	/* no ucode (yet) */
	memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
	/* destroy DMA queues */
	/* reset sequence */

	ipw_write_reg32(priv, CX2_MEM_HALT_AND_RESET ,CX2_BIT_HALT_RESET_ON);
	ipw_arc_release(priv);
	ipw_write_reg32(priv, CX2_MEM_HALT_AND_RESET, CX2_BIT_HALT_RESET_OFF);
	mdelay(1);

	/* reset PHY */
	ipw_write_reg32(priv, CX2_INTERNAL_CMD_EVENT, CX2_BASEBAND_POWER_DOWN);
	mdelay(1);
	
	ipw_write_reg32(priv, CX2_INTERNAL_CMD_EVENT, 0);
	mdelay(1);
	
	/* enable ucode store */
	ipw_write_reg8(priv, DINO_CONTROL_REG, 0x0);
	ipw_write_reg8(priv, DINO_CONTROL_REG, DINO_ENABLE_CS);
	mdelay(1);

	/* write ucode */
	/**
	 * @bug
	 * Do NOT set indirect address register once and then
	 * store data to indirect data register in the loop.
	 * It seems very reasonable, but in this case DINO do not
	 * accept ucode. It is essential to set address each time.
	 */
	/* load new ipw uCode */
	for (i = 0; i < len / 2; i++)
		ipw_write_reg16(priv, CX2_BASEBAND_CONTROL_STORE, image[i]);

	
	/* enable DINO */
	ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS, 0);
	ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS,
		       DINO_ENABLE_SYSTEM );

	/* this is where the igx / win driver deveates from the VAP driver.*/

	/* wait for alive response */
	for (i = 0; i < 100; i++) {
		/* poll for incoming data */
		cr = ipw_read_reg8(priv, CX2_BASEBAND_CONTROL_STATUS);
		if (cr & DINO_RXFIFO_DATA)
			break;
		mdelay(1);
	}

	if (cr & DINO_RXFIFO_DATA) {
		/* alive_command_responce size is NOT multiple of 4 */
		u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
		
		for (i = 0; i < ARRAY_SIZE(response_buffer); i++) 
			response_buffer[i] =
				ipw_read_reg32(priv, 
					       CX2_BASEBAND_RX_FIFO_READ);
		memcpy(&priv->dino_alive, response_buffer,
		       sizeof(priv->dino_alive));
		if (priv->dino_alive.alive_command == 1
		    && priv->dino_alive.ucode_valid == 1) {
			rc = 0;
			IPW_DEBUG_INFO(
				"Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
				"of %02d/%02d/%02d %02d:%02d\n",
				priv->dino_alive.software_revision,
				priv->dino_alive.software_revision,
				priv->dino_alive.device_identifier,
				priv->dino_alive.device_identifier,
				priv->dino_alive.time_stamp[0],
				priv->dino_alive.time_stamp[1],
				priv->dino_alive.time_stamp[2],
				priv->dino_alive.time_stamp[3],
				priv->dino_alive.time_stamp[4]);
		} else {
			IPW_DEBUG_INFO("Microcode is not alive\n");
			rc = -EINVAL;
		}
	} else {
		IPW_DEBUG_INFO("No alive response from DINO\n");
		rc = -ETIME;
	}

	/* disable DINO, otherwise for some reason
	   firmware have problem getting alive resp. */
	ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS, 0);

//	spin_unlock_irqrestore(&priv->lock, flags);

	return rc;
}

static int ipw_load_firmware(struct ipw_priv *priv, u8 * data,
			     size_t len)
{
	int rc = -1;
	int offset = 0;
	struct fw_chunk *chunk;
	dma_addr_t shared_phys;
	u8 *shared_virt;

	IPW_DEBUG_TRACE("<< : \n");
	shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);

	if (!shared_virt)
		return -ENOMEM;

	memmove(shared_virt, data, len);

	/* Start the Dma */
	rc = ipw_fw_dma_enable(priv);

	if (priv->sram_desc.last_cb_index > 0) {
		/* the DMA is already ready this would be a bug. */
		BUG();
		goto out;
	}

	do {
		chunk = (struct fw_chunk *)(data + offset);
		offset += sizeof(struct fw_chunk);
		/* build DMA packet and queue up for sending */
		/* dma to chunk->address, the chunk->length bytes from data + 
		 * offeset*/
		/* Dma loading */
		rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
					   chunk->address, chunk->length);
		if (rc) {
			IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
			goto out;
		}
		
		offset += chunk->length;
	} while (offset < len);

	/* Run the DMA and wait for the answer*/
	rc = ipw_fw_dma_kick(priv);
	if (rc) {
		IPW_ERROR("dmaKick Failed\n");
		goto out;
	}

	rc = ipw_fw_dma_wait(priv);
	if (rc) {
		IPW_ERROR("dmaWaitSync Failed\n");
		goto out;
	}
 out:
	pci_free_consistent( priv->pci_dev, len, shared_virt, shared_phys);
	return rc;
}

/* stop nic */
static int ipw_stop_nic(struct ipw_priv *priv)
{
	int rc = 0;

	/* stop*/
	ipw_write32(priv, CX2_RESET_REG, CX2_RESET_REG_STOP_MASTER);
	
	rc = ipw_poll_bit(priv, CX2_RESET_REG, 
			  CX2_RESET_REG_MASTER_DISABLED, 500); 
	if (rc < 0) {
		IPW_ERROR("wait for reg master disabled failed\n");
		return rc;
	}   

	ipw_set_bit(priv, CX2_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
	
	return rc;
}

static void ipw_start_nic(struct ipw_priv *priv)
{
	IPW_DEBUG_TRACE(">>\n");

	/* prvHwStartNic  release ARC*/
	ipw_clear_bit(priv, CX2_RESET_REG,
		      CX2_RESET_REG_MASTER_DISABLED | 
		      CX2_RESET_REG_STOP_MASTER | 
		      CBD_RESET_REG_PRINCETON_RESET);
	
	/* enable power management */
	ipw_set_bit(priv, CX2_GP_CNTRL_RW, CX2_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);

	IPW_DEBUG_TRACE("<<\n");
}
	
static int ipw_init_nic(struct ipw_priv *priv)
{
	int rc;

	IPW_DEBUG_TRACE(">>\n");
	/* reset */	
	/*prvHwInitNic */
	/* set "initialization complete" bit to move adapter to D0 state */
	ipw_set_bit(priv, CX2_GP_CNTRL_RW, CX2_GP_CNTRL_BIT_INIT_DONE);

	/* low-level PLL activation */
	ipw_write32(priv, CX2_READ_INT_REGISTER,  CX2_BIT_INT_HOST_SRAM_READ_INT_REGISTER);

	/* wait for clock stabilization */
	rc = ipw_poll_bit(priv, CX2_GP_CNTRL_RW, 
			  CX2_GP_CNTRL_BIT_CLOCK_READY, 250); 
	if (rc < 0 )
		IPW_DEBUG_INFO("FAILED wait for clock stablization\n");

	/* assert SW reset */
	ipw_set_bit(priv, CX2_RESET_REG, CX2_RESET_REG_SW_RESET);

	udelay(10);

	/* set "initialization complete" bit to move adapter to D0 state */
	ipw_set_bit(priv, CX2_GP_CNTRL_RW, CX2_GP_CNTRL_BIT_INIT_DONE);

	IPW_DEBUG_TRACE(">>\n");
	return 0;
}


/* Call this function from process context, it will sleep in request_firmware. 
 * Probe is an ok place to call this from.
 */
static int ipw_reset_nic(struct ipw_priv *priv)
{
	int rc = 0;

	IPW_DEBUG_TRACE(">>\n");
	
	rc = ipw_init_nic(priv);
	
	/* Clear the 'host command active' bit... */
	priv->status &= ~STATUS_HCMD_ACTIVE;
	wake_up_interruptible(&priv->wait_command_queue);

	IPW_DEBUG_TRACE("<<\n");
	return rc;
} 

static int ipw_get_fw(struct ipw_priv *priv, 
		      const struct firmware **fw, const char *name)
{
	struct fw_header *header;
	int rc;

	/* ask firmware_class module to get the boot firmware off disk */
	rc = request_firmware(fw, name, &priv->pci_dev->dev);
	if (rc < 0) {
		IPW_ERROR("%s load failed: Reason %d\n", name, rc);
		return rc;
	} 

	header = (struct fw_header *)(*fw)->data;
	if (IPW_FW_MAJOR(header->version) != IPW_FW_MAJOR_VERSION) {
		IPW_ERROR("'%s' firmware version not compatible (%d != %d)\n",
			  name,
			  IPW_FW_MAJOR(header->version), IPW_FW_MAJOR_VERSION);
		return -EINVAL;
	}

2345
	IPW_DEBUG_INFO("Loading firmware '%s' file v%d.%d (%zd bytes)\n",
J
James Ketrenos 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
		       name,
		       IPW_FW_MAJOR(header->version),
		       IPW_FW_MINOR(header->version),
		       (*fw)->size - sizeof(struct fw_header));
	return 0;
}

#define CX2_RX_BUF_SIZE (3000)

static inline void ipw_rx_queue_reset(struct ipw_priv *priv,
				      struct ipw_rx_queue *rxq)
{
	unsigned long flags;
	int i;

	spin_lock_irqsave(&rxq->lock, flags);

	INIT_LIST_HEAD(&rxq->rx_free);
	INIT_LIST_HEAD(&rxq->rx_used);

	/* Fill the rx_used queue with _all_ of the Rx buffers */
	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
		/* In the reset function, these buffers may have been allocated
		 * to an SKB, so we need to unmap and free potential storage */
		if (rxq->pool[i].skb != NULL) {
			pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
					 CX2_RX_BUF_SIZE,
					 PCI_DMA_FROMDEVICE);
			dev_kfree_skb(rxq->pool[i].skb);
		}
		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
	}
	
	/* Set us so that we have processed and used all buffers, but have
	 * not restocked the Rx queue with fresh buffers */
	rxq->read = rxq->write = 0;
	rxq->processed = RX_QUEUE_SIZE - 1;
	rxq->free_count = 0;
	spin_unlock_irqrestore(&rxq->lock, flags);
}

#ifdef CONFIG_PM
static int fw_loaded = 0;
static const struct firmware *bootfw = NULL;
static const struct firmware *firmware = NULL;
static const struct firmware *ucode = NULL;
#endif

static int ipw_load(struct ipw_priv *priv)
{
#ifndef CONFIG_PM
	const struct firmware *bootfw = NULL;
	const struct firmware *firmware = NULL;
	const struct firmware *ucode = NULL;
#endif
	int rc = 0, retries = 3;

#ifdef CONFIG_PM
	if (!fw_loaded) {
#endif
		rc = ipw_get_fw(priv, &bootfw, IPW_FW_NAME("boot"));
		if (rc) 
			goto error;
		
		switch (priv->ieee->iw_mode) {
		case IW_MODE_ADHOC:
			rc = ipw_get_fw(priv, &ucode, 
					IPW_FW_NAME("ibss_ucode"));
			if (rc) 
				goto error;
		
			rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("ibss"));
			break;
			
#ifdef CONFIG_IPW_PROMISC
		case IW_MODE_MONITOR:
			rc = ipw_get_fw(priv, &ucode, 
					IPW_FW_NAME("ibss_ucode"));
			if (rc) 
				goto error;
		
			rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("sniffer"));
			break;
#endif
		case IW_MODE_INFRA:
			rc = ipw_get_fw(priv, &ucode, 
					IPW_FW_NAME("bss_ucode"));
			if (rc) 
				goto error;
		
			rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("bss"));
			break;
			
		default:
			rc = -EINVAL;
		}

		if (rc) 
			goto error;

#ifdef CONFIG_PM
		fw_loaded = 1;
	}
#endif

	if (!priv->rxq)
		priv->rxq = ipw_rx_queue_alloc(priv);
	else
		ipw_rx_queue_reset(priv, priv->rxq);
	if (!priv->rxq) {
		IPW_ERROR("Unable to initialize Rx queue\n");
		goto error;
	}

 retry:
	/* Ensure interrupts are disabled */
	ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL);
	priv->status &= ~STATUS_INT_ENABLED;

	/* ack pending interrupts */
	ipw_write32(priv, CX2_INTA_RW, CX2_INTA_MASK_ALL);
	
	ipw_stop_nic(priv);

	rc = ipw_reset_nic(priv);
	if (rc) {
		IPW_ERROR("Unable to reset NIC\n");
		goto error;
	}

	ipw_zero_memory(priv, CX2_NIC_SRAM_LOWER_BOUND, 
			CX2_NIC_SRAM_UPPER_BOUND - CX2_NIC_SRAM_LOWER_BOUND);

	/* DMA the initial boot firmware into the device */
	rc = ipw_load_firmware(priv, bootfw->data + sizeof(struct fw_header), 
			       bootfw->size - sizeof(struct fw_header));
	if (rc < 0) {
		IPW_ERROR("Unable to load boot firmware\n");
		goto error;
	}

	/* kick start the device */
	ipw_start_nic(priv);

	/* wait for the device to finish it's initial startup sequence */
	rc = ipw_poll_bit(priv, CX2_INTA_RW, 
			  CX2_INTA_BIT_FW_INITIALIZATION_DONE, 500); 
	if (rc < 0) {
		IPW_ERROR("device failed to boot initial fw image\n");
		goto error;
	}
	IPW_DEBUG_INFO("initial device response after %dms\n", rc);

	/* ack fw init done interrupt */	
	ipw_write32(priv, CX2_INTA_RW, CX2_INTA_BIT_FW_INITIALIZATION_DONE);

	/* DMA the ucode into the device */
	rc = ipw_load_ucode(priv, ucode->data + sizeof(struct fw_header), 
			    ucode->size - sizeof(struct fw_header));
	if (rc < 0) {
		IPW_ERROR("Unable to load ucode\n");
		goto error;
	}
	
	/* stop nic */
	ipw_stop_nic(priv);

	/* DMA bss firmware into the device */
	rc = ipw_load_firmware(priv, firmware->data + 
			       sizeof(struct fw_header), 
			       firmware->size - sizeof(struct fw_header));
	if (rc < 0 ) {
		IPW_ERROR("Unable to load firmware\n");
		goto error;
	}

	ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);

	rc = ipw_queue_reset(priv);
	if (rc) {
		IPW_ERROR("Unable to initialize queues\n");
		goto error;
	}

	/* Ensure interrupts are disabled */
	ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL);
	
	/* kick start the device */
	ipw_start_nic(priv);

	if (ipw_read32(priv, CX2_INTA_RW) & CX2_INTA_BIT_PARITY_ERROR) {
		if (retries > 0) {
			IPW_WARNING("Parity error.  Retrying init.\n");
			retries--;
			goto retry;
		}

		IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
		rc = -EIO;
		goto error;
	}

	/* wait for the device */
	rc = ipw_poll_bit(priv, CX2_INTA_RW, 
			  CX2_INTA_BIT_FW_INITIALIZATION_DONE, 500); 
	if (rc < 0) {
		IPW_ERROR("device failed to start after 500ms\n");
		goto error;
	}
	IPW_DEBUG_INFO("device response after %dms\n", rc);

	/* ack fw init done interrupt */
	ipw_write32(priv, CX2_INTA_RW, CX2_INTA_BIT_FW_INITIALIZATION_DONE);

	/* read eeprom data and initialize the eeprom region of sram */
	priv->eeprom_delay = 1;
	ipw_eeprom_init_sram(priv);	

	/* enable interrupts */
	ipw_enable_interrupts(priv);

	/* Ensure our queue has valid packets */
	ipw_rx_queue_replenish(priv);

	ipw_write32(priv, CX2_RX_READ_INDEX, priv->rxq->read);

	/* ack pending interrupts */
	ipw_write32(priv, CX2_INTA_RW, CX2_INTA_MASK_ALL);

#ifndef CONFIG_PM
	release_firmware(bootfw);
	release_firmware(ucode);
	release_firmware(firmware);
#endif
	return 0;

 error:
	if (priv->rxq) {
		ipw_rx_queue_free(priv, priv->rxq);
		priv->rxq = NULL;
	}
	ipw_tx_queue_free(priv);
	if (bootfw)
		release_firmware(bootfw);
	if (ucode)
		release_firmware(ucode);
	if (firmware)
		release_firmware(firmware);
#ifdef CONFIG_PM
	fw_loaded = 0;
	bootfw = ucode = firmware = NULL;
#endif

	return rc;
}

/** 
 * DMA services
 *
 * Theory of operation
 *
 * A queue is a circular buffers with 'Read' and 'Write' pointers.
 * 2 empty entries always kept in the buffer to protect from overflow.
 *
 * For Tx queue, there are low mark and high mark limits. If, after queuing
 * the packet for Tx, free space become < low mark, Tx queue stopped. When 
 * reclaiming packets (on 'tx done IRQ), if free space become > high mark, 
 * Tx queue resumed.
 *
 * The IPW operates with six queues, one receive queue in the device's
 * sram, one transmit queue for sending commands to the device firmware,
 * and four transmit queues for data.  
 *
 * The four transmit queues allow for performing quality of service (qos) 
 * transmissions as per the 802.11 protocol.  Currently Linux does not
 * provide a mechanism to the user for utilizing prioritized queues, so 
 * we only utilize the first data transmit queue (queue1).
 */

/**
 * Driver allocates buffers of this size for Rx
 */

static inline int ipw_queue_space(const struct clx2_queue *q)
{
	int s = q->last_used - q->first_empty;
	if (s <= 0)
		s += q->n_bd;
	s -= 2;			/* keep some reserve to not confuse empty and full situations */
	if (s < 0)
		s = 0;
	return s;
}

static inline int ipw_queue_inc_wrap(int index, int n_bd)
{
	return (++index == n_bd) ? 0 : index;
}

/**
 * Initialize common DMA queue structure
 * 
 * @param q                queue to init
 * @param count            Number of BD's to allocate. Should be power of 2
 * @param read_register    Address for 'read' register
 *                         (not offset within BAR, full address)
 * @param write_register   Address for 'write' register
 *                         (not offset within BAR, full address)
 * @param base_register    Address for 'base' register
 *                         (not offset within BAR, full address)
 * @param size             Address for 'size' register
 *                         (not offset within BAR, full address)
 */
static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q, 
			   int count, u32 read, u32 write,
			   u32 base, u32 size)
{
	q->n_bd = count;

	q->low_mark = q->n_bd / 4;
	if (q->low_mark < 4)
		q->low_mark = 4;

	q->high_mark = q->n_bd / 8;
	if (q->high_mark < 2)
		q->high_mark = 2;

	q->first_empty = q->last_used = 0;
	q->reg_r = read;
	q->reg_w = write;

	ipw_write32(priv, base, q->dma_addr);
	ipw_write32(priv, size, count);
	ipw_write32(priv, read, 0);
	ipw_write32(priv, write, 0);

	_ipw_read32(priv, 0x90);
}

static int ipw_queue_tx_init(struct ipw_priv *priv, 
			     struct clx2_tx_queue *q,
			     int count, u32 read, u32 write,
			     u32 base, u32 size)
{
	struct pci_dev *dev = priv->pci_dev;

	q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
	if (!q->txb) {
		IPW_ERROR("vmalloc for auxilary BD structures failed\n");
		return -ENOMEM;
	}

	q->bd = pci_alloc_consistent(dev,sizeof(q->bd[0])*count, &q->q.dma_addr);
	if (!q->bd) {
2700
		IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
J
James Ketrenos 已提交
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
				sizeof(q->bd[0]) * count);
		kfree(q->txb);
		q->txb = NULL;
		return -ENOMEM;
	}

	ipw_queue_init(priv, &q->q, count, read, write, base, size);
	return 0;
}

/**
 * Free one TFD, those at index [txq->q.last_used].
 * Do NOT advance any indexes
 * 
 * @param dev
 * @param txq
 */
static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
				  struct clx2_tx_queue *txq)
{
	struct tfd_frame *bd = &txq->bd[txq->q.last_used];
	struct pci_dev *dev = priv->pci_dev;
	int i;
	
	/* classify bd */
	if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
		/* nothing to cleanup after for host commands */
		return;

	/* sanity check */
	if (bd->u.data.num_chunks > NUM_TFD_CHUNKS) {
		IPW_ERROR("Too many chunks: %i\n", bd->u.data.num_chunks);
		/** @todo issue fatal error, it is quite serious situation */
		return;
	}

	/* unmap chunks if any */
	for (i = 0; i < bd->u.data.num_chunks; i++) {
		pci_unmap_single(dev, bd->u.data.chunk_ptr[i],
				 bd->u.data.chunk_len[i], PCI_DMA_TODEVICE);
		if (txq->txb[txq->q.last_used]) {
			ieee80211_txb_free(txq->txb[txq->q.last_used]);
			txq->txb[txq->q.last_used] = NULL;
		}
	}
}

/**
 * Deallocate DMA queue.
 * 
 * Empty queue by removing and destroying all BD's.
 * Free all buffers.
 * 
 * @param dev
 * @param q
 */
static void ipw_queue_tx_free(struct ipw_priv *priv,
			    struct clx2_tx_queue *txq)
{
	struct clx2_queue *q = &txq->q;
	struct pci_dev *dev = priv->pci_dev;

	if (q->n_bd == 0) 
		return;	

	/* first, empty all BD's */
	for (; q->first_empty != q->last_used;
	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
		ipw_queue_tx_free_tfd(priv, txq);
	}
	
	/* free buffers belonging to queue itself */
	pci_free_consistent(dev, sizeof(txq->bd[0])*q->n_bd, txq->bd, 
			    q->dma_addr);
	kfree(txq->txb);

	/* 0 fill whole structure */
	memset(txq, 0, sizeof(*txq));
}


/**
 * Destroy all DMA queues and structures
 * 
 * @param priv
 */
static void ipw_tx_queue_free(struct ipw_priv *priv)
{
	/* Tx CMD queue */
	ipw_queue_tx_free(priv, &priv->txq_cmd);

	/* Tx queues */
	ipw_queue_tx_free(priv, &priv->txq[0]);
	ipw_queue_tx_free(priv, &priv->txq[1]);
	ipw_queue_tx_free(priv, &priv->txq[2]);
	ipw_queue_tx_free(priv, &priv->txq[3]);
}

static void inline __maybe_wake_tx(struct ipw_priv *priv)
{
	if (netif_running(priv->net_dev)) {
		switch (priv->port_type) {
		case DCR_TYPE_MU_BSS:
		case DCR_TYPE_MU_IBSS:
			if (!(priv->status & STATUS_ASSOCIATED)) {
				return;
			}
		}
		netif_wake_queue(priv->net_dev);
	}

}

static inline void ipw_create_bssid(struct ipw_priv *priv, u8 *bssid)
{
	/* First 3 bytes are manufacturer */
	bssid[0] = priv->mac_addr[0];
	bssid[1] = priv->mac_addr[1];
	bssid[2] = priv->mac_addr[2];

	/* Last bytes are random */
        get_random_bytes(&bssid[3], ETH_ALEN-3);

        bssid[0] &= 0xfe;       /* clear multicast bit */
        bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
}

static inline u8 ipw_add_station(struct ipw_priv *priv, u8 *bssid)
{
	struct ipw_station_entry entry;
	int i;

	for (i = 0; i < priv->num_stations; i++) {
		if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
			/* Another node is active in network */
			priv->missed_adhoc_beacons = 0;
			if (!(priv->config & CFG_STATIC_CHANNEL))
				/* when other nodes drop out, we drop out */
				priv->config &= ~CFG_ADHOC_PERSIST;

			return i;
		}
	}

	if (i == MAX_STATIONS)
		return IPW_INVALID_STATION;

	IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));

	entry.reserved = 0;
	entry.support_mode = 0;
	memcpy(entry.mac_addr, bssid, ETH_ALEN);
	memcpy(priv->stations[i], bssid, ETH_ALEN);
	ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
			 &entry,
			 sizeof(entry));
	priv->num_stations++;

	return i;
}

static inline u8 ipw_find_station(struct ipw_priv *priv, u8 *bssid)
{
	int i;

	for (i = 0; i < priv->num_stations; i++) 
		if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) 
			return i;

	return IPW_INVALID_STATION;
}

static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
{
	int err;

	if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))) {
		IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
		return;
	}

	IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
			"on channel %d.\n",
			MAC_ARG(priv->assoc_request.bssid), 
			priv->assoc_request.channel);

	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
	priv->status |= STATUS_DISASSOCIATING;

	if (quiet)
		priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
	else
		priv->assoc_request.assoc_type = HC_DISASSOCIATE;
	err = ipw_send_associate(priv, &priv->assoc_request);
	if (err) {
		IPW_DEBUG_HC("Attempt to send [dis]associate command "
			     "failed.\n");
		return;
	}

}

static void ipw_disassociate(void *data)
{
	ipw_send_disassociate(data, 0);
}

static void notify_wx_assoc_event(struct ipw_priv *priv)
{
	union iwreq_data wrqu;
	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
	if (priv->status & STATUS_ASSOCIATED)
		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
	else
		memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
}

struct ipw_status_code {
	u16 status;
	const char *reason;
};

static const struct ipw_status_code ipw_status_codes[] = {
	{0x00, "Successful"},
	{0x01, "Unspecified failure"},
	{0x0A, "Cannot support all requested capabilities in the "
	 "Capability information field"},
	{0x0B, "Reassociation denied due to inability to confirm that "
	 "association exists"},
	{0x0C, "Association denied due to reason outside the scope of this "
	 "standard"},
	{0x0D, "Responding station does not support the specified authentication "
	 "algorithm"},
	{0x0E, "Received an Authentication frame with authentication sequence "
	 "transaction sequence number out of expected sequence"},
	{0x0F, "Authentication rejected because of challenge failure"},
	{0x10, "Authentication rejected due to timeout waiting for next "
	 "frame in sequence"},
	{0x11, "Association denied because AP is unable to handle additional "
	 "associated stations"},
	{0x12, "Association denied due to requesting station not supporting all "
	 "of the datarates in the BSSBasicServiceSet Parameter"},
	{0x13, "Association denied due to requesting station not supporting "
	 "short preamble operation"},
	{0x14, "Association denied due to requesting station not supporting "
	 "PBCC encoding"},
	{0x15, "Association denied due to requesting station not supporting "
	 "channel agility"},
	{0x19, "Association denied due to requesting station not supporting "
	 "short slot operation"},
	{0x1A, "Association denied due to requesting station not supporting "
	 "DSSS-OFDM operation"},
	{0x28, "Invalid Information Element"},
	{0x29, "Group Cipher is not valid"},
	{0x2A, "Pairwise Cipher is not valid"},
	{0x2B, "AKMP is not valid"},
	{0x2C, "Unsupported RSN IE version"},
	{0x2D, "Invalid RSN IE Capabilities"},
	{0x2E, "Cipher suite is rejected per security policy"},
};

#ifdef CONFIG_IPW_DEBUG
static const char *ipw_get_status_code(u16 status) 
{
	int i;
	for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++) 
		if (ipw_status_codes[i].status == status)
			return ipw_status_codes[i].reason;
	return "Unknown status value.";
}
#endif

static void inline average_init(struct average *avg)
{
	memset(avg, 0, sizeof(*avg));
}

static void inline average_add(struct average *avg, s16 val)
{
	avg->sum -= avg->entries[avg->pos];
	avg->sum += val;
	avg->entries[avg->pos++] = val;
	if (unlikely(avg->pos == AVG_ENTRIES)) {
		avg->init = 1;
		avg->pos = 0;
	}
}

static s16 inline average_value(struct average *avg)
{
	if (!unlikely(avg->init)) {
		if (avg->pos)
			return avg->sum / avg->pos;
		return 0;
	}

	return avg->sum / AVG_ENTRIES;
}

static void ipw_reset_stats(struct ipw_priv *priv)
{
	u32 len = sizeof(u32);

	priv->quality = 0;

	average_init(&priv->average_missed_beacons);
	average_init(&priv->average_rssi);
	average_init(&priv->average_noise);

	priv->last_rate = 0;
	priv->last_missed_beacons = 0;
	priv->last_rx_packets = 0;
	priv->last_tx_packets = 0;
	priv->last_tx_failures = 0;
	
	/* Firmware managed, reset only when NIC is restarted, so we have to
	 * normalize on the current value */
	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, 
			&priv->last_rx_err, &len);
	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, 
			&priv->last_tx_failures, &len);

	/* Driver managed, reset with each association */
	priv->missed_adhoc_beacons = 0;
	priv->missed_beacons = 0;
	priv->tx_packets = 0;
	priv->rx_packets = 0;

}


static inline u32 ipw_get_max_rate(struct ipw_priv *priv)
{
	u32 i = 0x80000000;
	u32 mask = priv->rates_mask;
	/* If currently associated in B mode, restrict the maximum
	 * rate match to B rates */
	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
		mask &= IEEE80211_CCK_RATES_MASK;

	/* TODO: Verify that the rate is supported by the current rates
	 * list. */

	while (i && !(mask & i)) i >>= 1;
	switch (i) {
	case IEEE80211_CCK_RATE_1MB_MASK: return 1000000;
	case IEEE80211_CCK_RATE_2MB_MASK: return 2000000;
	case IEEE80211_CCK_RATE_5MB_MASK: return 5500000;
	case IEEE80211_OFDM_RATE_6MB_MASK: return 6000000;
	case IEEE80211_OFDM_RATE_9MB_MASK: return 9000000;
	case IEEE80211_CCK_RATE_11MB_MASK: return 11000000;
	case IEEE80211_OFDM_RATE_12MB_MASK: return 12000000;
	case IEEE80211_OFDM_RATE_18MB_MASK: return 18000000;
	case IEEE80211_OFDM_RATE_24MB_MASK: return 24000000;
	case IEEE80211_OFDM_RATE_36MB_MASK: return 36000000;
	case IEEE80211_OFDM_RATE_48MB_MASK: return 48000000;
	case IEEE80211_OFDM_RATE_54MB_MASK: return 54000000;
	}

	if (priv->ieee->mode == IEEE_B) 
		return 11000000;
	else
		return 54000000;
}

static u32 ipw_get_current_rate(struct ipw_priv *priv)
{
	u32 rate, len = sizeof(rate);
	int err;

	if (!(priv->status & STATUS_ASSOCIATED)) 
		return 0;

	if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
		err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate, 
				      &len);
		if (err) {
			IPW_DEBUG_INFO("failed querying ordinals.\n");
			return 0;
		}
	} else 
		return ipw_get_max_rate(priv);

	switch (rate) {
	case IPW_TX_RATE_1MB:  return  1000000; 
	case IPW_TX_RATE_2MB:  return  2000000; 
	case IPW_TX_RATE_5MB:  return  5500000; 
	case IPW_TX_RATE_6MB:  return  6000000; 
	case IPW_TX_RATE_9MB:  return  9000000; 
	case IPW_TX_RATE_11MB: return 11000000; 
	case IPW_TX_RATE_12MB: return 12000000; 
	case IPW_TX_RATE_18MB: return 18000000; 
	case IPW_TX_RATE_24MB: return 24000000; 
	case IPW_TX_RATE_36MB: return 36000000; 
	case IPW_TX_RATE_48MB: return 48000000; 
	case IPW_TX_RATE_54MB: return 54000000; 
	}

	return 0;
}

#define PERFECT_RSSI (-50)
#define WORST_RSSI   (-85)
#define IPW_STATS_INTERVAL (2 * HZ)
static void ipw_gather_stats(struct ipw_priv *priv)
{
	u32 rx_err, rx_err_delta, rx_packets_delta;
	u32 tx_failures, tx_failures_delta, tx_packets_delta;
	u32 missed_beacons_percent, missed_beacons_delta;
	u32 quality = 0;
	u32 len = sizeof(u32);
	s16 rssi;
	u32 beacon_quality, signal_quality, tx_quality, rx_quality, 
		rate_quality;

	if (!(priv->status & STATUS_ASSOCIATED)) {
		priv->quality = 0;
		return;
	}

	/* Update the statistics */
	ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS, 
			&priv->missed_beacons, &len);
	missed_beacons_delta = priv->missed_beacons - 
		priv->last_missed_beacons;
	priv->last_missed_beacons = priv->missed_beacons;
	if (priv->assoc_request.beacon_interval) {
		missed_beacons_percent = missed_beacons_delta *
			(HZ * priv->assoc_request.beacon_interval) /
			(IPW_STATS_INTERVAL * 10);
	} else {
		missed_beacons_percent = 0;
	}
	average_add(&priv->average_missed_beacons, missed_beacons_percent);

	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
	rx_err_delta = rx_err - priv->last_rx_err;
	priv->last_rx_err = rx_err;

	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
	tx_failures_delta = tx_failures - priv->last_tx_failures;
	priv->last_tx_failures = tx_failures;

	rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
	priv->last_rx_packets = priv->rx_packets;

	tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
	priv->last_tx_packets = priv->tx_packets;

	/* Calculate quality based on the following:
	 * 
	 * Missed beacon: 100% = 0, 0% = 70% missed
	 * Rate: 60% = 1Mbs, 100% = Max
	 * Rx and Tx errors represent a straight % of total Rx/Tx
	 * RSSI: 100% = > -50,  0% = < -80
	 * Rx errors: 100% = 0, 0% = 50% missed
	 * 
	 * The lowest computed quality is used.
	 *
	 */
#define BEACON_THRESHOLD 5
	beacon_quality = 100 - missed_beacons_percent;
	if (beacon_quality < BEACON_THRESHOLD)
		beacon_quality = 0;
	else
		beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 / 
			(100 - BEACON_THRESHOLD);
	IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n", 
			beacon_quality, missed_beacons_percent);
	
	priv->last_rate = ipw_get_current_rate(priv);
	rate_quality =  priv->last_rate * 40 / priv->last_rate + 60;
	IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
			rate_quality, priv->last_rate / 1000000);
	
	if (rx_packets_delta > 100 && 
	    rx_packets_delta + rx_err_delta) 
		rx_quality = 100 - (rx_err_delta * 100) / 
			(rx_packets_delta + rx_err_delta);
	else
		rx_quality = 100;
	IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
			rx_quality, rx_err_delta, rx_packets_delta);
	
	if (tx_packets_delta > 100 && 
	    tx_packets_delta + tx_failures_delta) 
		tx_quality = 100 - (tx_failures_delta * 100) / 
			(tx_packets_delta + tx_failures_delta);
	else
		tx_quality = 100;
	IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
			tx_quality, tx_failures_delta, tx_packets_delta);
	
	rssi = average_value(&priv->average_rssi);
	if (rssi > PERFECT_RSSI)
		signal_quality = 100;
	else if (rssi < WORST_RSSI)
		signal_quality = 0;
	else
		signal_quality = (rssi - WORST_RSSI) * 100 / 
			(PERFECT_RSSI - WORST_RSSI);
	IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
			signal_quality, rssi);
	
	quality = min(beacon_quality, 
		      min(rate_quality,
			  min(tx_quality, min(rx_quality, signal_quality))));
	if (quality == beacon_quality)
		IPW_DEBUG_STATS(
			"Quality (%d%%): Clamped to missed beacons.\n", 
			quality);
	if (quality == rate_quality)
		IPW_DEBUG_STATS(
			"Quality (%d%%): Clamped to rate quality.\n", 
			quality);
	if (quality == tx_quality)
		IPW_DEBUG_STATS(
			"Quality (%d%%): Clamped to Tx quality.\n", 
			quality);
	if (quality == rx_quality)
		IPW_DEBUG_STATS(
			"Quality (%d%%): Clamped to Rx quality.\n", 
			quality);
	if (quality == signal_quality)
		IPW_DEBUG_STATS(
			"Quality (%d%%): Clamped to signal quality.\n", 
			quality);

	priv->quality = quality;
	
	queue_delayed_work(priv->workqueue, &priv->gather_stats, 
			   IPW_STATS_INTERVAL);
}

/**
 * Handle host notification packet.
 * Called from interrupt routine
 */
static inline void ipw_rx_notification(struct ipw_priv* priv,
				       struct ipw_rx_notification *notif)
{
	IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", 
			notif->subtype, notif->size);
	
	switch (notif->subtype) {
	case HOST_NOTIFICATION_STATUS_ASSOCIATED: {
		struct notif_association *assoc = &notif->u.assoc;
		
		switch (assoc->state) {
		case CMAS_ASSOCIATED: {
			IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
				  "associated: '%s' " MAC_FMT " \n", 
				  escape_essid(priv->essid, priv->essid_len),
				  MAC_ARG(priv->bssid));
			
			switch (priv->ieee->iw_mode) {
			case IW_MODE_INFRA:
				memcpy(priv->ieee->bssid, priv->bssid, 
				       ETH_ALEN);
				break;

			case IW_MODE_ADHOC:
				memcpy(priv->ieee->bssid, priv->bssid, 
				       ETH_ALEN);
				
				/* clear out the station table */
				priv->num_stations = 0;

				IPW_DEBUG_ASSOC("queueing adhoc check\n");
				queue_delayed_work(priv->workqueue, 
						   &priv->adhoc_check,
						   priv->assoc_request.beacon_interval);
				break;
			}

			priv->status &= ~STATUS_ASSOCIATING;
			priv->status |= STATUS_ASSOCIATED;

			netif_carrier_on(priv->net_dev);
			if (netif_queue_stopped(priv->net_dev)) {
				IPW_DEBUG_NOTIF("waking queue\n");
				netif_wake_queue(priv->net_dev);
			} else {
				IPW_DEBUG_NOTIF("starting queue\n");
				netif_start_queue(priv->net_dev);
			}

			ipw_reset_stats(priv);
			/* Ensure the rate is updated immediately */
			priv->last_rate = ipw_get_current_rate(priv);
			schedule_work(&priv->gather_stats);
			notify_wx_assoc_event(priv);

/*			queue_delayed_work(priv->workqueue, 
					   &priv->request_scan,
					   SCAN_ASSOCIATED_INTERVAL);
*/
			break;
		}
			
		case CMAS_AUTHENTICATED: {
			if (priv->status & (STATUS_ASSOCIATED | STATUS_AUTH)) {
#ifdef CONFIG_IPW_DEBUG
				struct notif_authenticate *auth = &notif->u.auth;
				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
					  "deauthenticated: '%s' " MAC_FMT ": (0x%04X) - %s \n", 
					  escape_essid(priv->essid, priv->essid_len),
					  MAC_ARG(priv->bssid),
					  ntohs(auth->status),
					  ipw_get_status_code(ntohs(auth->status)));
#endif

				priv->status &= ~(STATUS_ASSOCIATING |
						  STATUS_AUTH |
						  STATUS_ASSOCIATED);

				netif_carrier_off(priv->net_dev);
				netif_stop_queue(priv->net_dev);
				queue_work(priv->workqueue, &priv->request_scan);
				notify_wx_assoc_event(priv);			
				break;
			} 

			IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
				  "authenticated: '%s' " MAC_FMT "\n", 
				  escape_essid(priv->essid, priv->essid_len),
				  MAC_ARG(priv->bssid));	
			break;
		}
			
		case CMAS_INIT: {
			IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
				  "disassociated: '%s' " MAC_FMT " \n", 
				  escape_essid(priv->essid, priv->essid_len),
				  MAC_ARG(priv->bssid));

			priv->status &= ~(
				STATUS_DISASSOCIATING |
				STATUS_ASSOCIATING | 
				STATUS_ASSOCIATED |
				STATUS_AUTH);
			
			netif_stop_queue(priv->net_dev);
			if (!(priv->status & STATUS_ROAMING)) {
				netif_carrier_off(priv->net_dev);
				notify_wx_assoc_event(priv);

				/* Cancel any queued work ... */
				cancel_delayed_work(&priv->request_scan);
				cancel_delayed_work(&priv->adhoc_check);

				/* Queue up another scan... */
				queue_work(priv->workqueue, 
					   &priv->request_scan);

				cancel_delayed_work(&priv->gather_stats);
			} else {
				priv->status |= STATUS_ROAMING;
				queue_work(priv->workqueue, 
					   &priv->request_scan);
			}
			
			ipw_reset_stats(priv);
			break;
		}
			
		default: 
			IPW_ERROR("assoc: unknown (%d)\n",
				  assoc->state);
			break;
		}

		break;
	}

	case HOST_NOTIFICATION_STATUS_AUTHENTICATE: {
		struct notif_authenticate *auth = &notif->u.auth;
		switch (auth->state) {
		case CMAS_AUTHENTICATED:
			IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
				  "authenticated: '%s' " MAC_FMT " \n", 
				  escape_essid(priv->essid, priv->essid_len),
				  MAC_ARG(priv->bssid));
			priv->status |= STATUS_AUTH;
			break;

		case CMAS_INIT:
			if (priv->status & STATUS_AUTH) {
				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
					  "authentication failed (0x%04X): %s\n",
					  ntohs(auth->status),
					  ipw_get_status_code(ntohs(auth->status)));
			} 
			IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
				  "deauthenticated: '%s' " MAC_FMT "\n", 
				  escape_essid(priv->essid, priv->essid_len),
				  MAC_ARG(priv->bssid));

			priv->status &= ~(STATUS_ASSOCIATING |
					  STATUS_AUTH |
					  STATUS_ASSOCIATED);

			netif_carrier_off(priv->net_dev);
			netif_stop_queue(priv->net_dev);
			queue_work(priv->workqueue, &priv->request_scan);
			notify_wx_assoc_event(priv);
			break;
			
		case CMAS_TX_AUTH_SEQ_1:
			IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
				  "AUTH_SEQ_1\n");
			break;
		case CMAS_RX_AUTH_SEQ_2:
			IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
				  "AUTH_SEQ_2\n");
			break;
		case CMAS_AUTH_SEQ_1_PASS:
			IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
				  "AUTH_SEQ_1_PASS\n");
			break;
		case CMAS_AUTH_SEQ_1_FAIL:
			IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
				  "AUTH_SEQ_1_FAIL\n");
			break;
		case CMAS_TX_AUTH_SEQ_3:
			IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
				  "AUTH_SEQ_3\n");
			break;
		case CMAS_RX_AUTH_SEQ_4:
			IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
				  "RX_AUTH_SEQ_4\n");
			break;
		case CMAS_AUTH_SEQ_2_PASS:
			IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
				  "AUTH_SEQ_2_PASS\n");
			break;
		case CMAS_AUTH_SEQ_2_FAIL:
			IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
				  "AUT_SEQ_2_FAIL\n");
			break;
		case CMAS_TX_ASSOC:
			IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
				  "TX_ASSOC\n");
			break;
		case CMAS_RX_ASSOC_RESP:
			IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
				  "RX_ASSOC_RESP\n");
			break;
		case CMAS_ASSOCIATED:
			IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
				  "ASSOCIATED\n");
			break;
		default:
			IPW_DEBUG_NOTIF("auth: failure - %d\n", auth->state);
			break;
		}
		break;
	}

	case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT: {
		struct notif_channel_result *x = &notif->u.channel_result;
		
		if (notif->size == sizeof(*x)) {
			IPW_DEBUG_SCAN("Scan result for channel %d\n", 
				       x->channel_num);
		} else {
			IPW_DEBUG_SCAN("Scan result of wrong size %d "
3469 3470
				       "(should be %zd)\n",
				       notif->size, sizeof(*x));
J
James Ketrenos 已提交
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
		}
		break;
	}

	case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED: {
		struct notif_scan_complete* x = &notif->u.scan_complete;
		if (notif->size == sizeof(*x)) {
			IPW_DEBUG_SCAN("Scan completed: type %d, %d channels, "
				       "%d status\n",
				       x->scan_type, 
				       x->num_channels, 
				       x->status);
		} else {
			IPW_ERROR("Scan completed of wrong size %d "
3485 3486
				  "(should be %zd)\n",
				  notif->size, sizeof(*x));
J
James Ketrenos 已提交
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
		}
	
		priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);

		cancel_delayed_work(&priv->scan_check);
		
		if (!(priv->status & (STATUS_ASSOCIATED | 
				      STATUS_ASSOCIATING |
				      STATUS_ROAMING |
				      STATUS_DISASSOCIATING)))
			queue_work(priv->workqueue, &priv->associate);
		else if (priv->status & STATUS_ROAMING) {
			/* If a scan completed and we are in roam mode, then
			 * the scan that completed was the one requested as a
			 * result of entering roam... so, schedule the 
			 * roam work */
			queue_work(priv->workqueue, &priv->roam);
		} else if (priv->status & STATUS_SCAN_PENDING)
			queue_work(priv->workqueue, &priv->request_scan);

		priv->ieee->scans++;
		break;
	}

	case HOST_NOTIFICATION_STATUS_FRAG_LENGTH: {
		struct notif_frag_length *x = &notif->u.frag_len;

		if (notif->size == sizeof(*x)) {
			IPW_ERROR("Frag length: %d\n", x->frag_length);
		} else {
			IPW_ERROR("Frag length of wrong size %d "
3518
				  "(should be %zd)\n",
J
James Ketrenos 已提交
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
				  notif->size, sizeof(*x));
		}
		break;
	}

	case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION: {
		struct notif_link_deterioration *x = 
			&notif->u.link_deterioration;
		if (notif->size==sizeof(*x)) {
			IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
				  "link deterioration: '%s' " MAC_FMT " \n", 
				  escape_essid(priv->essid, priv->essid_len),
				  MAC_ARG(priv->bssid));
			memcpy(&priv->last_link_deterioration, x, sizeof(*x));
		} else {
			IPW_ERROR("Link Deterioration of wrong size %d "
3535 3536
				  "(should be %zd)\n",
				  notif->size, sizeof(*x));
J
James Ketrenos 已提交
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
		}
		break;
	}

	case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE: {
		IPW_ERROR("Dino config\n");
		if (priv->hcmd && priv->hcmd->cmd == HOST_CMD_DINO_CONFIG) {
			/* TODO: Do anything special? */
		} else {
			IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
		}
		break;
	}

	case HOST_NOTIFICATION_STATUS_BEACON_STATE: {
		struct notif_beacon_state *x = &notif->u.beacon_state;
		if (notif->size != sizeof(*x)) {
			IPW_ERROR("Beacon state of wrong size %d (should "
3555
				  "be %zd)\n", notif->size, sizeof(*x));
J
James Ketrenos 已提交
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
			break;
		}

		if (x->state == HOST_NOTIFICATION_STATUS_BEACON_MISSING) {
			if (priv->status & STATUS_SCANNING) {
				/* Stop scan to keep fw from getting
				 * stuck... */
				queue_work(priv->workqueue,
					   &priv->abort_scan);
			}

			if (x->number > priv->missed_beacon_threshold &&
			    priv->status & STATUS_ASSOCIATED) {
				IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | 
					  IPW_DL_STATE,
					  "Missed beacon: %d - disassociate\n",
					  x->number);
				queue_work(priv->workqueue, 
					   &priv->disassociate);
			} else if (x->number > priv->roaming_threshold) {
				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, 
					  "Missed beacon: %d - initiate "
					  "roaming\n",
					  x->number);
				queue_work(priv->workqueue,
					   &priv->roam);
			} else {
				IPW_DEBUG_NOTIF("Missed beacon: %d\n",
						x->number);
			}

			priv->notif_missed_beacons = x->number;

                }


		break;
	}

	case HOST_NOTIFICATION_STATUS_TGI_TX_KEY: {
		struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
		if (notif->size==sizeof(*x)) {
			IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
				  "0x%02x station %d\n",
				  x->key_state,x->security_type,
				  x->station_index);
			break;
		} 

3605 3606
		IPW_ERROR("TGi Tx Key of wrong size %d (should be %zd)\n",
			  notif->size, sizeof(*x));
J
James Ketrenos 已提交
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
		break;
	}

	case HOST_NOTIFICATION_CALIB_KEEP_RESULTS: {
		struct notif_calibration *x = &notif->u.calibration;

		if (notif->size == sizeof(*x)) {
			memcpy(&priv->calib, x, sizeof(*x));
			IPW_DEBUG_INFO("TODO: Calibration\n");
			break;
		} 
		
3619 3620
		IPW_ERROR("Calibration of wrong size %d (should be %zd)\n",
			  notif->size, sizeof(*x));
J
James Ketrenos 已提交
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
		break;
	}

	case HOST_NOTIFICATION_NOISE_STATS: {
		if (notif->size == sizeof(u32)) {
			priv->last_noise = (u8)(notif->u.noise.value & 0xff);
			average_add(&priv->average_noise, priv->last_noise);
			break;
		}

3631
		IPW_ERROR("Noise stat is wrong size %d (should be %zd)\n",
J
James Ketrenos 已提交
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
			  notif->size, sizeof(u32));
		break;
	}

	default:
		IPW_ERROR("Unknown notification: "
			  "subtype=%d,flags=0x%2x,size=%d\n",
			  notif->subtype, notif->flags, notif->size);
	}
}

/**
 * Destroys all DMA structures and initialise them again
 * 
 * @param priv
 * @return error code
 */
static int ipw_queue_reset(struct ipw_priv *priv)
{
	int rc = 0;
	/** @todo customize queue sizes */
	int nTx = 64, nTxCmd = 8;
	ipw_tx_queue_free(priv);
	/* Tx CMD queue */
	rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
			       CX2_TX_CMD_QUEUE_READ_INDEX,
			       CX2_TX_CMD_QUEUE_WRITE_INDEX,
			       CX2_TX_CMD_QUEUE_BD_BASE,
			       CX2_TX_CMD_QUEUE_BD_SIZE);
	if (rc) {
		IPW_ERROR("Tx Cmd queue init failed\n");
		goto error;
	}
	/* Tx queue(s) */
	rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
			       CX2_TX_QUEUE_0_READ_INDEX,
			       CX2_TX_QUEUE_0_WRITE_INDEX,
			       CX2_TX_QUEUE_0_BD_BASE,
			       CX2_TX_QUEUE_0_BD_SIZE);
	if (rc) {
		IPW_ERROR("Tx 0 queue init failed\n");
		goto error;
	}
	rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
			       CX2_TX_QUEUE_1_READ_INDEX,
			       CX2_TX_QUEUE_1_WRITE_INDEX,
			       CX2_TX_QUEUE_1_BD_BASE,
			       CX2_TX_QUEUE_1_BD_SIZE);
	if (rc) {
		IPW_ERROR("Tx 1 queue init failed\n");
		goto error;
	}
	rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
			       CX2_TX_QUEUE_2_READ_INDEX,
			       CX2_TX_QUEUE_2_WRITE_INDEX,
			       CX2_TX_QUEUE_2_BD_BASE,
			       CX2_TX_QUEUE_2_BD_SIZE);
	if (rc) {
		IPW_ERROR("Tx 2 queue init failed\n");
		goto error;
	}
	rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
			       CX2_TX_QUEUE_3_READ_INDEX,
			       CX2_TX_QUEUE_3_WRITE_INDEX,
			       CX2_TX_QUEUE_3_BD_BASE,
			       CX2_TX_QUEUE_3_BD_SIZE);
	if (rc) {
		IPW_ERROR("Tx 3 queue init failed\n");
		goto error;
	}
	/* statistics */
	priv->rx_bufs_min = 0;
	priv->rx_pend_max = 0;
	return rc;

 error:
	ipw_tx_queue_free(priv);
	return rc;
}

/**
 * Reclaim Tx queue entries no more used by NIC.
 * 
 * When FW adwances 'R' index, all entries between old and
 * new 'R' index need to be reclaimed. As result, some free space
 * forms. If there is enough free space (> low mark), wake Tx queue.
 * 
 * @note Need to protect against garbage in 'R' index
 * @param priv
 * @param txq
 * @param qindex
 * @return Number of used entries remains in the queue
 */
static int ipw_queue_tx_reclaim(struct ipw_priv *priv, 
				struct clx2_tx_queue *txq, int qindex)
{
	u32 hw_tail;
	int used;
	struct clx2_queue *q = &txq->q;

	hw_tail = ipw_read32(priv, q->reg_r);
	if (hw_tail >= q->n_bd) {
		IPW_ERROR
			("Read index for DMA queue (%d) is out of range [0-%d)\n",
			 hw_tail, q->n_bd);
		goto done;
	}
	for (; q->last_used != hw_tail;
	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
		ipw_queue_tx_free_tfd(priv, txq);
		priv->tx_packets++;
	}
 done:
	if (ipw_queue_space(q) > q->low_mark && qindex >= 0) {
		__maybe_wake_tx(priv);
	}
	used = q->first_empty - q->last_used;
	if (used < 0)
		used += q->n_bd;

	return used;
}

static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
			     int len, int sync)
{
	struct clx2_tx_queue *txq = &priv->txq_cmd;
	struct clx2_queue *q = &txq->q;
	struct tfd_frame *tfd;

	if (ipw_queue_space(q) < (sync ? 1 : 2)) {
		IPW_ERROR("No space for Tx\n");
		return -EBUSY;
	}

	tfd = &txq->bd[q->first_empty];
	txq->txb[q->first_empty] = NULL;

	memset(tfd, 0, sizeof(*tfd));
	tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
	priv->hcmd_seq++;
	tfd->u.cmd.index = hcmd;
	tfd->u.cmd.length = len;
	memcpy(tfd->u.cmd.payload, buf, len);
	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
	ipw_write32(priv, q->reg_w, q->first_empty);
	_ipw_read32(priv, 0x90);

	return 0;
}



/* 
 * Rx theory of operation
 *
 * The host allocates 32 DMA target addresses and passes the host address
 * to the firmware at register CX2_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
 * 0 to 31
 *
 * Rx Queue Indexes
 * The host/firmware share two index registers for managing the Rx buffers.
 *
 * The READ index maps to the first position that the firmware may be writing 
 * to -- the driver can read up to (but not including) this position and get 
 * good data.  
 * The READ index is managed by the firmware once the card is enabled.
 *
 * The WRITE index maps to the last position the driver has read from -- the
 * position preceding WRITE is the last slot the firmware can place a packet.
 *
 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
 * WRITE = READ.  
 *
 * During initialization the host sets up the READ queue position to the first 
 * INDEX position, and WRITE to the last (READ - 1 wrapped)
 *
 * When the firmware places a packet in a buffer it will advance the READ index
 * and fire the RX interrupt.  The driver can then query the READ index and
 * process as many packets as possible, moving the WRITE index forward as it
 * resets the Rx queue buffers with new memory.
 * 
 * The management in the driver is as follows:
 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When 
 *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
 *   to replensish the ipw->rxq->rx_free.  
 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
 *   ipw->rxq is replenished and the READ INDEX is updated (updating the
 *   'processed' and 'read' driver indexes as well)
 * + A received packet is processed and handed to the kernel network stack,
 *   detached from the ipw->rxq.  The driver 'processed' index is updated.
 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
 *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ 
 *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there 
 *   were enough free buffers and RX_STALLED is set it is cleared.
 *
 *
 * Driver sequence:
 *
 * ipw_rx_queue_alloc()       Allocates rx_free 
 * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
 *                            ipw_rx_queue_restock
 * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
 *                            queue, updates firmware pointers, and updates
 *                            the WRITE index.  If insufficient rx_free buffers
 *                            are available, schedules ipw_rx_queue_replenish
 *
 * -- enable interrupts --
 * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
 *                            READ INDEX, detaching the SKB from the pool. 
 *                            Moves the packet buffer from queue to rx_used.
 *                            Calls ipw_rx_queue_restock to refill any empty
 *                            slots.
 * ...
 *
 */

/* 
 * If there are slots in the RX queue that  need to be restocked,
 * and we have free pre-allocated buffers, fill the ranks as much
 * as we can pulling from rx_free.
 *
 * This moves the 'write' index forward to catch up with 'processed', and
 * also updates the memory address in the firmware to reference the new
 * target buffer.
 */
static void ipw_rx_queue_restock(struct ipw_priv *priv)
{
	struct ipw_rx_queue *rxq = priv->rxq;
	struct list_head *element;
	struct ipw_rx_mem_buffer *rxb;
	unsigned long flags;
	int write;

	spin_lock_irqsave(&rxq->lock, flags);
	write = rxq->write;
	while ((rxq->write != rxq->processed) && (rxq->free_count)) {
		element = rxq->rx_free.next;
		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
		list_del(element);

		ipw_write32(priv, CX2_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
			    rxb->dma_addr);
		rxq->queue[rxq->write] = rxb;
		rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
		rxq->free_count--;
	}
	spin_unlock_irqrestore(&rxq->lock, flags);

	/* If the pre-allocated buffer pool is dropping low, schedule to 
	 * refill it */
	if (rxq->free_count <= RX_LOW_WATERMARK)
		queue_work(priv->workqueue, &priv->rx_replenish);

	/* If we've added more space for the firmware to place data, tell it */
	if (write != rxq->write) 
		ipw_write32(priv, CX2_RX_WRITE_INDEX, rxq->write);
}

/*
 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
 * Also restock the Rx queue via ipw_rx_queue_restock.  
 * 
 * This is called as a scheduled work item (except for during intialization)
 */
static void ipw_rx_queue_replenish(void *data)
{
	struct ipw_priv *priv = data;
	struct ipw_rx_queue *rxq = priv->rxq;
	struct list_head *element;
	struct ipw_rx_mem_buffer *rxb;
	unsigned long flags;

	spin_lock_irqsave(&rxq->lock, flags);
	while (!list_empty(&rxq->rx_used)) {
		element = rxq->rx_used.next;
		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
		rxb->skb = alloc_skb(CX2_RX_BUF_SIZE, GFP_ATOMIC);
		if (!rxb->skb) {
			printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
			       priv->net_dev->name);
			/* We don't reschedule replenish work here -- we will
			 * call the restock method and if it still needs
			 * more buffers it will schedule replenish */
			break;
		}
		list_del(element);
		
		rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
		rxb->dma_addr = pci_map_single(
			priv->pci_dev, rxb->skb->data, CX2_RX_BUF_SIZE,
			PCI_DMA_FROMDEVICE);
		
		list_add_tail(&rxb->list, &rxq->rx_free);
		rxq->free_count++;
	}
	spin_unlock_irqrestore(&rxq->lock, flags);

	ipw_rx_queue_restock(priv);
}

/* Assumes that the skb field of the buffers in 'pool' is kept accurate.
 * If an SKB has been detached, the POOL needs to have it's SKB set to NULL
 * This free routine walks the list of POOL entries and if SKB is set to 
 * non NULL it is unmapped and freed
 */
static void ipw_rx_queue_free(struct ipw_priv *priv, 
			      struct ipw_rx_queue *rxq)
{
	int i;

	if (!rxq)
		return;
	
	for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
		if (rxq->pool[i].skb != NULL) {
			pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
					 CX2_RX_BUF_SIZE,
					 PCI_DMA_FROMDEVICE);
			dev_kfree_skb(rxq->pool[i].skb);
		}
	}

	kfree(rxq);
}

static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
{
	struct ipw_rx_queue *rxq;
	int i;

	rxq = (struct ipw_rx_queue *)kmalloc(sizeof(*rxq), GFP_KERNEL);
	memset(rxq, 0, sizeof(*rxq));
	spin_lock_init(&rxq->lock);
	INIT_LIST_HEAD(&rxq->rx_free);
	INIT_LIST_HEAD(&rxq->rx_used);

	/* Fill the rx_used queue with _all_ of the Rx buffers */
	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) 
		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);

	/* Set us so that we have processed and used all buffers, but have
	 * not restocked the Rx queue with fresh buffers */
	rxq->read = rxq->write = 0;
	rxq->processed = RX_QUEUE_SIZE - 1;
	rxq->free_count = 0;

	return rxq;
}

static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
{
	rate &= ~IEEE80211_BASIC_RATE_MASK;
	if (ieee_mode == IEEE_A) {
		switch (rate) {
		case IEEE80211_OFDM_RATE_6MB: 
			return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 
				1 : 0;
		case IEEE80211_OFDM_RATE_9MB: 
			return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 
				1 : 0;
		case IEEE80211_OFDM_RATE_12MB: 
			return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 
				1 : 0;
		case IEEE80211_OFDM_RATE_18MB: 
			return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 
				1 : 0;
		case IEEE80211_OFDM_RATE_24MB: 
			return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 
				1 : 0;
		case IEEE80211_OFDM_RATE_36MB: 
			return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 
				1 : 0;
		case IEEE80211_OFDM_RATE_48MB: 
			return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 
				1 : 0;
		case IEEE80211_OFDM_RATE_54MB: 
			return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 
				1 : 0;
		default:
			return 0;
		}
	}
	
	/* B and G mixed */
	switch (rate) {
	case IEEE80211_CCK_RATE_1MB: 
		return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
	case IEEE80211_CCK_RATE_2MB: 
		return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
	case IEEE80211_CCK_RATE_5MB: 
		return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
	case IEEE80211_CCK_RATE_11MB: 
		return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
	}

	/* If we are limited to B modulations, bail at this point */
	if (ieee_mode == IEEE_B)
		return 0;

	/* G */
	switch (rate) {
	case IEEE80211_OFDM_RATE_6MB: 
		return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
	case IEEE80211_OFDM_RATE_9MB: 
		return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
	case IEEE80211_OFDM_RATE_12MB: 
		return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
	case IEEE80211_OFDM_RATE_18MB: 
		return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
	case IEEE80211_OFDM_RATE_24MB: 
		return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
	case IEEE80211_OFDM_RATE_36MB: 
		return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
	case IEEE80211_OFDM_RATE_48MB: 
		return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
	case IEEE80211_OFDM_RATE_54MB: 
		return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
	}

	return 0;
}

static int ipw_compatible_rates(struct ipw_priv *priv, 
				const struct ieee80211_network *network,
				struct ipw_supported_rates *rates)
{
	int num_rates, i;

	memset(rates, 0, sizeof(*rates));
	num_rates = min(network->rates_len, (u8)IPW_MAX_RATES);
	rates->num_rates = 0;
	for (i = 0; i < num_rates; i++) {
		if (!ipw_is_rate_in_mask(priv, network->mode, network->rates[i])) {
			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
				       network->rates[i], priv->rates_mask);
			continue;
		}
		
		rates->supported_rates[rates->num_rates++] = network->rates[i];
	}

	num_rates = min(network->rates_ex_len, (u8)(IPW_MAX_RATES - num_rates));
	for (i = 0; i < num_rates; i++) {
		if (!ipw_is_rate_in_mask(priv, network->mode, network->rates_ex[i])) {
			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
				       network->rates_ex[i], priv->rates_mask);
			continue;
		}
		
		rates->supported_rates[rates->num_rates++] = network->rates_ex[i];
	}

	return rates->num_rates;
}

static inline void ipw_copy_rates(struct ipw_supported_rates *dest,
				  const struct ipw_supported_rates *src)
{
	u8 i;
	for (i = 0; i < src->num_rates; i++)
		dest->supported_rates[i] = src->supported_rates[i];
	dest->num_rates = src->num_rates;
}

/* TODO: Look at sniffed packets in the air to determine if the basic rate
 * mask should ever be used -- right now all callers to add the scan rates are
 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
			       u8 modulation, u32 rate_mask)
{
	u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ? 
		IEEE80211_BASIC_RATE_MASK : 0;
  
	if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
		rates->supported_rates[rates->num_rates++] = 
			IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;

	if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
		rates->supported_rates[rates->num_rates++] = 
			IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;

	if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
		rates->supported_rates[rates->num_rates++] = basic_mask | 
			IEEE80211_CCK_RATE_5MB;

	if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
		rates->supported_rates[rates->num_rates++] = basic_mask | 
			IEEE80211_CCK_RATE_11MB;
}

static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
				u8 modulation, u32 rate_mask)
{
	u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ? 
		IEEE80211_BASIC_RATE_MASK : 0;

	if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
		rates->supported_rates[rates->num_rates++] = basic_mask | 
			IEEE80211_OFDM_RATE_6MB;

	if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
		rates->supported_rates[rates->num_rates++] = 
			IEEE80211_OFDM_RATE_9MB;

	if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
		rates->supported_rates[rates->num_rates++] = basic_mask | 
			IEEE80211_OFDM_RATE_12MB;

	if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
		rates->supported_rates[rates->num_rates++] = 
			IEEE80211_OFDM_RATE_18MB;

	if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
		rates->supported_rates[rates->num_rates++] = basic_mask | 
			IEEE80211_OFDM_RATE_24MB;

	if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
		rates->supported_rates[rates->num_rates++] = 
			IEEE80211_OFDM_RATE_36MB;

	if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
		rates->supported_rates[rates->num_rates++] = 
			IEEE80211_OFDM_RATE_48MB;

	if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
		rates->supported_rates[rates->num_rates++] = 
			IEEE80211_OFDM_RATE_54MB;
}

struct ipw_network_match {
	struct ieee80211_network *network;
	struct ipw_supported_rates rates;
};

static int ipw_best_network(
	struct ipw_priv *priv,
	struct ipw_network_match *match,
	struct ieee80211_network *network,
	int roaming)
{
	struct ipw_supported_rates rates;

	/* Verify that this network's capability is compatible with the
	 * current mode (AdHoc or Infrastructure) */
	if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
	     !(network->capability & WLAN_CAPABILITY_BSS)) || 
	    (priv->ieee->iw_mode == IW_MODE_ADHOC &&
	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
		IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
				"capability mismatch.\n", 
				escape_essid(network->ssid, network->ssid_len),
				MAC_ARG(network->bssid));
		return 0;
	}

	/* If we do not have an ESSID for this AP, we can not associate with
	 * it */
	if (network->flags & NETWORK_EMPTY_ESSID) {
		IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
				"because of hidden ESSID.\n",
				escape_essid(network->ssid, network->ssid_len),
				MAC_ARG(network->bssid));
		return 0;
	}
	
	if (unlikely(roaming)) {
		/* If we are roaming, then ensure check if this is a valid
		 * network to try and roam to */
		if ((network->ssid_len != match->network->ssid_len) ||
		    memcmp(network->ssid, match->network->ssid, 
			   network->ssid_len)) {
			IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
					"because of non-network ESSID.\n",
					escape_essid(network->ssid, 
						     network->ssid_len),
					MAC_ARG(network->bssid));
			return 0;
		}
	} else {
		/* If an ESSID has been configured then compare the broadcast 
		 * ESSID to ours */		
		if ((priv->config & CFG_STATIC_ESSID) && 
		    ((network->ssid_len != priv->essid_len) ||
		     memcmp(network->ssid, priv->essid, 
			    min(network->ssid_len, priv->essid_len)))) {
			char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
			strncpy(escaped, escape_essid(
					network->ssid, network->ssid_len),
				sizeof(escaped));
			IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
					"because of ESSID mismatch: '%s'.\n", 
					escaped, MAC_ARG(network->bssid),
					escape_essid(priv->essid, priv->essid_len));
			return 0;
		}
	}

	/* If the old network rate is better than this one, don't bother
	 * testing everything else. */
	if (match->network && match->network->stats.rssi > 
	    network->stats.rssi) {
		char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
		strncpy(escaped, 
			escape_essid(network->ssid, network->ssid_len), 
			sizeof(escaped));
		IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
				"'%s (" MAC_FMT ")' has a stronger signal.\n",
				escaped, MAC_ARG(network->bssid),
				escape_essid(match->network->ssid,
					     match->network->ssid_len),
				MAC_ARG(match->network->bssid));
		return 0;
	}
	
	/* If this network has already had an association attempt within the
	 * last 3 seconds, do not try and associate again... */
	if (network->last_associate &&
	    time_after(network->last_associate + (HZ * 5UL), jiffies)) {
		IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
				"because of storming (%lu since last "
				"assoc attempt).\n",
				escape_essid(network->ssid, network->ssid_len),
				MAC_ARG(network->bssid),
				(jiffies - network->last_associate) / HZ);
		return 0;
	}

	/* Now go through and see if the requested network is valid... */
	if (priv->ieee->scan_age != 0 && 
	    jiffies - network->last_scanned > priv->ieee->scan_age) {
		IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
				"because of age: %lums.\n",
				escape_essid(network->ssid, network->ssid_len),
				MAC_ARG(network->bssid),
				(jiffies - network->last_scanned) / (HZ / 100));
		return 0;
	}	

	if ((priv->config & CFG_STATIC_CHANNEL) && 
	    (network->channel != priv->channel)) {
		IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
				"because of channel mismatch: %d != %d.\n",
				escape_essid(network->ssid, network->ssid_len),
				MAC_ARG(network->bssid),
				network->channel, priv->channel);
		return 0;
	}
	
	/* Verify privacy compatability */
	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) != 
	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
		IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
				"because of privacy mismatch: %s != %s.\n",
				escape_essid(network->ssid, network->ssid_len),
				MAC_ARG(network->bssid),
				priv->capability & CAP_PRIVACY_ON ? "on" : 
				"off",
				network->capability & 
				WLAN_CAPABILITY_PRIVACY ?"on" : "off");
		return 0;
	}
	
	if ((priv->config & CFG_STATIC_BSSID) && 
	    memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
		IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
				"because of BSSID mismatch: " MAC_FMT ".\n",
				escape_essid(network->ssid, network->ssid_len),
				MAC_ARG(network->bssid),
				MAC_ARG(priv->bssid));
		return 0;
	}
	
	/* Filter out any incompatible freq / mode combinations */
	if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
		IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
				"because of invalid frequency/mode "
				"combination.\n",
				escape_essid(network->ssid, network->ssid_len),
				MAC_ARG(network->bssid));
		return 0;
	}
	
	ipw_compatible_rates(priv, network, &rates);
	if (rates.num_rates == 0) {
		IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
				"because of no compatible rates.\n",
				escape_essid(network->ssid, network->ssid_len),
				MAC_ARG(network->bssid));
		return 0;
	}
	
	/* TODO: Perform any further minimal comparititive tests.  We do not
	 * want to put too much policy logic here; intelligent scan selection
	 * should occur within a generic IEEE 802.11 user space tool.  */

	/* Set up 'new' AP to this network */
	ipw_copy_rates(&match->rates, &rates);
	match->network = network;

	IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
			escape_essid(network->ssid, network->ssid_len),
			MAC_ARG(network->bssid));

	return 1;
}


static void ipw_adhoc_create(struct ipw_priv *priv, 
			    struct ieee80211_network *network)
{
	/*
	 * For the purposes of scanning, we can set our wireless mode
	 * to trigger scans across combinations of bands, but when it
	 * comes to creating a new ad-hoc network, we have tell the FW
	 * exactly which band to use.
	 *
	 * We also have the possibility of an invalid channel for the 
	 * chossen band.  Attempting to create a new ad-hoc network
	 * with an invalid channel for wireless mode will trigger a
	 * FW fatal error.
	 */
	network->mode = is_valid_channel(priv->ieee->mode, priv->channel);
	if (network->mode) {
		network->channel = priv->channel;
	} else {
		IPW_WARNING("Overriding invalid channel\n");
		if (priv->ieee->mode & IEEE_A) {
			network->mode = IEEE_A;
			priv->channel = band_a_active_channel[0];
		} else if (priv->ieee->mode & IEEE_G) {
			network->mode = IEEE_G;
			priv->channel = band_b_active_channel[0];
		} else {
			network->mode = IEEE_B;
			priv->channel = band_b_active_channel[0];
		}
	}

	network->channel = priv->channel;
	priv->config |= CFG_ADHOC_PERSIST;
	ipw_create_bssid(priv, network->bssid);
	network->ssid_len = priv->essid_len;
	memcpy(network->ssid, priv->essid, priv->essid_len);
	memset(&network->stats, 0, sizeof(network->stats));
	network->capability = WLAN_CAPABILITY_IBSS;
	if (priv->capability & CAP_PRIVACY_ON)
		network->capability |= WLAN_CAPABILITY_PRIVACY;
	network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
	memcpy(network->rates, priv->rates.supported_rates, 
	       network->rates_len);
	network->rates_ex_len = priv->rates.num_rates - network->rates_len;
	memcpy(network->rates_ex, 
	       &priv->rates.supported_rates[network->rates_len],
	       network->rates_ex_len);
	network->last_scanned = 0;
	network->flags = 0;
	network->last_associate = 0;
	network->time_stamp[0] = 0;
	network->time_stamp[1] = 0;
	network->beacon_interval = 100; /* Default */
	network->listen_interval = 10;  /* Default */
	network->atim_window = 0;       /* Default */
#ifdef CONFIG_IEEE80211_WPA		
	network->wpa_ie_len = 0;
	network->rsn_ie_len = 0;
#endif /* CONFIG_IEEE80211_WPA */	
}

static void ipw_send_wep_keys(struct ipw_priv *priv)
{
	struct ipw_wep_key *key;
	int i;
	struct host_cmd cmd = {
		.cmd = IPW_CMD_WEP_KEY,
		.len = sizeof(*key)
	};

	key = (struct ipw_wep_key *)&cmd.param;
	key->cmd_id = DINO_CMD_WEP_KEY;
	key->seq_num = 0;

	for (i = 0; i < 4; i++) { 
		key->key_index = i;
		if (!(priv->sec.flags & (1 << i))) {
			key->key_size = 0;
		} else {
			key->key_size = priv->sec.key_sizes[i];
			memcpy(key->key, priv->sec.keys[i], key->key_size);
		}

		if (ipw_send_cmd(priv, &cmd)) {
			IPW_ERROR("failed to send WEP_KEY command\n");
			return;
		}
	}   
}

static void ipw_adhoc_check(void *data)
{
	struct ipw_priv *priv = data;
	
	if (priv->missed_adhoc_beacons++ > priv->missed_beacon_threshold &&
	    !(priv->config & CFG_ADHOC_PERSIST)) {
		IPW_DEBUG_SCAN("Disassociating due to missed beacons\n");
		ipw_remove_current_network(priv);
		ipw_disassociate(priv);
		return;
	}

	queue_delayed_work(priv->workqueue, &priv->adhoc_check, 
			   priv->assoc_request.beacon_interval);
}

#ifdef CONFIG_IPW_DEBUG
static void ipw_debug_config(struct ipw_priv *priv)
{
	IPW_DEBUG_INFO("Scan completed, no valid APs matched "
		       "[CFG 0x%08X]\n", priv->config);
	if (priv->config & CFG_STATIC_CHANNEL)
		IPW_DEBUG_INFO("Channel locked to %d\n", 
			       priv->channel);
	else
		IPW_DEBUG_INFO("Channel unlocked.\n");
	if (priv->config & CFG_STATIC_ESSID)
		IPW_DEBUG_INFO("ESSID locked to '%s'\n", 
			       escape_essid(priv->essid, 
					    priv->essid_len));
	else
		IPW_DEBUG_INFO("ESSID unlocked.\n");
	if (priv->config & CFG_STATIC_BSSID)
		IPW_DEBUG_INFO("BSSID locked to %d\n", priv->channel);
	else
		IPW_DEBUG_INFO("BSSID unlocked.\n");
	if (priv->capability & CAP_PRIVACY_ON)
		IPW_DEBUG_INFO("PRIVACY on\n");
	else
		IPW_DEBUG_INFO("PRIVACY off\n");
	IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
}
#else
#define ipw_debug_config(x) do {} while (0);
#endif

static inline void ipw_set_fixed_rate(struct ipw_priv *priv,
				      struct ieee80211_network *network)
{
	/* TODO: Verify that this works... */
	struct ipw_fixed_rate fr = {
		.tx_rates = priv->rates_mask
	};
	u32 reg;
	u16 mask = 0;

	/* Identify 'current FW band' and match it with the fixed 
	 * Tx rates */
		
	switch (priv->ieee->freq_band) {
	case IEEE80211_52GHZ_BAND: /* A only */
		/* IEEE_A */
		if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
			/* Invalid fixed rate mask */
			fr.tx_rates = 0;
			break;
		}
			
		fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
		break;

	default: /* 2.4Ghz or Mixed */
		/* IEEE_B */
		if (network->mode == IEEE_B) {
			if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
				/* Invalid fixed rate mask */
				fr.tx_rates = 0;
			}
			break;
		} 

		/* IEEE_G */
		if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
				    IEEE80211_OFDM_RATES_MASK)) {
			/* Invalid fixed rate mask */
			fr.tx_rates = 0;
			break;
		}

		if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
			mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
			fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
		}
		
		if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
			mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
			fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
		}
		
		if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
			mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
			fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
		}
		
		fr.tx_rates |= mask;
		break;
	}

	reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
	ipw_write_reg32(priv, reg, *(u32*)&fr);
}

static int ipw_associate_network(struct ipw_priv *priv,
				 struct ieee80211_network *network,
				 struct ipw_supported_rates *rates,
				 int roaming)
{
	int err;

	if (priv->config & CFG_FIXED_RATE)
		ipw_set_fixed_rate(priv, network);

	if (!(priv->config & CFG_STATIC_ESSID)) {
		priv->essid_len = min(network->ssid_len, 
				      (u8)IW_ESSID_MAX_SIZE);
		memcpy(priv->essid, network->ssid, priv->essid_len);
	}

	network->last_associate = jiffies;

	memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
	priv->assoc_request.channel = network->channel;
	if ((priv->capability & CAP_PRIVACY_ON) &&
	    (priv->capability & CAP_SHARED_KEY)) {
		priv->assoc_request.auth_type = AUTH_SHARED_KEY;
		priv->assoc_request.auth_key = priv->sec.active_key;
	} else {
		priv->assoc_request.auth_type = AUTH_OPEN;
		priv->assoc_request.auth_key = 0;
	}

	if (priv->capability & CAP_PRIVACY_ON) 
		ipw_send_wep_keys(priv);

	/* 
	 * It is valid for our ieee device to support multiple modes, but 
	 * when it comes to associating to a given network we have to choose 
	 * just one mode.
	 */
	if (network->mode & priv->ieee->mode & IEEE_A)
		priv->assoc_request.ieee_mode = IPW_A_MODE;
	else if (network->mode & priv->ieee->mode & IEEE_G)
		priv->assoc_request.ieee_mode = IPW_G_MODE;
	else if (network->mode & priv->ieee->mode & IEEE_B)
		priv->assoc_request.ieee_mode = IPW_B_MODE;

	IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
			"802.11%c [%d], enc=%s%s%s%c%c\n",
			roaming ? "Rea" : "A",
			escape_essid(priv->essid, priv->essid_len), 
			network->channel, 
			ipw_modes[priv->assoc_request.ieee_mode], 
			rates->num_rates, 
			priv->capability & CAP_PRIVACY_ON ? "on " : "off",
			priv->capability & CAP_PRIVACY_ON ? 
			(priv->capability & CAP_SHARED_KEY ? "(shared)" : 
			 "(open)") : "",
			priv->capability & CAP_PRIVACY_ON ? " key=" : "",
			priv->capability & CAP_PRIVACY_ON ? 
			'1' + priv->sec.active_key : '.',
			priv->capability & CAP_PRIVACY_ON ? 
			'.' : ' ');

	priv->assoc_request.beacon_interval = network->beacon_interval;
	if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
	    (network->time_stamp[0] == 0) &&
	    (network->time_stamp[1] == 0)) {
		priv->assoc_request.assoc_type = HC_IBSS_START;
		priv->assoc_request.assoc_tsf_msw = 0;
		priv->assoc_request.assoc_tsf_lsw = 0;
	} else {
		if (unlikely(roaming))
			priv->assoc_request.assoc_type = HC_REASSOCIATE;
		else
			priv->assoc_request.assoc_type = HC_ASSOCIATE;
		priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
		priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
	}

	memcpy(&priv->assoc_request.bssid, network->bssid, ETH_ALEN);

	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
		memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
		priv->assoc_request.atim_window = network->atim_window;
	} else {
		memcpy(&priv->assoc_request.dest, network->bssid, 
		       ETH_ALEN);
		priv->assoc_request.atim_window = 0;
	}

	priv->assoc_request.capability = network->capability;
	priv->assoc_request.listen_interval = network->listen_interval;
	
	err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
	if (err) {
		IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
		return err;
	}

	rates->ieee_mode = priv->assoc_request.ieee_mode;
	rates->purpose = IPW_RATE_CONNECT;
	ipw_send_supported_rates(priv, rates);
	
	if (priv->assoc_request.ieee_mode == IPW_G_MODE)
		priv->sys_config.dot11g_auto_detection = 1;
	else
		priv->sys_config.dot11g_auto_detection = 0;
	err = ipw_send_system_config(priv, &priv->sys_config);
	if (err) {
		IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
		return err;
	}
	
	IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
	err = ipw_set_sensitivity(priv, network->stats.rssi);
	if (err) {
		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
		return err;
	}

	/*
	 * If preemption is enabled, it is possible for the association
	 * to complete before we return from ipw_send_associate.  Therefore
	 * we have to be sure and update our priviate data first.
	 */
	priv->channel = network->channel;
	memcpy(priv->bssid, network->bssid, ETH_ALEN);
	priv->status |= STATUS_ASSOCIATING;	
	priv->status &= ~STATUS_SECURITY_UPDATED;

	priv->assoc_network = network;

	err = ipw_send_associate(priv, &priv->assoc_request);
	if (err) {
		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
		return err;
	}
	
	IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n", 
		  escape_essid(priv->essid, priv->essid_len),
		  MAC_ARG(priv->bssid));

	return 0;
}

static void ipw_roam(void *data)
{
	struct ipw_priv *priv = data;
	struct ieee80211_network *network = NULL;
	struct ipw_network_match match = {
		.network = priv->assoc_network
	};

	/* The roaming process is as follows:
	 * 
	 * 1.  Missed beacon threshold triggers the roaming process by 
	 *     setting the status ROAM bit and requesting a scan.
	 * 2.  When the scan completes, it schedules the ROAM work
	 * 3.  The ROAM work looks at all of the known networks for one that
	 *     is a better network than the currently associated.  If none
	 *     found, the ROAM process is over (ROAM bit cleared)
	 * 4.  If a better network is found, a disassociation request is
	 *     sent.
	 * 5.  When the disassociation completes, the roam work is again
	 *     scheduled.  The second time through, the driver is no longer
	 *     associated, and the newly selected network is sent an
	 *     association request.  
	 * 6.  At this point ,the roaming process is complete and the ROAM
	 *     status bit is cleared.
	 */

	/* If we are no longer associated, and the roaming bit is no longer
	 * set, then we are not actively roaming, so just return */
	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
		return;
	
	if (priv->status & STATUS_ASSOCIATED) {
		/* First pass through ROAM process -- look for a better 
		 * network */
		u8 rssi = priv->assoc_network->stats.rssi;
		priv->assoc_network->stats.rssi = -128;
		list_for_each_entry(network, &priv->ieee->network_list, list) {
			if (network != priv->assoc_network)
				ipw_best_network(priv, &match, network, 1);
		}
		priv->assoc_network->stats.rssi = rssi;
		
		if (match.network == priv->assoc_network) {
			IPW_DEBUG_ASSOC("No better APs in this network to "
					"roam to.\n");
			priv->status &= ~STATUS_ROAMING;
			ipw_debug_config(priv);
			return;
		}
		
		ipw_send_disassociate(priv, 1);
		priv->assoc_network = match.network;

		return;
	} 

	/* Second pass through ROAM process -- request association */
	ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
	ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
	priv->status &= ~STATUS_ROAMING;
}

static void ipw_associate(void *data)
{
	struct ipw_priv *priv = data;

	struct ieee80211_network *network = NULL;
	struct ipw_network_match match = {
		.network = NULL
	};
	struct ipw_supported_rates *rates;
	struct list_head *element;

	if (!(priv->config & CFG_ASSOCIATE) &&
	    !(priv->config & (CFG_STATIC_ESSID |
			      CFG_STATIC_CHANNEL |
			      CFG_STATIC_BSSID))) {
		IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
		return;
	}

	list_for_each_entry(network, &priv->ieee->network_list, list) 
		ipw_best_network(priv, &match, network, 0);

	network = match.network;
	rates = &match.rates;

	if (network == NULL &&
	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
	    priv->config & CFG_ADHOC_CREATE &&
	    priv->config & CFG_STATIC_ESSID &&
	    !list_empty(&priv->ieee->network_free_list)) {
		element = priv->ieee->network_free_list.next;
		network = list_entry(element, struct ieee80211_network, 
				     list);
		ipw_adhoc_create(priv, network);
		rates = &priv->rates;
		list_del(element);
		list_add_tail(&network->list, &priv->ieee->network_list);
	}
	    
	/* If we reached the end of the list, then we don't have any valid
	 * matching APs */
	if (!network) {
		ipw_debug_config(priv);

		queue_delayed_work(priv->workqueue, &priv->request_scan, 
				   SCAN_INTERVAL);
		
		return;
	}

	ipw_associate_network(priv, network, rates, 0);
}
	
static inline void ipw_handle_data_packet(struct ipw_priv *priv, 
					      struct ipw_rx_mem_buffer *rxb,
					      struct ieee80211_rx_stats *stats)
{
	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;

	/* We received data from the HW, so stop the watchdog */
	priv->net_dev->trans_start = jiffies;

	/* We only process data packets if the 
	 * interface is open */
	if (unlikely((pkt->u.frame.length + IPW_RX_FRAME_SIZE) > 
		     skb_tailroom(rxb->skb))) {
		priv->ieee->stats.rx_errors++;
		priv->wstats.discard.misc++;
		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
		return;
	} else if (unlikely(!netif_running(priv->net_dev))) {
		priv->ieee->stats.rx_dropped++;
		priv->wstats.discard.misc++;
		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
		return;
	}

	/* Advance skb->data to the start of the actual payload */
4826
	skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
J
James Ketrenos 已提交
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981

	/* Set the size of the skb to the size of the frame */
	skb_put(rxb->skb, pkt->u.frame.length);

	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);

	if (!ieee80211_rx(priv->ieee, rxb->skb, stats)) 
		priv->ieee->stats.rx_errors++;
	else /* ieee80211_rx succeeded, so it now owns the SKB */
		rxb->skb = NULL;
}


/*
 * Main entry function for recieving a packet with 80211 headers.  This
 * should be called when ever the FW has notified us that there is a new
 * skb in the recieve queue.
 */
static void ipw_rx(struct ipw_priv *priv)
{
	struct ipw_rx_mem_buffer *rxb;
	struct ipw_rx_packet *pkt;
	struct ieee80211_hdr *header;
	u32 r, w, i;
	u8 network_packet;

	r = ipw_read32(priv, CX2_RX_READ_INDEX);
	w = ipw_read32(priv, CX2_RX_WRITE_INDEX);
	i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;

	while (i != r) {
		rxb = priv->rxq->queue[i];
#ifdef CONFIG_IPW_DEBUG
		if (unlikely(rxb == NULL)) {
			printk(KERN_CRIT "Queue not allocated!\n");
			break;
		}
#endif
		priv->rxq->queue[i] = NULL;

		pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
					    CX2_RX_BUF_SIZE, 
					    PCI_DMA_FROMDEVICE);

		pkt = (struct ipw_rx_packet *)rxb->skb->data;
		IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
			     pkt->header.message_type,
			     pkt->header.rx_seq_num,
			     pkt->header.control_bits);

		switch (pkt->header.message_type) {
		case RX_FRAME_TYPE: /* 802.11 frame */ {
			struct ieee80211_rx_stats stats = {
				.rssi = pkt->u.frame.rssi_dbm - 
				IPW_RSSI_TO_DBM,
				.signal = pkt->u.frame.signal,
				.rate = pkt->u.frame.rate,
				.mac_time = jiffies,
	       			.received_channel = 
				pkt->u.frame.received_channel,
				.freq = (pkt->u.frame.control & (1<<0)) ? 
				IEEE80211_24GHZ_BAND : IEEE80211_52GHZ_BAND,
				.len = pkt->u.frame.length,
			};

			if (stats.rssi != 0)
				stats.mask |= IEEE80211_STATMASK_RSSI;
			if (stats.signal != 0)
				stats.mask |= IEEE80211_STATMASK_SIGNAL;
			if (stats.rate != 0)
				stats.mask |= IEEE80211_STATMASK_RATE;

			priv->rx_packets++;

#ifdef CONFIG_IPW_PROMISC
			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
				ipw_handle_data_packet(priv, rxb, &stats);
				break;
			}
#endif
			
			header = (struct ieee80211_hdr *)(rxb->skb->data + 
							  IPW_RX_FRAME_SIZE);
				/* TODO: Check Ad-Hoc dest/source and make sure
				 * that we are actually parsing these packets
				 * correctly -- we should probably use the 
				 * frame control of the packet and disregard
				 * the current iw_mode */
			switch (priv->ieee->iw_mode) {
			case IW_MODE_ADHOC:
				network_packet = 
					!memcmp(header->addr1, 
						priv->net_dev->dev_addr, 
						ETH_ALEN) ||
					!memcmp(header->addr3, 
						priv->bssid, ETH_ALEN) ||
					is_broadcast_ether_addr(header->addr1) ||
					is_multicast_ether_addr(header->addr1);
				break;

			case IW_MODE_INFRA:
			default:
				network_packet = 
					!memcmp(header->addr3, 
						priv->bssid, ETH_ALEN) ||
					!memcmp(header->addr1, 
						priv->net_dev->dev_addr, 
						ETH_ALEN) ||
					is_broadcast_ether_addr(header->addr1) ||
					is_multicast_ether_addr(header->addr1);
				break;
			}
			
			if (network_packet && priv->assoc_network) {
				priv->assoc_network->stats.rssi = stats.rssi;
				average_add(&priv->average_rssi, 
					    stats.rssi);
				priv->last_rx_rssi = stats.rssi;
			}

			IPW_DEBUG_RX("Frame: len=%u\n", pkt->u.frame.length);

			if (pkt->u.frame.length < frame_hdr_len(header)) {
				IPW_DEBUG_DROP("Received packet is too small. "
					       "Dropping.\n");
				priv->ieee->stats.rx_errors++;
				priv->wstats.discard.misc++;
				break;
			}
			
			switch (WLAN_FC_GET_TYPE(header->frame_ctl)) {
			case IEEE80211_FTYPE_MGMT:
				ieee80211_rx_mgt(priv->ieee, header, &stats);
				if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
				    ((WLAN_FC_GET_STYPE(header->frame_ctl) ==
				      IEEE80211_STYPE_PROBE_RESP) ||
				     (WLAN_FC_GET_STYPE(header->frame_ctl) ==
				      IEEE80211_STYPE_BEACON)) &&
				    !memcmp(header->addr3, priv->bssid, ETH_ALEN))
					ipw_add_station(priv, header->addr2);
				break;
				
			case IEEE80211_FTYPE_CTL:
				break;
				
			case IEEE80211_FTYPE_DATA:
				if (network_packet)
					ipw_handle_data_packet(priv, rxb, &stats);
				else
					IPW_DEBUG_DROP("Dropping: " MAC_FMT 
						       ", " MAC_FMT ", " MAC_FMT "\n",
						       MAC_ARG(header->addr1), MAC_ARG(header->addr2), 
						       MAC_ARG(header->addr3));
				break;
			}
			break;
		}

		case RX_HOST_NOTIFICATION_TYPE: {
			IPW_DEBUG_RX("Notification: subtype=%02X flags=%02X size=%d\n",
				     pkt->u.notification.subtype,
				     pkt->u.notification.flags,
				     pkt->u.notification.size);
			ipw_rx_notification(priv, &pkt->u.notification);
			break;
		}

		default:
			IPW_DEBUG_RX("Bad Rx packet of type %d\n",
				     pkt->header.message_type);
			break;
		}
		
		/* For now we just don't re-use anything.  We can tweak this 
		 * later to try and re-use notification packets and SKBs that 
		 * fail to Rx correctly */
		if (rxb->skb != NULL) {
			dev_kfree_skb_any(rxb->skb);
			rxb->skb = NULL;
		}
		
		pci_unmap_single(priv->pci_dev, rxb->dma_addr,
				 CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
		list_add_tail(&rxb->list, &priv->rxq->rx_used);
		
		i = (i + 1) % RX_QUEUE_SIZE;
	}

	/* Backtrack one entry */
	priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;

	ipw_rx_queue_restock(priv);
}

static void ipw_abort_scan(struct ipw_priv *priv)
{
	int err;

	if (priv->status & STATUS_SCAN_ABORTING) {
		IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
		return;
	}
	priv->status |= STATUS_SCAN_ABORTING;

	err = ipw_send_scan_abort(priv);
	if (err) 
		IPW_DEBUG_HC("Request to abort scan failed.\n");
}

static int ipw_request_scan(struct ipw_priv *priv)
{
	struct ipw_scan_request_ext scan;
	int channel_index = 0;
	int i, err, scan_type;
	
	if (priv->status & STATUS_EXIT_PENDING) {
		IPW_DEBUG_SCAN("Aborting scan due to device shutdown\n");
		priv->status |= STATUS_SCAN_PENDING;
		return 0;
	}

	if (priv->status & STATUS_SCANNING) {
		IPW_DEBUG_HC("Concurrent scan requested.  Aborting first.\n");
		priv->status |= STATUS_SCAN_PENDING;
		ipw_abort_scan(priv);
		return 0;
	}
	
	if (priv->status & STATUS_SCAN_ABORTING) {
		IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
		priv->status |= STATUS_SCAN_PENDING;
		return 0;
	}

	if (priv->status & STATUS_RF_KILL_MASK) {
		IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
		priv->status |= STATUS_SCAN_PENDING;
		return 0;
	}

	memset(&scan, 0, sizeof(scan));

	scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = 20;
	scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] = 20;
	scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 20;

	scan.full_scan_index = ieee80211_get_scans(priv->ieee);
	/* If we are roaming, then make this a directed scan for the current
	 * network.  Otherwise, ensure that every other scan is a fast 
	 * channel hop scan */
	if ((priv->status & STATUS_ROAMING) || (
		    !(priv->status & STATUS_ASSOCIATED) && 
		    (priv->config & CFG_STATIC_ESSID) && 
		    (scan.full_scan_index % 2))) {
		err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
		if (err) {
			IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
			return err;
		}
		
		scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
	} else {
		scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
	}
	
        if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
		int start = channel_index;
		for (i = 0; i < MAX_A_CHANNELS; i++) {
			if (band_a_active_channel[i] == 0)
				break;
			if ((priv->status & STATUS_ASSOCIATED) &&
			    band_a_active_channel[i] == priv->channel)
				continue;
			channel_index++;
			scan.channels_list[channel_index] = 
				band_a_active_channel[i];
			ipw_set_scan_type(&scan, channel_index, scan_type);
		}
		
		if (start != channel_index) {
			scan.channels_list[start] = (u8)(IPW_A_MODE << 6) | 
				(channel_index - start);
			channel_index++;
		}
	}

        if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
		int start = channel_index;
		for (i = 0; i < MAX_B_CHANNELS; i++) {
			if (band_b_active_channel[i] == 0)
				break;
			if ((priv->status & STATUS_ASSOCIATED) &&
			    band_b_active_channel[i] == priv->channel)
				continue;
			channel_index++;
			scan.channels_list[channel_index] = 
				band_b_active_channel[i];
			ipw_set_scan_type(&scan, channel_index, scan_type);
		}

		if (start != channel_index) {
			scan.channels_list[start] = (u8)(IPW_B_MODE << 6) | 
				(channel_index - start);
		}
	}
	
	err = ipw_send_scan_request_ext(priv, &scan);
	if (err) {
		IPW_DEBUG_HC("Sending scan command failed: %08X\n",
			     err);
		return -EIO;
	}

	priv->status |= STATUS_SCANNING;
	priv->status &= ~STATUS_SCAN_PENDING;

	return 0;
}

/*
 * This file defines the Wireless Extension handlers.  It does not
 * define any methods of hardware manipulation and relies on the
 * functions defined in ipw_main to provide the HW interaction.
 * 
 * The exception to this is the use of the ipw_get_ordinal() 
 * function used to poll the hardware vs. making unecessary calls.
 *
 */

static int ipw_wx_get_name(struct net_device *dev, 
			   struct iw_request_info *info, 
			   union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	if (!(priv->status & STATUS_ASSOCIATED))
		strcpy(wrqu->name, "unassociated");
	else 
		snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
			 ipw_modes[priv->assoc_request.ieee_mode]);
	IPW_DEBUG_WX("Name: %s\n", wrqu->name);
	return 0;
}

static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
{
	if (channel == 0) {
		IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
		priv->config &= ~CFG_STATIC_CHANNEL;
		if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED |
				      STATUS_ASSOCIATING))) {
			IPW_DEBUG_ASSOC("Attempting to associate with new "
					"parameters.\n");
			ipw_associate(priv);
		}

		return 0;
	}

	priv->config |= CFG_STATIC_CHANNEL;

	if (priv->channel == channel) {
		IPW_DEBUG_INFO(
			"Request to set channel to current value (%d)\n",
			channel);
		return 0;
	}

	IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
	priv->channel = channel;

	/* If we are currently associated, or trying to associate
	 * then see if this is a new channel (causing us to disassociate) */
	if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
		IPW_DEBUG_ASSOC("Disassociating due to channel change.\n");
		ipw_disassociate(priv);
	} else {
		ipw_associate(priv);
	}

	return 0;
}

static int ipw_wx_set_freq(struct net_device *dev, 
			   struct iw_request_info *info, 
			   union iwreq_data *wrqu, char *extra) 
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	struct iw_freq *fwrq = &wrqu->freq;
	
	/* if setting by freq convert to channel */
	if (fwrq->e == 1) {
		if ((fwrq->m >= (int) 2.412e8 &&
		     fwrq->m <= (int) 2.487e8)) {
			int f = fwrq->m / 100000;
			int c = 0;
			
			while ((c < REG_MAX_CHANNEL) &&
			       (f != ipw_frequencies[c]))
				c++;
			
			/* hack to fall through */
			fwrq->e = 0;
			fwrq->m = c + 1;
		}
	}
	
	if (fwrq->e > 0 || fwrq->m > 1000) 
		return -EOPNOTSUPP;

	IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
	return ipw_set_channel(priv, (u8)fwrq->m);
	
	return 0;
}


static int ipw_wx_get_freq(struct net_device *dev, 
			   struct iw_request_info *info, 
			   union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = ieee80211_priv(dev);

	wrqu->freq.e = 0;

	/* If we are associated, trying to associate, or have a statically
	 * configured CHANNEL then return that; otherwise return ANY */
	if (priv->config & CFG_STATIC_CHANNEL ||
	    priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))
		wrqu->freq.m = priv->channel;
	else 
		wrqu->freq.m = 0;

	IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
	return 0;
}

static int ipw_wx_set_mode(struct net_device *dev, 
			   struct iw_request_info *info, 
			   union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	int err = 0;

	IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);

	if (wrqu->mode == priv->ieee->iw_mode)
		return 0;

	switch (wrqu->mode) {
#ifdef CONFIG_IPW_PROMISC
	case IW_MODE_MONITOR:
#endif
	case IW_MODE_ADHOC:
	case IW_MODE_INFRA:
		break;
	case IW_MODE_AUTO:
		wrqu->mode = IW_MODE_INFRA;
		break;
	default:
		return -EINVAL;
	}

#ifdef CONFIG_IPW_PROMISC
	if (priv->ieee->iw_mode == IW_MODE_MONITOR) 
		priv->net_dev->type = ARPHRD_ETHER;
	
	if (wrqu->mode == IW_MODE_MONITOR) 
		priv->net_dev->type = ARPHRD_IEEE80211;
#endif /* CONFIG_IPW_PROMISC */
	
#ifdef CONFIG_PM
	/* Free the existing firmware and reset the fw_loaded 
	 * flag so ipw_load() will bring in the new firmawre */
	if (fw_loaded) {
		fw_loaded = 0;
	}

	release_firmware(bootfw);
	release_firmware(ucode);
	release_firmware(firmware);
	bootfw = ucode = firmware = NULL;
#endif

	priv->ieee->iw_mode = wrqu->mode;
	ipw_adapter_restart(priv);
	
 	return err;
}

static int ipw_wx_get_mode(struct net_device *dev, 
			       struct iw_request_info *info, 
			       union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = ieee80211_priv(dev);

	wrqu->mode = priv->ieee->iw_mode;
	IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);

	return 0;
}


#define DEFAULT_RTS_THRESHOLD     2304U
#define MIN_RTS_THRESHOLD         1U
#define MAX_RTS_THRESHOLD         2304U
#define DEFAULT_BEACON_INTERVAL   100U
#define	DEFAULT_SHORT_RETRY_LIMIT 7U
#define	DEFAULT_LONG_RETRY_LIMIT  4U

/* Values are in microsecond */
static const s32 timeout_duration[] = {
	350000,
	250000,
	75000,
	37000,
	25000,
};

static const s32 period_duration[] = {
	400000,
	700000,
	1000000,
	1000000,
	1000000
};

static int ipw_wx_get_range(struct net_device *dev, 
			    struct iw_request_info *info, 
			    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	struct iw_range *range = (struct iw_range *)extra;
	u16 val;
	int i;

	wrqu->data.length = sizeof(*range);
	memset(range, 0, sizeof(*range));

	/* 54Mbs == ~27 Mb/s real (802.11g) */
	range->throughput = 27 * 1000 * 1000;     

	range->max_qual.qual = 100;
	/* TODO: Find real max RSSI and stick here */
	range->max_qual.level = 0;
	range->max_qual.noise = 0;
	range->max_qual.updated = 7; /* Updated all three */

	range->avg_qual.qual = 70;
	/* TODO: Find real 'good' to 'bad' threshol value for RSSI */
	range->avg_qual.level = 0; /* FIXME to real average level */
	range->avg_qual.noise = 0;
	range->avg_qual.updated = 7; /* Updated all three */

	range->num_bitrates = min(priv->rates.num_rates, (u8)IW_MAX_BITRATES);

	for (i = 0; i < range->num_bitrates; i++) 
		range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) * 
			500000;
	
	range->max_rts = DEFAULT_RTS_THRESHOLD;
	range->min_frag = MIN_FRAG_THRESHOLD;
	range->max_frag = MAX_FRAG_THRESHOLD;

	range->encoding_size[0] = 5;
	range->encoding_size[1] = 13; 
	range->num_encoding_sizes = 2;
	range->max_encoding_tokens = WEP_KEYS;

	/* Set the Wireless Extension versions */
	range->we_version_compiled = WIRELESS_EXT;
	range->we_version_source = 16;

        range->num_channels = FREQ_COUNT;

	val = 0;
	for (i = 0; i < FREQ_COUNT; i++) {
		range->freq[val].i = i + 1;
		range->freq[val].m = ipw_frequencies[i] * 100000;
		range->freq[val].e = 1;
		val++;

		if (val == IW_MAX_FREQUENCIES)
			break;
	}
	range->num_frequency = val;

	IPW_DEBUG_WX("GET Range\n");
	return 0;
}

static int ipw_wx_set_wap(struct net_device *dev, 
			  struct iw_request_info *info, 
			  union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = ieee80211_priv(dev);

	static const unsigned char any[] = {
		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
	};
	static const unsigned char off[] = {
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
	};

	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER) 
		return -EINVAL;

	if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
	    !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
		/* we disable mandatory BSSID association */
		IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
		priv->config &= ~CFG_STATIC_BSSID;
		if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED |
				      STATUS_ASSOCIATING))) {
			IPW_DEBUG_ASSOC("Attempting to associate with new "
					"parameters.\n");
			ipw_associate(priv);
		}

		return 0;
	}

	priv->config |= CFG_STATIC_BSSID;
	if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
		IPW_DEBUG_WX("BSSID set to current BSSID.\n");
		return 0;
	}

	IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
		     MAC_ARG(wrqu->ap_addr.sa_data));

	memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);

	/* If we are currently associated, or trying to associate
	 * then see if this is a new BSSID (causing us to disassociate) */
	if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
		IPW_DEBUG_ASSOC("Disassociating due to BSSID change.\n");
		ipw_disassociate(priv);
	} else {
		ipw_associate(priv);
	}

	return 0;
}

static int ipw_wx_get_wap(struct net_device *dev, 
			  struct iw_request_info *info, 
			  union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	/* If we are associated, trying to associate, or have a statically
	 * configured BSSID then return that; otherwise return ANY */
	if (priv->config & CFG_STATIC_BSSID || 
	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
		memcpy(wrqu->ap_addr.sa_data, &priv->bssid, ETH_ALEN);
	} else
		memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);

	IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
		     MAC_ARG(wrqu->ap_addr.sa_data));
	return 0;
}

static int ipw_wx_set_essid(struct net_device *dev, 
			    struct iw_request_info *info, 
			    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	char *essid = ""; /* ANY */
	int length = 0;
  
	if (wrqu->essid.flags && wrqu->essid.length) {
		length = wrqu->essid.length - 1;
		essid = extra;
	}
	if (length == 0) {
		IPW_DEBUG_WX("Setting ESSID to ANY\n");
		priv->config &= ~CFG_STATIC_ESSID;
		if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED |
				      STATUS_ASSOCIATING))) {
			IPW_DEBUG_ASSOC("Attempting to associate with new "
					"parameters.\n");
			ipw_associate(priv);
		}

		return 0;
	}

	length = min(length, IW_ESSID_MAX_SIZE);

	priv->config |= CFG_STATIC_ESSID;

	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
		return 0;
	}

	IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
		     length);

	priv->essid_len = length;
	memcpy(priv->essid, essid, priv->essid_len);
	
	/* If we are currently associated, or trying to associate
	 * then see if this is a new ESSID (causing us to disassociate) */
	if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
		IPW_DEBUG_ASSOC("Disassociating due to ESSID change.\n");
		ipw_disassociate(priv);
	} else {
		ipw_associate(priv);
	}

	return 0;
}

static int ipw_wx_get_essid(struct net_device *dev, 
			    struct iw_request_info *info, 
			    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = ieee80211_priv(dev);

	/* If we are associated, trying to associate, or have a statically
	 * configured ESSID then return that; otherwise return ANY */
	if (priv->config & CFG_STATIC_ESSID ||
	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { 
		IPW_DEBUG_WX("Getting essid: '%s'\n", 
			     escape_essid(priv->essid, priv->essid_len));
		memcpy(extra, priv->essid, priv->essid_len); 
		wrqu->essid.length = priv->essid_len;
		wrqu->essid.flags = 1; /* active */
	} else {
		IPW_DEBUG_WX("Getting essid: ANY\n");
		wrqu->essid.length = 0;
		wrqu->essid.flags = 0; /* active */
	}

	return 0;
}

static int ipw_wx_set_nick(struct net_device *dev, 
			   struct iw_request_info *info, 
			   union iwreq_data *wrqu, char *extra)
{ 
	struct ipw_priv *priv = ieee80211_priv(dev);

	IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
		return -E2BIG;

	wrqu->data.length = min((size_t)wrqu->data.length, sizeof(priv->nick));
	memset(priv->nick, 0, sizeof(priv->nick));
	memcpy(priv->nick, extra,  wrqu->data.length);
	IPW_DEBUG_TRACE("<<\n");
	return 0;

}


static int ipw_wx_get_nick(struct net_device *dev, 
			   struct iw_request_info *info, 
			   union iwreq_data *wrqu, char *extra)
{ 
	struct ipw_priv *priv = ieee80211_priv(dev);
	IPW_DEBUG_WX("Getting nick\n");
	wrqu->data.length = strlen(priv->nick) + 1;
	memcpy(extra, priv->nick, wrqu->data.length);
	wrqu->data.flags = 1; /* active */
	return 0;
}


static int ipw_wx_set_rate(struct net_device *dev,
			   struct iw_request_info *info,
			   union iwreq_data *wrqu, char *extra)
{ 
	IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu);
	return -EOPNOTSUPP; 
}

static int ipw_wx_get_rate(struct net_device *dev, 
			   struct iw_request_info *info, 
			   union iwreq_data *wrqu, char *extra)
{ 
	struct ipw_priv * priv = ieee80211_priv(dev);
	wrqu->bitrate.value = priv->last_rate;

	IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
	return 0;
}


static int ipw_wx_set_rts(struct net_device *dev, 
			  struct iw_request_info *info, 
			  union iwreq_data *wrqu, char *extra)
{ 
	struct ipw_priv *priv = ieee80211_priv(dev);

	if (wrqu->rts.disabled)
		priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
	else {
		if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
		    wrqu->rts.value > MAX_RTS_THRESHOLD)
			return -EINVAL;
		
		priv->rts_threshold = wrqu->rts.value;
	}

	ipw_send_rts_threshold(priv, priv->rts_threshold);
	IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
	return 0;
}

static int ipw_wx_get_rts(struct net_device *dev, 
			  struct iw_request_info *info, 
			  union iwreq_data *wrqu, char *extra)
{ 
	struct ipw_priv *priv = ieee80211_priv(dev);
	wrqu->rts.value = priv->rts_threshold;
	wrqu->rts.fixed = 0;	/* no auto select */
	wrqu->rts.disabled = 
		(wrqu->rts.value == DEFAULT_RTS_THRESHOLD);

	IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
	return 0;
}


static int ipw_wx_set_txpow(struct net_device *dev, 
			    struct iw_request_info *info, 
			    union iwreq_data *wrqu, char *extra)
{ 
	struct ipw_priv *priv = ieee80211_priv(dev);
	struct ipw_tx_power tx_power;
	int i;

	if (ipw_radio_kill_sw(priv, wrqu->power.disabled))
		return -EINPROGRESS;

	if (wrqu->power.flags != IW_TXPOW_DBM)
		return -EINVAL;

	if ((wrqu->power.value > 20) || 
	    (wrqu->power.value < -12))
		return -EINVAL;

	priv->tx_power = wrqu->power.value;

	memset(&tx_power, 0, sizeof(tx_power));

	/* configure device for 'G' band */
	tx_power.ieee_mode = IPW_G_MODE;
	tx_power.num_channels = 11;
	for (i = 0; i < 11; i++) {
		tx_power.channels_tx_power[i].channel_number = i + 1;
		tx_power.channels_tx_power[i].tx_power = priv->tx_power;
	}
	if (ipw_send_tx_power(priv, &tx_power))
		goto error;

	/* configure device to also handle 'B' band */
	tx_power.ieee_mode = IPW_B_MODE;
	if (ipw_send_tx_power(priv, &tx_power))
		goto error;

	return 0;

 error:
	return -EIO;
}


static int ipw_wx_get_txpow(struct net_device *dev, 
			    struct iw_request_info *info, 
			    union iwreq_data *wrqu, char *extra)
{ 
	struct ipw_priv *priv = ieee80211_priv(dev);

	wrqu->power.value = priv->tx_power;
	wrqu->power.fixed = 1;
	wrqu->power.flags = IW_TXPOW_DBM;
	wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;

	IPW_DEBUG_WX("GET TX Power -> %s %d \n", 
		     wrqu->power.disabled ? "ON" : "OFF",
		     wrqu->power.value);

	return 0;
}

static int ipw_wx_set_frag(struct net_device *dev, 
			       struct iw_request_info *info, 
			       union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = ieee80211_priv(dev);

	if (wrqu->frag.disabled)
		priv->ieee->fts = DEFAULT_FTS;
	else {
		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
		    wrqu->frag.value > MAX_FRAG_THRESHOLD)
			return -EINVAL;
		
		priv->ieee->fts = wrqu->frag.value & ~0x1;
	}

	ipw_send_frag_threshold(priv, wrqu->frag.value);
	IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
	return 0;
}

static int ipw_wx_get_frag(struct net_device *dev, 
			       struct iw_request_info *info, 
			       union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	wrqu->frag.value = priv->ieee->fts;
	wrqu->frag.fixed = 0;	/* no auto select */
	wrqu->frag.disabled = 
		(wrqu->frag.value == DEFAULT_FTS);

	IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);

	return 0;
}

static int ipw_wx_set_retry(struct net_device *dev, 
			    struct iw_request_info *info, 
			    union iwreq_data *wrqu, char *extra)
{ 
	IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu);
	return -EOPNOTSUPP; 
}


static int ipw_wx_get_retry(struct net_device *dev, 
			    struct iw_request_info *info, 
			    union iwreq_data *wrqu, char *extra)
{ 
	IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu);
	return -EOPNOTSUPP; 
}


static int ipw_wx_set_scan(struct net_device *dev, 
			   struct iw_request_info *info, 
			   union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	IPW_DEBUG_WX("Start scan\n");
	if (ipw_request_scan(priv))
		return -EIO;
	return 0;
}

static int ipw_wx_get_scan(struct net_device *dev, 
			   struct iw_request_info *info, 
			   union iwreq_data *wrqu, char *extra)
{ 
	struct ipw_priv *priv = ieee80211_priv(dev);
	return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
}

static int ipw_wx_set_encode(struct net_device *dev, 
				 struct iw_request_info *info, 
				 union iwreq_data *wrqu, char *key)
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
}

static int ipw_wx_get_encode(struct net_device *dev, 
				 struct iw_request_info *info, 
				 union iwreq_data *wrqu, char *key)
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
}

static int ipw_wx_set_power(struct net_device *dev, 
			        struct iw_request_info *info, 
			        union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	int err;

	if (wrqu->power.disabled) {
		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
		err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
		if (err) {
			IPW_DEBUG_WX("failed setting power mode.\n");
			return err;
		}

		IPW_DEBUG_WX("SET Power Management Mode -> off\n");

		return 0;
	} 

	switch (wrqu->power.flags & IW_POWER_MODE) {
	case IW_POWER_ON:    /* If not specified */
	case IW_POWER_MODE:  /* If set all mask */
	case IW_POWER_ALL_R: /* If explicitely state all */
		break;
	default: /* Otherwise we don't support it */
		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
			     wrqu->power.flags);
		return -EOPNOTSUPP; 
	}
	
	/* If the user hasn't specified a power management mode yet, default
	 * to BATTERY */
        if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
		priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
	else 
		priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
	err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
	if (err) {
		IPW_DEBUG_WX("failed setting power mode.\n");
		return err;
	}

	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n",
		     priv->power_mode);
	
	return 0;
}

static int ipw_wx_get_power(struct net_device *dev, 
			        struct iw_request_info *info, 
			        union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = ieee80211_priv(dev);

	if (!(priv->power_mode & IPW_POWER_ENABLED)) {
		wrqu->power.disabled = 1;
	} else {
		wrqu->power.disabled = 0;
	}

	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
	
	return 0;
}

static int ipw_wx_set_powermode(struct net_device *dev, 
				    struct iw_request_info *info, 
				    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	int mode = *(int *)extra;
	int err;
	
	if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
		mode = IPW_POWER_AC;
		priv->power_mode = mode;
	} else {
		priv->power_mode = IPW_POWER_ENABLED | mode;
	}
	
	if (priv->power_mode != mode) {
		err = ipw_send_power_mode(priv, mode);
		
		if (err) {
			IPW_DEBUG_WX("failed setting power mode.\n");
			return err;
		}
	}
	
	return 0;
}

#define MAX_WX_STRING 80
static int ipw_wx_get_powermode(struct net_device *dev, 
				    struct iw_request_info *info, 
				    union iwreq_data *wrqu, char *extra)
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	int level = IPW_POWER_LEVEL(priv->power_mode);
	char *p = extra;

	p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);

	switch (level) {
	case IPW_POWER_AC:
		p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
		break;
	case IPW_POWER_BATTERY:
		p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
		break;
	default:
		p += snprintf(p, MAX_WX_STRING - (p - extra),
			      "(Timeout %dms, Period %dms)", 
			      timeout_duration[level - 1] / 1000,
			      period_duration[level - 1] / 1000);
	}

	if (!(priv->power_mode & IPW_POWER_ENABLED))
		p += snprintf(p, MAX_WX_STRING - (p - extra)," OFF");

	wrqu->data.length = p - extra + 1;

	return 0;
}

static int ipw_wx_set_wireless_mode(struct net_device *dev,
                                    struct iw_request_info *info,
                                    union iwreq_data *wrqu, char *extra)
{
        struct ipw_priv *priv = ieee80211_priv(dev);
	int mode = *(int *)extra;
	u8 band = 0, modulation = 0;

	if (mode == 0 || mode & ~IEEE_MODE_MASK) {
		IPW_WARNING("Attempt to set invalid wireless mode: %d\n",
			    mode);
		return -EINVAL;
	}
		
	if (priv->adapter == IPW_2915ABG) {
		priv->ieee->abg_ture = 1;
		if (mode & IEEE_A) {
			band |= IEEE80211_52GHZ_BAND;
			modulation |= IEEE80211_OFDM_MODULATION;
		} else
			priv->ieee->abg_ture = 0;
	} else {
		if (mode & IEEE_A) {
			IPW_WARNING("Attempt to set 2200BG into "
				    "802.11a mode\n");
			return -EINVAL;
		}

		priv->ieee->abg_ture = 0;
	}

	if (mode & IEEE_B) {
		band |= IEEE80211_24GHZ_BAND;
		modulation |= IEEE80211_CCK_MODULATION;
	} else
		priv->ieee->abg_ture = 0;
	
	if (mode & IEEE_G) {
		band |= IEEE80211_24GHZ_BAND;
		modulation |= IEEE80211_OFDM_MODULATION;
	} else
		priv->ieee->abg_ture = 0;

	priv->ieee->mode = mode;
	priv->ieee->freq_band = band;
	priv->ieee->modulation = modulation;
      	init_supported_rates(priv, &priv->rates);

	/* If we are currently associated, or trying to associate
         * then see if this is a new configuration (causing us to 
	 * disassociate) */
        if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
		/* The resulting association will trigger 
		 * the new rates to be sent to the device */
                IPW_DEBUG_ASSOC("Disassociating due to mode change.\n");
                ipw_disassociate(priv);
	} else
		ipw_send_supported_rates(priv, &priv->rates);

	IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n", 
		     mode & IEEE_A ? 'a' : '.',
		     mode & IEEE_B ? 'b' : '.',
		     mode & IEEE_G ? 'g' : '.');
	return 0;
}

static int ipw_wx_get_wireless_mode(struct net_device *dev,
                                    struct iw_request_info *info,
                                    union iwreq_data *wrqu, char *extra)
{
        struct ipw_priv *priv = ieee80211_priv(dev);

	switch (priv->ieee->freq_band) {
	case IEEE80211_24GHZ_BAND:
		switch (priv->ieee->modulation) {
		case IEEE80211_CCK_MODULATION:
			strncpy(extra, "802.11b (2)", MAX_WX_STRING);
			break;
		case IEEE80211_OFDM_MODULATION: 
			strncpy(extra, "802.11g (4)", MAX_WX_STRING);
			break;
		default:
			strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
			break;
		}
		break;

	case IEEE80211_52GHZ_BAND: 
		strncpy(extra, "802.11a (1)", MAX_WX_STRING);
		break;

	default: /* Mixed Band */
		switch (priv->ieee->modulation) {
		case IEEE80211_CCK_MODULATION:
			strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
			break;
		case IEEE80211_OFDM_MODULATION: 
			strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
			break;
		default:
			strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
			break;
		}
		break;
	} 
	
	IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);

        wrqu->data.length = strlen(extra) + 1;

        return 0;
}

#ifdef CONFIG_IPW_PROMISC
static int ipw_wx_set_promisc(struct net_device *dev, 
			      struct iw_request_info *info, 
			      union iwreq_data *wrqu, char *extra)
{ 
	struct ipw_priv *priv = ieee80211_priv(dev);
	int *parms = (int *)extra;
	int enable = (parms[0] > 0);

	IPW_DEBUG_WX("SET PROMISC: %d %d\n", enable, parms[1]);
	if (enable) {
		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
			priv->net_dev->type = ARPHRD_IEEE80211;
			ipw_adapter_restart(priv);
		}
		
		ipw_set_channel(priv, parms[1]);
	} else {
		if (priv->ieee->iw_mode != IW_MODE_MONITOR)
			return 0;
		priv->net_dev->type = ARPHRD_ETHER;
		ipw_adapter_restart(priv);
	}
	return 0;
}


static int ipw_wx_reset(struct net_device *dev, 
			struct iw_request_info *info, 
			union iwreq_data *wrqu, char *extra)
{ 
	struct ipw_priv *priv = ieee80211_priv(dev);
	IPW_DEBUG_WX("RESET\n");
	ipw_adapter_restart(priv);
	return 0;
}
#endif // CONFIG_IPW_PROMISC

/* Rebase the WE IOCTLs to zero for the handler array */
#define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
static iw_handler ipw_wx_handlers[] =
{
	IW_IOCTL(SIOCGIWNAME)   = ipw_wx_get_name,
	IW_IOCTL(SIOCSIWFREQ)   = ipw_wx_set_freq,
	IW_IOCTL(SIOCGIWFREQ)   = ipw_wx_get_freq,
	IW_IOCTL(SIOCSIWMODE)   = ipw_wx_set_mode,
	IW_IOCTL(SIOCGIWMODE)   = ipw_wx_get_mode,
	IW_IOCTL(SIOCGIWRANGE)  = ipw_wx_get_range,
	IW_IOCTL(SIOCSIWAP)     = ipw_wx_set_wap,
	IW_IOCTL(SIOCGIWAP)     = ipw_wx_get_wap,
	IW_IOCTL(SIOCSIWSCAN)   = ipw_wx_set_scan,
	IW_IOCTL(SIOCGIWSCAN)   = ipw_wx_get_scan,
	IW_IOCTL(SIOCSIWESSID)  = ipw_wx_set_essid,
	IW_IOCTL(SIOCGIWESSID)  = ipw_wx_get_essid,
	IW_IOCTL(SIOCSIWNICKN)  = ipw_wx_set_nick,
	IW_IOCTL(SIOCGIWNICKN)  = ipw_wx_get_nick,
	IW_IOCTL(SIOCSIWRATE)   = ipw_wx_set_rate,
	IW_IOCTL(SIOCGIWRATE)   = ipw_wx_get_rate,
	IW_IOCTL(SIOCSIWRTS)    = ipw_wx_set_rts,
	IW_IOCTL(SIOCGIWRTS)    = ipw_wx_get_rts,
	IW_IOCTL(SIOCSIWFRAG)   = ipw_wx_set_frag,
	IW_IOCTL(SIOCGIWFRAG)   = ipw_wx_get_frag,
	IW_IOCTL(SIOCSIWTXPOW)  = ipw_wx_set_txpow,
	IW_IOCTL(SIOCGIWTXPOW)  = ipw_wx_get_txpow,
	IW_IOCTL(SIOCSIWRETRY)  = ipw_wx_set_retry,
	IW_IOCTL(SIOCGIWRETRY)  = ipw_wx_get_retry,
	IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
	IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
	IW_IOCTL(SIOCSIWPOWER)  = ipw_wx_set_power,
	IW_IOCTL(SIOCGIWPOWER)  = ipw_wx_get_power,
};

#define IPW_PRIV_SET_POWER	SIOCIWFIRSTPRIV
#define IPW_PRIV_GET_POWER	SIOCIWFIRSTPRIV+1
#define IPW_PRIV_SET_MODE	SIOCIWFIRSTPRIV+2
#define IPW_PRIV_GET_MODE	SIOCIWFIRSTPRIV+3
#define IPW_PRIV_SET_PROMISC	SIOCIWFIRSTPRIV+4
#define IPW_PRIV_RESET		SIOCIWFIRSTPRIV+5


static struct iw_priv_args ipw_priv_args[] = { 
	{
		.cmd = IPW_PRIV_SET_POWER,
		.set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 
		.name = "set_power"
	}, 
	{
		.cmd = IPW_PRIV_GET_POWER,
		.get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
		.name = "get_power" 
	},
	{
		.cmd = IPW_PRIV_SET_MODE,
		.set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
		.name = "set_mode" 
	},
	{
		.cmd = IPW_PRIV_GET_MODE,
		.get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
		.name = "get_mode" 
	},
#ifdef CONFIG_IPW_PROMISC
	{
		IPW_PRIV_SET_PROMISC, 
		IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor" 
	}, 
	{
		IPW_PRIV_RESET, 
		IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset" 
	},
#endif /* CONFIG_IPW_PROMISC */
};

static iw_handler ipw_priv_handler[] = {
	ipw_wx_set_powermode,
	ipw_wx_get_powermode,
	ipw_wx_set_wireless_mode,
	ipw_wx_get_wireless_mode,
#ifdef CONFIG_IPW_PROMISC
	ipw_wx_set_promisc,
	ipw_wx_reset, 
#endif
};

static struct iw_handler_def ipw_wx_handler_def = 
{
	.standard 	= ipw_wx_handlers,
	.num_standard	= ARRAY_SIZE(ipw_wx_handlers),
	.num_private	= ARRAY_SIZE(ipw_priv_handler),
 	.num_private_args = ARRAY_SIZE(ipw_priv_args),
	.private	= ipw_priv_handler, 
	.private_args	= ipw_priv_args,	
};




/*
 * Get wireless statistics.
 * Called by /proc/net/wireless
 * Also called by SIOCGIWSTATS
 */
static struct iw_statistics *ipw_get_wireless_stats(struct net_device * dev)
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	struct iw_statistics *wstats;
	
	wstats = &priv->wstats;

	/* if hw is disabled, then ipw2100_get_ordinal() can't be called.
	 * ipw2100_wx_wireless_stats seems to be called before fw is 
	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
	 * and associated; if not associcated, the values are all meaningless
	 * anyway, so set them all to NULL and INVALID */
	if (!(priv->status & STATUS_ASSOCIATED)) {
		wstats->miss.beacon = 0;
		wstats->discard.retries = 0;
		wstats->qual.qual = 0;
		wstats->qual.level = 0;
		wstats->qual.noise = 0;
		wstats->qual.updated = 7;
		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
			IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
		return wstats;
	} 

	wstats->qual.qual = priv->quality;
	wstats->qual.level = average_value(&priv->average_rssi);
	wstats->qual.noise = average_value(&priv->average_noise);
	wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
		IW_QUAL_NOISE_UPDATED;

	wstats->miss.beacon = average_value(&priv->average_missed_beacons);
	wstats->discard.retries = priv->last_tx_failures;
	wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
	
/*	if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
	goto fail_get_ordinal;
	wstats->discard.retries += tx_retry; */
	
	return wstats;
}


/* net device stuff */

static inline void init_sys_config(struct ipw_sys_config *sys_config)
{
        memset(sys_config, 0, sizeof(struct ipw_sys_config));
	sys_config->bt_coexistence = 1; /* We may need to look into prvStaBtConfig */
	sys_config->answer_broadcast_ssid_probe = 0;
	sys_config->accept_all_data_frames = 0;
	sys_config->accept_non_directed_frames = 1;
	sys_config->exclude_unicast_unencrypted = 0;
	sys_config->disable_unicast_decryption = 1;
	sys_config->exclude_multicast_unencrypted = 0;
	sys_config->disable_multicast_decryption = 1;
	sys_config->antenna_diversity = CFG_SYS_ANTENNA_BOTH;
	sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
	sys_config->dot11g_auto_detection = 0;
	sys_config->enable_cts_to_self = 0; 
	sys_config->bt_coexist_collision_thr = 0;
	sys_config->pass_noise_stats_to_host = 1;
}

static int ipw_net_open(struct net_device *dev)
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	IPW_DEBUG_INFO("dev->open\n");
	/* we should be verifying the device is ready to be opened */
	if (!(priv->status & STATUS_RF_KILL_MASK) && 
	    (priv->status & STATUS_ASSOCIATED)) 
		netif_start_queue(dev);
	return 0;
}

static int ipw_net_stop(struct net_device *dev)
{
	IPW_DEBUG_INFO("dev->close\n");
	netif_stop_queue(dev);
	return 0;
}

/*
todo:

modify to send one tfd per fragment instead of using chunking.  otherwise
we need to heavily modify the ieee80211_skb_to_txb.
*/

static inline void ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb)
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)
		txb->fragments[0]->data;
	int i = 0;
	struct tfd_frame *tfd;
	struct clx2_tx_queue *txq = &priv->txq[0];
	struct clx2_queue *q = &txq->q;
	u8 id, hdr_len, unicast;
	u16 remaining_bytes;

	switch (priv->ieee->iw_mode) {
	case IW_MODE_ADHOC:
		hdr_len = IEEE80211_3ADDR_LEN;
		unicast = !is_broadcast_ether_addr(hdr->addr1) &&
			!is_multicast_ether_addr(hdr->addr1);
		id = ipw_find_station(priv, hdr->addr1);
		if (id == IPW_INVALID_STATION) {
			id = ipw_add_station(priv, hdr->addr1);
			if (id == IPW_INVALID_STATION) {
				IPW_WARNING("Attempt to send data to "
					    "invalid cell: " MAC_FMT "\n", 
					    MAC_ARG(hdr->addr1));
				goto drop;
			}
		}
		break;

	case IW_MODE_INFRA:
	default:
		unicast = !is_broadcast_ether_addr(hdr->addr3) &&
			!is_multicast_ether_addr(hdr->addr3);
		hdr_len = IEEE80211_3ADDR_LEN;
		id = 0;
		break;
	}

	tfd = &txq->bd[q->first_empty];
	txq->txb[q->first_empty] = txb;
	memset(tfd, 0, sizeof(*tfd));
	tfd->u.data.station_number = id;

	tfd->control_flags.message_type = TX_FRAME_TYPE;
	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;

	tfd->u.data.cmd_id = DINO_CMD_TX;
	tfd->u.data.len = txb->payload_size;
	remaining_bytes = txb->payload_size;
	if (unlikely(!unicast))
		tfd->u.data.tx_flags = DCT_FLAG_NO_WEP;
	else
		tfd->u.data.tx_flags = DCT_FLAG_NO_WEP | DCT_FLAG_ACK_REQD;
	
	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
		tfd->u.data.tx_flags_ext = DCT_FLAG_EXT_MODE_CCK;
	else
		tfd->u.data.tx_flags_ext = DCT_FLAG_EXT_MODE_OFDM;

	if (priv->config & CFG_PREAMBLE)
		tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREMBL;

	memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);

	/* payload */
	tfd->u.data.num_chunks = min((u8)(NUM_TFD_CHUNKS - 2), txb->nr_frags);
	for (i = 0; i < tfd->u.data.num_chunks; i++) {
		IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n", 
			     i, tfd->u.data.num_chunks,
			     txb->fragments[i]->len - hdr_len);
		printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len, 
			   txb->fragments[i]->len - hdr_len);

		tfd->u.data.chunk_ptr[i] = pci_map_single(
			priv->pci_dev, txb->fragments[i]->data + hdr_len,
			txb->fragments[i]->len - hdr_len, PCI_DMA_TODEVICE);
		tfd->u.data.chunk_len[i] = txb->fragments[i]->len - hdr_len;
	}

	if (i != txb->nr_frags) {
		struct sk_buff *skb;
		u16 remaining_bytes = 0;
		int j;

		for (j = i; j < txb->nr_frags; j++)
			remaining_bytes += txb->fragments[j]->len - hdr_len;

		printk(KERN_INFO "Trying to reallocate for %d bytes\n",
		       remaining_bytes);
		skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
		if (skb != NULL) {
			tfd->u.data.chunk_len[i] = remaining_bytes;
			for (j = i; j < txb->nr_frags; j++) {
				int size = txb->fragments[j]->len - hdr_len;
				printk(KERN_INFO "Adding frag %d %d...\n",
					j, size);
				memcpy(skb_put(skb, size),
					txb->fragments[j]->data + hdr_len,
					size);
			}
			dev_kfree_skb_any(txb->fragments[i]);
			txb->fragments[i] = skb;
			tfd->u.data.chunk_ptr[i] = pci_map_single(
				priv->pci_dev, skb->data,
				tfd->u.data.chunk_len[i], PCI_DMA_TODEVICE);
			tfd->u.data.num_chunks++;
		} 
	}

	/* kick DMA */
	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
	ipw_write32(priv, q->reg_w, q->first_empty);

	if (ipw_queue_space(q) < q->high_mark) 
		netif_stop_queue(priv->net_dev);

	return;

 drop:
	IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
	ieee80211_txb_free(txb);
}

static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
				   struct net_device *dev)
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	unsigned long flags;

	IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);

	spin_lock_irqsave(&priv->lock, flags);

	if (!(priv->status & STATUS_ASSOCIATED)) {
		IPW_DEBUG_INFO("Tx attempt while not associated.\n");
		priv->ieee->stats.tx_carrier_errors++;
		netif_stop_queue(dev);
		goto fail_unlock;
	}

	ipw_tx_skb(priv, txb);

	spin_unlock_irqrestore(&priv->lock, flags);
	return 0;

 fail_unlock:
	spin_unlock_irqrestore(&priv->lock, flags);
	return 1;
}

static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	
	priv->ieee->stats.tx_packets = priv->tx_packets;
	priv->ieee->stats.rx_packets = priv->rx_packets;
	return &priv->ieee->stats;
}

static void ipw_net_set_multicast_list(struct net_device *dev)
{

}

static int ipw_net_set_mac_address(struct net_device *dev, void *p)
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	struct sockaddr *addr = p;
	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;
	priv->config |= CFG_CUSTOM_MAC;
	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
	       priv->net_dev->name, MAC_ARG(priv->mac_addr));
	ipw_adapter_restart(priv);
	return 0;
}

static void ipw_ethtool_get_drvinfo(struct net_device *dev, 
				    struct ethtool_drvinfo *info)
{
	struct ipw_priv *p = ieee80211_priv(dev);
	char vers[64];
	char date[32];
	u32 len;

	strcpy(info->driver, DRV_NAME);
	strcpy(info->version, DRV_VERSION);

	len = sizeof(vers);
	ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
	len = sizeof(date);
	ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);

	snprintf(info->fw_version, sizeof(info->fw_version),"%s (%s)", 
		 vers, date);
	strcpy(info->bus_info, pci_name(p->pci_dev));
	info->eedump_len = CX2_EEPROM_IMAGE_SIZE;
}

static u32 ipw_ethtool_get_link(struct net_device *dev)
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	return (priv->status & STATUS_ASSOCIATED) != 0;
}

static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
{
	return CX2_EEPROM_IMAGE_SIZE;
}

static int ipw_ethtool_get_eeprom(struct net_device *dev,
				  struct ethtool_eeprom *eeprom, u8 *bytes)
{
	struct ipw_priv *p = ieee80211_priv(dev);

	if (eeprom->offset + eeprom->len > CX2_EEPROM_IMAGE_SIZE)
		return -EINVAL;
	
	memcpy(bytes, &((u8 *)p->eeprom)[eeprom->offset], eeprom->len);
	return 0;
}

static int ipw_ethtool_set_eeprom(struct net_device *dev,
				  struct ethtool_eeprom *eeprom, u8 *bytes)
{
	struct ipw_priv *p = ieee80211_priv(dev);
	int i;

	if (eeprom->offset + eeprom->len > CX2_EEPROM_IMAGE_SIZE)
		return -EINVAL;

	memcpy(&((u8 *)p->eeprom)[eeprom->offset], bytes, eeprom->len);
	for (i = IPW_EEPROM_DATA; 
	     i < IPW_EEPROM_DATA + CX2_EEPROM_IMAGE_SIZE; 
	     i++)
		ipw_write8(p, i, p->eeprom[i]);

	return 0;
}

static struct ethtool_ops ipw_ethtool_ops = {
	 .get_link       = ipw_ethtool_get_link,
	 .get_drvinfo	 = ipw_ethtool_get_drvinfo,
	 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
	 .get_eeprom	 = ipw_ethtool_get_eeprom,
	 .set_eeprom	 = ipw_ethtool_set_eeprom,
};

static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
{
	struct ipw_priv *priv = data;
	u32 inta, inta_mask;
	
	if (!priv)
		return IRQ_NONE;

	spin_lock(&priv->lock);

	if (!(priv->status & STATUS_INT_ENABLED)) {
		/* Shared IRQ */
		goto none;
	}

	inta = ipw_read32(priv, CX2_INTA_RW);
	inta_mask = ipw_read32(priv, CX2_INTA_MASK_R);
	
	if (inta == 0xFFFFFFFF) {
		/* Hardware disappeared */
		IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
		goto none;
	}

	if (!(inta & (CX2_INTA_MASK_ALL & inta_mask))) {
		/* Shared interrupt */
		goto none;
	}

	/* tell the device to stop sending interrupts */
	ipw_disable_interrupts(priv);
	    
	/* ack current interrupts */
	inta &= (CX2_INTA_MASK_ALL & inta_mask);
	ipw_write32(priv, CX2_INTA_RW, inta);
	    
	/* Cache INTA value for our tasklet */
	priv->isr_inta = inta;

	tasklet_schedule(&priv->irq_tasklet);

 	spin_unlock(&priv->lock);

	return IRQ_HANDLED;
 none:
	spin_unlock(&priv->lock);
	return IRQ_NONE;
}

static void ipw_rf_kill(void *adapter)
{
	struct ipw_priv *priv = adapter;
	unsigned long flags;
	
	spin_lock_irqsave(&priv->lock, flags);

	if (rf_kill_active(priv)) {
		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
		if (priv->workqueue)
			queue_delayed_work(priv->workqueue,
					   &priv->rf_kill, 2 * HZ);
		goto exit_unlock;
	}

	/* RF Kill is now disabled, so bring the device back up */

	if (!(priv->status & STATUS_RF_KILL_MASK)) {
		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
				  "device\n");

		/* we can not do an adapter restart while inside an irq lock */
		queue_work(priv->workqueue, &priv->adapter_restart);
	} else 
		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
				  "enabled\n");

 exit_unlock:
	spin_unlock_irqrestore(&priv->lock, flags);
}

static int ipw_setup_deferred_work(struct ipw_priv *priv)
{
	int ret = 0;

#ifdef CONFIG_SOFTWARE_SUSPEND2
	priv->workqueue = create_workqueue(DRV_NAME, 0);
#else
	priv->workqueue = create_workqueue(DRV_NAME);
#endif	
	init_waitqueue_head(&priv->wait_command_queue);

	INIT_WORK(&priv->adhoc_check, ipw_adhoc_check, priv);
	INIT_WORK(&priv->associate, ipw_associate, priv);
	INIT_WORK(&priv->disassociate, ipw_disassociate, priv);
	INIT_WORK(&priv->rx_replenish, ipw_rx_queue_replenish, priv);
	INIT_WORK(&priv->adapter_restart, ipw_adapter_restart, priv);
	INIT_WORK(&priv->rf_kill, ipw_rf_kill, priv);
	INIT_WORK(&priv->up, (void (*)(void *))ipw_up, priv);
	INIT_WORK(&priv->down, (void (*)(void *))ipw_down, priv);
	INIT_WORK(&priv->request_scan, 
		  (void (*)(void *))ipw_request_scan, priv);
	INIT_WORK(&priv->gather_stats, 
		  (void (*)(void *))ipw_gather_stats, priv);
	INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_abort_scan, priv);
	INIT_WORK(&priv->roam, ipw_roam, priv);
	INIT_WORK(&priv->scan_check, ipw_scan_check, priv);

	tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
		     ipw_irq_tasklet, (unsigned long)priv);

	return ret;
}


static void shim__set_security(struct net_device *dev,
			       struct ieee80211_security *sec)
{
	struct ipw_priv *priv = ieee80211_priv(dev);
	int i;

	for (i = 0; i < 4; i++) { 
		if (sec->flags & (1 << i)) {
			priv->sec.key_sizes[i] = sec->key_sizes[i];
			if (sec->key_sizes[i] == 0)
				priv->sec.flags &= ~(1 << i);
			else
				memcpy(priv->sec.keys[i], sec->keys[i], 
				       sec->key_sizes[i]);
			priv->sec.flags |= (1 << i);
			priv->status |= STATUS_SECURITY_UPDATED;
		} 
	}

	if ((sec->flags & SEC_ACTIVE_KEY) &&
	    priv->sec.active_key != sec->active_key) {
		if (sec->active_key <= 3) {
			priv->sec.active_key = sec->active_key;
			priv->sec.flags |= SEC_ACTIVE_KEY;
		} else 
			priv->sec.flags &= ~SEC_ACTIVE_KEY;
		priv->status |= STATUS_SECURITY_UPDATED;
	}

	if ((sec->flags & SEC_AUTH_MODE) &&
	    (priv->sec.auth_mode != sec->auth_mode)) {
		priv->sec.auth_mode = sec->auth_mode;
		priv->sec.flags |= SEC_AUTH_MODE;
		if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
			priv->capability |= CAP_SHARED_KEY;
		else
			priv->capability &= ~CAP_SHARED_KEY;
		priv->status |= STATUS_SECURITY_UPDATED;
	}
	
	if (sec->flags & SEC_ENABLED &&
	    priv->sec.enabled != sec->enabled) {
		priv->sec.flags |= SEC_ENABLED;
		priv->sec.enabled = sec->enabled;
		priv->status |= STATUS_SECURITY_UPDATED;
		if (sec->enabled) 
			priv->capability |= CAP_PRIVACY_ON;
		else
			priv->capability &= ~CAP_PRIVACY_ON;
	}
	
	if (sec->flags & SEC_LEVEL &&
	    priv->sec.level != sec->level) {
		priv->sec.level = sec->level;
		priv->sec.flags |= SEC_LEVEL;
		priv->status |= STATUS_SECURITY_UPDATED;
	}

	/* To match current functionality of ipw2100 (which works well w/ 
	 * various supplicants, we don't force a disassociate if the 
	 * privacy capability changes ... */
#if 0
	if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
	    (((priv->assoc_request.capability & 
	       WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
	     (!(priv->assoc_request.capability & 
		 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
		IPW_DEBUG_ASSOC("Disassociating due to capability "
				"change.\n");
		ipw_disassociate(priv);
	}
#endif
}

static int init_supported_rates(struct ipw_priv *priv, 
				struct ipw_supported_rates *rates)
{
	/* TODO: Mask out rates based on priv->rates_mask */

	memset(rates, 0, sizeof(*rates));
        /* configure supported rates */
	switch (priv->ieee->freq_band) {
	case IEEE80211_52GHZ_BAND:
		rates->ieee_mode = IPW_A_MODE;
		rates->purpose = IPW_RATE_CAPABILITIES;
		ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
					IEEE80211_OFDM_DEFAULT_RATES_MASK);
		break;

	default: /* Mixed or 2.4Ghz */
		rates->ieee_mode = IPW_G_MODE;
		rates->purpose = IPW_RATE_CAPABILITIES;
		ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
				       IEEE80211_CCK_DEFAULT_RATES_MASK);
		if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
			ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
						IEEE80211_OFDM_DEFAULT_RATES_MASK);
		}
		break;
	}

	return 0;
}

static int ipw_config(struct ipw_priv *priv) 
{
	int i;
	struct ipw_tx_power tx_power;

	memset(&priv->sys_config, 0, sizeof(priv->sys_config));
	memset(&tx_power, 0, sizeof(tx_power));

	/* This is only called from ipw_up, which resets/reloads the firmware
	   so, we don't need to first disable the card before we configure
	   it */

	/* configure device for 'G' band */
	tx_power.ieee_mode = IPW_G_MODE;
	tx_power.num_channels = 11;
	for (i = 0; i < 11; i++) {
		tx_power.channels_tx_power[i].channel_number = i + 1;
		tx_power.channels_tx_power[i].tx_power = priv->tx_power;
	}
	if (ipw_send_tx_power(priv, &tx_power))
		goto error;

	/* configure device to also handle 'B' band */
	tx_power.ieee_mode = IPW_B_MODE;
	if (ipw_send_tx_power(priv, &tx_power))
		goto error;

	/* initialize adapter address */
	if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
		goto error;

	/* set basic system config settings */
	init_sys_config(&priv->sys_config);
	if (ipw_send_system_config(priv, &priv->sys_config))
		goto error;

        init_supported_rates(priv, &priv->rates);
        if (ipw_send_supported_rates(priv, &priv->rates))
		goto error;

	/* Set request-to-send threshold */
	if (priv->rts_threshold) {
		if (ipw_send_rts_threshold(priv, priv->rts_threshold))
			goto error;
	}

	if (ipw_set_random_seed(priv))
		goto error;
	
	/* final state transition to the RUN state */
	if (ipw_send_host_complete(priv))
		goto error;

	/* If configured to try and auto-associate, kick off a scan */
	if ((priv->config & CFG_ASSOCIATE) && ipw_request_scan(priv))
		goto error;

	return 0;
	
 error:
	return -EIO;
}

#define MAX_HW_RESTARTS 5
static int ipw_up(struct ipw_priv *priv)
{
	int rc, i;

	if (priv->status & STATUS_EXIT_PENDING)
		return -EIO;

	for (i = 0; i < MAX_HW_RESTARTS; i++ ) {
		/* Load the microcode, firmware, and eeprom.  
		 * Also start the clocks. */
		rc = ipw_load(priv);
		if (rc) {
			IPW_ERROR("Unable to load firmware: 0x%08X\n",
					rc);
			return rc;
		}

		ipw_init_ordinals(priv);
		if (!(priv->config & CFG_CUSTOM_MAC))
			eeprom_parse_mac(priv, priv->mac_addr);
		memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);

		if (priv->status & STATUS_RF_KILL_MASK)
			return 0;

		rc = ipw_config(priv);
		if (!rc) {
			IPW_DEBUG_INFO("Configured device on count %i\n", i);
			priv->notif_missed_beacons = 0;
			netif_start_queue(priv->net_dev);
			return 0;
		} else {
			IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n",
				       rc);
		}
		
		IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
			       i, MAX_HW_RESTARTS);

		/* We had an error bringing up the hardware, so take it
		 * all the way back down so we can try again */
		ipw_down(priv);
	}

	/* tried to restart and config the device for as long as our 
	 * patience could withstand */
	IPW_ERROR("Unable to initialize device after %d attempts.\n",
		  i);
	return -EIO;
}

static void ipw_down(struct ipw_priv *priv)
{
	/* Attempt to disable the card */
#if 0
	ipw_send_card_disable(priv, 0);
#endif

	/* tell the device to stop sending interrupts */
	ipw_disable_interrupts(priv);

	/* Clear all bits but the RF Kill */
	priv->status &= STATUS_RF_KILL_MASK;

	netif_carrier_off(priv->net_dev);
	netif_stop_queue(priv->net_dev);

	ipw_stop_nic(priv);
}

/* Called by register_netdev() */
static int ipw_net_init(struct net_device *dev)
{
	struct ipw_priv *priv = ieee80211_priv(dev);

	if (priv->status & STATUS_RF_KILL_SW) {
		IPW_WARNING("Radio disabled by module parameter.\n");
		return 0;
	} else if (rf_kill_active(priv)) {
		IPW_WARNING("Radio Frequency Kill Switch is On:\n"
			    "Kill switch must be turned off for "
			    "wireless networking to work.\n");
		queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
		return 0;
	}

	if (ipw_up(priv))
		return -EIO;

	return 0;
}

/* PCI driver stuff */
static struct pci_device_id card_ids[] = {
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
	{PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* 2225BG */
	{PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
	{PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
	
	/* required last entry */
	{0,}
};

MODULE_DEVICE_TABLE(pci, card_ids);

static struct attribute *ipw_sysfs_entries[] = {
	&dev_attr_rf_kill.attr,
	&dev_attr_direct_dword.attr,
	&dev_attr_indirect_byte.attr,
	&dev_attr_indirect_dword.attr,
	&dev_attr_mem_gpio_reg.attr,
	&dev_attr_command_event_reg.attr,
	&dev_attr_nic_type.attr,
	&dev_attr_status.attr,
	&dev_attr_cfg.attr,
	&dev_attr_dump_errors.attr,
	&dev_attr_dump_events.attr,
	&dev_attr_eeprom_delay.attr,
	&dev_attr_ucode_version.attr,
	&dev_attr_rtc.attr,
	NULL
};

static struct attribute_group ipw_attribute_group = {
	.name = NULL,		/* put in device directory */
	.attrs	= ipw_sysfs_entries,
};

static int ipw_pci_probe(struct pci_dev *pdev,
			 const struct pci_device_id *ent)
{
	int err = 0;
	struct net_device *net_dev;
	void __iomem *base;
	u32 length, val;
	struct ipw_priv *priv;
	int band, modulation;

	net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
	if (net_dev == NULL) {
		err = -ENOMEM;
		goto out;
	}

	priv = ieee80211_priv(net_dev);
	priv->ieee = netdev_priv(net_dev);
	priv->net_dev = net_dev;
	priv->pci_dev = pdev;
#ifdef CONFIG_IPW_DEBUG
	ipw_debug_level = debug;
#endif
	spin_lock_init(&priv->lock);

	if (pci_enable_device(pdev)) {
		err = -ENODEV;
		goto out_free_ieee80211;
	}

	pci_set_master(pdev);

6982
	err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
J
James Ketrenos 已提交
6983
	if (!err) 
6984
		err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
J
James Ketrenos 已提交
6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347
	if (err) {
		printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
		goto out_pci_disable_device;
	}

	pci_set_drvdata(pdev, priv);

	err = pci_request_regions(pdev, DRV_NAME);
	if (err) 
		goto out_pci_disable_device;

	/* We disable the RETRY_TIMEOUT register (0x41) to keep 
	 * PCI Tx retries from interfering with C3 CPU state */
	pci_read_config_dword(pdev, 0x40, &val); 
	if ((val & 0x0000ff00) != 0) 
		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
	
	length = pci_resource_len(pdev, 0);
	priv->hw_len = length;
	
	base = ioremap_nocache(pci_resource_start(pdev, 0), length);
	if (!base) {
		err = -ENODEV;
		goto out_pci_release_regions;
	}

	priv->hw_base = base;
	IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
	IPW_DEBUG_INFO("pci_resource_base = %p\n", base);

	err = ipw_setup_deferred_work(priv);
	if (err) {
		IPW_ERROR("Unable to setup deferred work\n");
		goto out_iounmap;
	}

	/* Initialize module parameter values here */
	if (ifname)
		strncpy(net_dev->name, ifname, IFNAMSIZ);

	if (associate) 
		priv->config |= CFG_ASSOCIATE;
	else
		IPW_DEBUG_INFO("Auto associate disabled.\n");
	
	if (auto_create) 
		priv->config |= CFG_ADHOC_CREATE;
	else
		IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
	
	if (disable) {
		priv->status |= STATUS_RF_KILL_SW;
		IPW_DEBUG_INFO("Radio disabled.\n");
	}

	if (channel != 0) {
		priv->config |= CFG_STATIC_CHANNEL;
		priv->channel = channel;
		IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
 		IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
		/* TODO: Validate that provided channel is in range */
	}

	switch (mode) {
	case 1:
		priv->ieee->iw_mode = IW_MODE_ADHOC;
		break;
#ifdef CONFIG_IPW_PROMISC	
	case 2:
		priv->ieee->iw_mode = IW_MODE_MONITOR;
		break;
#endif
	default:
	case 0:
		priv->ieee->iw_mode = IW_MODE_INFRA;
		break;
	}

	if ((priv->pci_dev->device == 0x4223) ||
	    (priv->pci_dev->device == 0x4224)) {
		printk(KERN_INFO DRV_NAME 
		       ": Detected Intel PRO/Wireless 2915ABG Network "
		       "Connection\n");
		priv->ieee->abg_ture = 1;
		band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
		modulation = IEEE80211_OFDM_MODULATION |
			IEEE80211_CCK_MODULATION;
		priv->adapter = IPW_2915ABG;
		priv->ieee->mode = IEEE_A|IEEE_G|IEEE_B;
	} else {
		if (priv->pci_dev->device == 0x4221) 
			printk(KERN_INFO DRV_NAME 
			       ": Detected Intel PRO/Wireless 2225BG Network "
			       "Connection\n");
		else
			printk(KERN_INFO DRV_NAME 
			       ": Detected Intel PRO/Wireless 2200BG Network "
			       "Connection\n");
		
		priv->ieee->abg_ture = 0;
		band = IEEE80211_24GHZ_BAND;
		modulation = IEEE80211_OFDM_MODULATION |
			IEEE80211_CCK_MODULATION;
		priv->adapter = IPW_2200BG;
		priv->ieee->mode = IEEE_G|IEEE_B;
	}

	priv->ieee->freq_band = band;
	priv->ieee->modulation = modulation;

	priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;

	priv->missed_beacon_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
	priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;

	priv->rts_threshold = DEFAULT_RTS_THRESHOLD;

	/* If power management is turned on, default to AC mode */
        priv->power_mode = IPW_POWER_AC;
	priv->tx_power = IPW_DEFAULT_TX_POWER;

	err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME, 
			  priv);
	if (err) {
		IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
		goto out_destroy_workqueue;
	}

	SET_MODULE_OWNER(net_dev);
	SET_NETDEV_DEV(net_dev, &pdev->dev);

	priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
	priv->ieee->set_security = shim__set_security;

	net_dev->open = ipw_net_open;
	net_dev->stop = ipw_net_stop;
	net_dev->init = ipw_net_init;
	net_dev->get_stats = ipw_net_get_stats;
	net_dev->set_multicast_list = ipw_net_set_multicast_list;
	net_dev->set_mac_address = ipw_net_set_mac_address;
	net_dev->get_wireless_stats = ipw_get_wireless_stats;
	net_dev->wireless_handlers = &ipw_wx_handler_def;
	net_dev->ethtool_ops = &ipw_ethtool_ops;
	net_dev->irq = pdev->irq;
	net_dev->base_addr = (unsigned long )priv->hw_base;
	net_dev->mem_start = pci_resource_start(pdev, 0);
	net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;

	err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
	if (err) {
		IPW_ERROR("failed to create sysfs device attributes\n");
		goto out_release_irq;
	}

	err = register_netdev(net_dev);
	if (err) {
		IPW_ERROR("failed to register network device\n");
		goto out_remove_group;
	}

	return 0;

 out_remove_group:
	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
 out_release_irq:
	free_irq(pdev->irq, priv);
 out_destroy_workqueue:
	destroy_workqueue(priv->workqueue);
	priv->workqueue = NULL;
 out_iounmap:
	iounmap(priv->hw_base);
 out_pci_release_regions:
	pci_release_regions(pdev);
 out_pci_disable_device:
	pci_disable_device(pdev);
	pci_set_drvdata(pdev, NULL);
 out_free_ieee80211:
	free_ieee80211(priv->net_dev);
 out:
	return err;
}

static void ipw_pci_remove(struct pci_dev *pdev)
{
	struct ipw_priv *priv = pci_get_drvdata(pdev);
	if (!priv)
		return;

	priv->status |= STATUS_EXIT_PENDING;

	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);

	ipw_down(priv);

	unregister_netdev(priv->net_dev);

	if (priv->rxq) {
		ipw_rx_queue_free(priv, priv->rxq);
		priv->rxq = NULL;
	}
	ipw_tx_queue_free(priv);

	/* ipw_down will ensure that there is no more pending work
	 * in the workqueue's, so we can safely remove them now. */
	if (priv->workqueue) { 
		cancel_delayed_work(&priv->adhoc_check);
		cancel_delayed_work(&priv->gather_stats);
		cancel_delayed_work(&priv->request_scan);
		cancel_delayed_work(&priv->rf_kill);
		cancel_delayed_work(&priv->scan_check);
		destroy_workqueue(priv->workqueue);
		priv->workqueue = NULL;
	}

	free_irq(pdev->irq, priv);
	iounmap(priv->hw_base);
	pci_release_regions(pdev);
	pci_disable_device(pdev);
	pci_set_drvdata(pdev, NULL);
	free_ieee80211(priv->net_dev);

#ifdef CONFIG_PM
	if (fw_loaded) {
		release_firmware(bootfw);
		release_firmware(ucode);
		release_firmware(firmware);
		fw_loaded = 0;
	}
#endif
}


#ifdef CONFIG_PM
static int ipw_pci_suspend(struct pci_dev *pdev, u32 state)
{
	struct ipw_priv *priv = pci_get_drvdata(pdev);
	struct net_device *dev = priv->net_dev;

	printk(KERN_INFO "%s: Going into suspend...\n", dev->name);

 	/* Take down the device; powers it off, etc. */
	ipw_down(priv);

	/* Remove the PRESENT state of the device */
	netif_device_detach(dev);

#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10)
	pci_save_state(pdev, priv->pm_state);
#else
	pci_save_state(pdev);
#endif
	pci_disable_device(pdev);
	pci_set_power_state(pdev, state);
	
	return 0;
}

static int ipw_pci_resume(struct pci_dev *pdev)
{
	struct ipw_priv *priv = pci_get_drvdata(pdev);
	struct net_device *dev = priv->net_dev;
	u32 val;
	
	printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);

	pci_set_power_state(pdev, 0);
	pci_enable_device(pdev);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10)
	pci_restore_state(pdev, priv->pm_state);
#else
	pci_restore_state(pdev);
#endif
	/*
	 * Suspend/Resume resets the PCI configuration space, so we have to
	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
	 * from interfering with C3 CPU state. pci_restore_state won't help
	 * here since it only restores the first 64 bytes pci config header.
	 */
	pci_read_config_dword(pdev, 0x40, &val); 
	if ((val & 0x0000ff00) != 0) 
		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);

	/* Set the device back into the PRESENT state; this will also wake
	 * the queue of needed */
	netif_device_attach(dev);

	/* Bring the device back up */
	queue_work(priv->workqueue, &priv->up);
	
	return 0;
}
#endif

/* driver initialization stuff */
static struct pci_driver ipw_driver = {
	.name = DRV_NAME,
	.id_table = card_ids,
	.probe = ipw_pci_probe,
	.remove = __devexit_p(ipw_pci_remove),
#ifdef CONFIG_PM
	.suspend = ipw_pci_suspend,
	.resume = ipw_pci_resume,
#endif
};

static int __init ipw_init(void)
{
	int ret;

	printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
	printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");

	ret = pci_module_init(&ipw_driver);
	if (ret) {
		IPW_ERROR("Unable to initialize PCI module\n");
		return ret;
	}

	ret = driver_create_file(&ipw_driver.driver, 
				 &driver_attr_debug_level);
	if (ret) {
		IPW_ERROR("Unable to create driver sysfs file\n");
		pci_unregister_driver(&ipw_driver);
		return ret;
	}

	return ret;
}

static void __exit ipw_exit(void)
{
	driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
	pci_unregister_driver(&ipw_driver);
}

module_param(disable, int, 0444);
MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");

module_param(associate, int, 0444);
MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");

module_param(auto_create, int, 0444);
MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");

module_param(debug, int, 0444);
MODULE_PARM_DESC(debug, "debug output mask");

module_param(channel, int, 0444);
MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])"); 

module_param(ifname, charp, 0444);
MODULE_PARM_DESC(ifname, "network device name (default eth%d)");

#ifdef CONFIG_IPW_PROMISC	
module_param(mode, int, 0444);
MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
#else
module_param(mode, int, 0444);
MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
#endif

module_exit(ipw_exit);
module_init(ipw_init);