amd_iommu.c 33.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
#include <linux/scatterlist.h>
#include <linux/iommu-helper.h>
#include <asm/proto.h>
26
#include <asm/iommu.h>
27
#include <asm/amd_iommu_types.h>
28
#include <asm/amd_iommu.h>
29 30 31

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

32 33
#define EXIT_LOOP_COUNT 10000000

34 35
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

36 37 38 39
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

40 41 42
/*
 * general struct to manage commands send to an IOMMU
 */
43
struct iommu_cmd {
44 45 46
	u32 data[4];
};

47 48 49
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e);

50
/* returns !0 if the IOMMU is caching non-present entries in its TLB */
51 52 53 54 55
static int iommu_has_npcache(struct amd_iommu *iommu)
{
	return iommu->cap & IOMMU_CAP_NPCACHE;
}

56 57 58 59 60 61
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
static void iommu_print_event(void *__evt)
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

	printk(KERN_ERR "AMD IOMMU: Event logged [");

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
		iommu_print_event(iommu->evt_buf + head);
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

142 143
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
144 145 146 147 148 149
	struct amd_iommu *iommu;

	list_for_each_entry(iommu, &amd_iommu_list, list)
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
150 151
}

152 153 154 155 156 157 158 159 160 161
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
162
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
163 164 165 166 167
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
168
	target = iommu->cmd_buf + tail;
169 170 171 172 173 174 175 176 177 178
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

179 180 181 182
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
183
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
184 185 186 187 188 189 190 191 192 193 194
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

195 196 197 198 199 200 201
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
202 203
static int iommu_completion_wait(struct amd_iommu *iommu)
{
204 205
	int ret, ready = 0;
	unsigned status = 0;
206
	struct iommu_cmd cmd;
207
	unsigned long i = 0;
208 209

	memset(&cmd, 0, sizeof(cmd));
210
	cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
211 212 213 214 215 216 217 218 219
	CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	iommu->need_sync = 0;

	ret = iommu_queue_command(iommu, &cmd);

	if (ret)
		return ret;

220 221
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
222 223 224
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
225 226
	}

227 228 229 230
	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

231 232
	if (unlikely((i == EXIT_LOOP_COUNT) && printk_ratelimit()))
		printk(KERN_WARNING "AMD IOMMU: Completion wait loop failed\n");
233 234 235 236

	return 0;
}

237 238 239
/*
 * Command send function for invalidating a device table entry
 */
240 241
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
242
	struct iommu_cmd cmd;
243 244 245 246 247 248 249 250 251 252 253 254

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

	iommu->need_sync = 1;

	return iommu_queue_command(iommu, &cmd);
}

255 256 257
/*
 * Generic command send function for invalidaing TLB entries
 */
258 259 260
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
261
	struct iommu_cmd cmd;
262 263 264 265 266

	memset(&cmd, 0, sizeof(cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(&cmd, CMD_INV_IOMMU_PAGES);
	cmd.data[1] |= domid;
267
	cmd.data[2] = lower_32_bits(address);
268
	cmd.data[3] = upper_32_bits(address);
269
	if (s) /* size bit - we flush more than one 4kb page */
270
		cmd.data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
271
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
272 273 274 275 276 277 278
		cmd.data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;

	iommu->need_sync = 1;

	return iommu_queue_command(iommu, &cmd);
}

279 280 281 282 283
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
284 285 286
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
		u64 address, size_t size)
{
287
	int s = 0;
288
	unsigned pages = iommu_num_pages(address, size);
289 290 291

	address &= PAGE_MASK;

292 293 294 295 296 297 298
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
299 300
	}

301 302
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);

303 304
	return 0;
}
305

306 307 308 309 310 311 312 313
/* Flush the whole IO/TLB for a given protection domain */
static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
{
	u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
static int iommu_map(struct protection_domain *dom,
		     unsigned long bus_addr,
		     unsigned long phys_addr,
		     int prot)
{
	u64 __pte, *pte, *page;

	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(bus_addr);

	/* only support 512GB address spaces for now */
	if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
		return -EINVAL;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!page)
			return -ENOMEM;
		*pte = IOMMU_L2_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!page)
			return -ENOMEM;
		*pte = IOMMU_L1_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

	return 0;
}

378 379 380 381
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
382 383 384 385 386 387 388 389 390 391 392 393 394 395
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

396 397 398 399 400 401
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

418 419 420 421
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		ret = iommu_map(&dma_dom->domain, addr, addr, e->prot);
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
	}

	return 0;
}

444 445 446
/*
 * Inits the unity mappings required for a specific device
 */
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

464 465 466 467 468 469 470 471 472
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
473 474
static unsigned long dma_mask_to_pages(unsigned long mask)
{
475
	return PAGE_ALIGN(mask) >> PAGE_SHIFT;
476 477
}

478 479 480 481 482
/*
 * The address allocator core function.
 *
 * called with domain->lock held
 */
483 484
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
485
					     unsigned int pages,
486 487
					     unsigned long align_mask,
					     u64 dma_mask)
488
{
489
	unsigned long limit = dma_mask_to_pages(dma_mask);
490 491 492 493 494 495 496 497
	unsigned long address;
	unsigned long size = dom->aperture_size >> PAGE_SHIFT;
	unsigned long boundary_size;

	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;
	limit = limit < size ? limit : size;

498
	if (dom->next_bit >= limit) {
499
		dom->next_bit = 0;
500 501
		dom->need_flush = true;
	}
502 503

	address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
504
				   0 , boundary_size, align_mask);
505
	if (address == -1) {
506
		address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
507
				0, boundary_size, align_mask);
508 509
		dom->need_flush = true;
	}
510 511 512 513 514 515 516 517 518 519 520 521

	if (likely(address != -1)) {
		dom->next_bit = address + pages;
		address <<= PAGE_SHIFT;
	} else
		address = bad_dma_address;

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

522 523 524 525 526
/*
 * The address free function.
 *
 * called with domain->lock held
 */
527 528 529 530 531 532 533 534
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
	address >>= PAGE_SHIFT;
	iommu_area_free(dom->bitmap, address, pages);
}

535 536 537 538 539 540 541 542 543 544
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

562 563 564 565
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
566 567 568 569 570 571 572 573 574
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

575
	iommu_area_reserve(dom->bitmap, start_page, pages);
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
}

static void dma_ops_free_pagetable(struct dma_ops_domain *dma_dom)
{
	int i, j;
	u64 *p1, *p2, *p3;

	p1 = dma_dom->domain.pt_root;

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
		for (j = 0; j < 512; ++i) {
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
}

606 607 608 609
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
610 611 612 613 614 615 616 617 618 619 620 621 622 623
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

	dma_ops_free_pagetable(dom);

	kfree(dom->pte_pages);

	kfree(dom->bitmap);

	kfree(dom);
}

624 625 626 627 628
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
						   unsigned order)
{
	struct dma_ops_domain *dma_dom;
	unsigned i, num_pte_pages;
	u64 *l2_pde;
	u64 address;

	/*
	 * Currently the DMA aperture must be between 32 MB and 1GB in size
	 */
	if ((order < 25) || (order > 30))
		return NULL;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;
	dma_dom->aperture_size = (1ULL << order);
	dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
				  GFP_KERNEL);
	if (!dma_dom->bitmap)
		goto free_dma_dom;
	/*
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
	 */
	dma_dom->bitmap[0] = 1;
	dma_dom->next_bit = 0;

669
	dma_dom->need_flush = false;
670
	dma_dom->target_dev = 0xffff;
671

672
	/* Intialize the exclusion range if necessary */
673 674 675
	if (iommu->exclusion_start &&
	    iommu->exclusion_start < dma_dom->aperture_size) {
		unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
676 677
		int pages = iommu_num_pages(iommu->exclusion_start,
					    iommu->exclusion_length);
678 679 680
		dma_ops_reserve_addresses(dma_dom, startpage, pages);
	}

681 682 683 684 685
	/*
	 * At the last step, build the page tables so we don't need to
	 * allocate page table pages in the dma_ops mapping/unmapping
	 * path.
	 */
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
	num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
	dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
			GFP_KERNEL);
	if (!dma_dom->pte_pages)
		goto free_dma_dom;

	l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
	if (l2_pde == NULL)
		goto free_dma_dom;

	dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));

	for (i = 0; i < num_pte_pages; ++i) {
		dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!dma_dom->pte_pages[i])
			goto free_dma_dom;
		address = virt_to_phys(dma_dom->pte_pages[i]);
		l2_pde[i] = IOMMU_L1_PDE(address);
	}

	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

714 715 716 717
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
718 719 720 721 722 723 724 725 726 727 728 729
static struct protection_domain *domain_for_device(u16 devid)
{
	struct protection_domain *dom;
	unsigned long flags;

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

730 731 732 733
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
734 735 736 737 738 739 740 741
static void set_device_domain(struct amd_iommu *iommu,
			      struct protection_domain *domain,
			      u16 devid)
{
	unsigned long flags;

	u64 pte_root = virt_to_phys(domain->pt_root);

742 743 744
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
745 746

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
747 748
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
749 750 751 752 753 754 755 756 757 758
	amd_iommu_dev_table[devid].data[2] = domain->id;

	amd_iommu_pd_table[devid] = domain;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	iommu_queue_inv_dev_entry(iommu, devid);

	iommu->need_sync = 1;
}

759 760 761 762 763 764
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

765 766 767 768 769 770 771 772 773 774 775 776
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	if (!dev || !dev->dma_mask)
		return false;

	return true;
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid) {
			ret = entry;
			list_del(&ret->list);
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

804 805 806 807 808 809 810
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
811 812 813 814 815 816 817 818 819
static int get_device_resources(struct device *dev,
				struct amd_iommu **iommu,
				struct protection_domain **domain,
				u16 *bdf)
{
	struct dma_ops_domain *dma_dom;
	struct pci_dev *pcidev;
	u16 _bdf;

820 821 822 823 824 825
	*iommu = NULL;
	*domain = NULL;
	*bdf = 0xffff;

	if (dev->bus != &pci_bus_type)
		return 0;
826 827

	pcidev = to_pci_dev(dev);
828
	_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
829

830
	/* device not translated by any IOMMU in the system? */
831
	if (_bdf > amd_iommu_last_bdf)
832 833 834 835 836 837 838 839 840
		return 0;

	*bdf = amd_iommu_alias_table[_bdf];

	*iommu = amd_iommu_rlookup_table[*bdf];
	if (*iommu == NULL)
		return 0;
	*domain = domain_for_device(*bdf);
	if (*domain == NULL) {
841 842 843
		dma_dom = find_protection_domain(*bdf);
		if (!dma_dom)
			dma_dom = (*iommu)->default_dom;
844 845 846 847 848 849 850 851 852 853
		*domain = &dma_dom->domain;
		set_device_domain(*iommu, *domain, *bdf);
		printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
				"device ", (*domain)->id);
		print_devid(_bdf, 1);
	}

	return 1;
}

854 855 856 857
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
				     struct dma_ops_domain *dom,
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

	pte  = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
	pte += IOMMU_PTE_L0_INDEX(address);

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

889 890 891
/*
 * The generic unmapping function for on page in the DMA address space.
 */
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
				 struct dma_ops_domain *dom,
				 unsigned long address)
{
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

	WARN_ON(address & 0xfffULL || address > dom->aperture_size);

	pte  = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
	pte += IOMMU_PTE_L0_INDEX(address);

	WARN_ON(!*pte);

	*pte = 0ULL;
}

911 912 913 914 915 916
/*
 * This function contains common code for mapping of a physically
 * contiguous memory region into DMA address space. It is uses by all
 * mapping functions provided by this IOMMU driver.
 * Must be called with the domain lock held.
 */
917 918 919 920 921
static dma_addr_t __map_single(struct device *dev,
			       struct amd_iommu *iommu,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
922
			       int dir,
923 924
			       bool align,
			       u64 dma_mask)
925 926 927 928
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
	dma_addr_t address, start;
	unsigned int pages;
929
	unsigned long align_mask = 0;
930 931
	int i;

932
	pages = iommu_num_pages(paddr, size);
933 934
	paddr &= PAGE_MASK;

935 936 937
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

938 939
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
940 941 942 943 944 945 946 947 948 949 950
	if (unlikely(address == bad_dma_address))
		goto out;

	start = address;
	for (i = 0; i < pages; ++i) {
		dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

951 952 953 954
	if (unlikely(dma_dom->need_flush && !iommu_fullflush)) {
		iommu_flush_tlb(iommu, dma_dom->domain.id);
		dma_dom->need_flush = false;
	} else if (unlikely(iommu_has_npcache(iommu)))
955 956
		iommu_flush_pages(iommu, dma_dom->domain.id, address, size);

957 958 959 960
out:
	return address;
}

961 962 963 964
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
965 966 967 968 969 970 971 972 973 974 975 976
static void __unmap_single(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

	if ((dma_addr == 0) || (dma_addr + size > dma_dom->aperture_size))
		return;

977
	pages = iommu_num_pages(dma_addr, size);
978 979 980 981 982 983 984 985 986
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
		dma_ops_domain_unmap(iommu, dma_dom, start);
		start += PAGE_SIZE;
	}

	dma_ops_free_addresses(dma_dom, dma_addr, pages);
987

988 989
	if (iommu_fullflush)
		iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
990 991
}

992 993 994
/*
 * The exported map_single function for dma_ops.
 */
995 996 997 998 999 1000 1001 1002
static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
			     size_t size, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	dma_addr_t addr;
1003
	u64 dma_mask;
1004

1005 1006 1007
	if (!check_device(dev))
		return bad_dma_address;

1008 1009
	dma_mask = *dev->dma_mask;

1010 1011 1012
	get_device_resources(dev, &iommu, &domain, &devid);

	if (iommu == NULL || domain == NULL)
1013
		/* device not handled by any AMD IOMMU */
1014 1015 1016
		return (dma_addr_t)paddr;

	spin_lock_irqsave(&domain->lock, flags);
1017 1018
	addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
			    dma_mask);
1019 1020 1021
	if (addr == bad_dma_address)
		goto out;

1022
	if (unlikely(iommu->need_sync))
1023 1024 1025 1026 1027 1028 1029 1030
		iommu_completion_wait(iommu);

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1031 1032 1033
/*
 * The exported unmap_single function for dma_ops.
 */
1034 1035 1036 1037 1038 1039 1040 1041
static void unmap_single(struct device *dev, dma_addr_t dma_addr,
			 size_t size, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1042 1043
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1044
		/* device not handled by any AMD IOMMU */
1045 1046 1047 1048 1049 1050
		return;

	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, dir);

1051
	if (unlikely(iommu->need_sync))
1052 1053 1054 1055 1056
		iommu_completion_wait(iommu);

	spin_unlock_irqrestore(&domain->lock, flags);
}

1057 1058 1059 1060
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

1075 1076 1077 1078
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
static int map_sg(struct device *dev, struct scatterlist *sglist,
		  int nelems, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
1090
	u64 dma_mask;
1091

1092 1093 1094
	if (!check_device(dev))
		return 0;

1095 1096
	dma_mask = *dev->dma_mask;

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		return map_sg_no_iommu(dev, sglist, nelems, dir);

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

		s->dma_address = __map_single(dev, iommu, domain->priv,
1108 1109
					      paddr, s->length, dir, false,
					      dma_mask);
1110 1111 1112 1113 1114 1115 1116 1117

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

1118
	if (unlikely(iommu->need_sync))
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
		iommu_completion_wait(iommu);

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
			__unmap_single(iommu, domain->priv, s->dma_address,
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

1138 1139 1140 1141
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
		     int nelems, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	struct scatterlist *s;
	u16 devid;
	int i;

1152 1153
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
		return;

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		__unmap_single(iommu, domain->priv, s->dma_address,
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

1164
	if (unlikely(iommu->need_sync))
1165 1166 1167 1168 1169
		iommu_completion_wait(iommu);

	spin_unlock_irqrestore(&domain->lock, flags);
}

1170 1171 1172
/*
 * The exported alloc_coherent function for dma_ops.
 */
1173 1174 1175 1176 1177 1178 1179 1180 1181
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	phys_addr_t paddr;
1182
	u64 dma_mask = dev->coherent_dma_mask;
1183

1184 1185 1186
	if (!check_device(dev))
		return NULL;

1187 1188 1189
	if (!get_device_resources(dev, &iommu, &domain, &devid))
		flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);

1190
	flag |= __GFP_ZERO;
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
		return 0;

	paddr = virt_to_phys(virt_addr);

	if (!iommu || !domain) {
		*dma_addr = (dma_addr_t)paddr;
		return virt_addr;
	}

1202 1203 1204
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

1205 1206 1207
	spin_lock_irqsave(&domain->lock, flags);

	*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1208
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
1209 1210 1211 1212 1213 1214 1215

	if (*dma_addr == bad_dma_address) {
		free_pages((unsigned long)virt_addr, get_order(size));
		virt_addr = NULL;
		goto out;
	}

1216
	if (unlikely(iommu->need_sync))
1217 1218 1219 1220 1221 1222 1223 1224
		iommu_completion_wait(iommu);

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
}

1225 1226 1227
/*
 * The exported free_coherent function for dma_ops.
 */
1228 1229 1230 1231 1232 1233 1234 1235
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1236 1237 1238
	if (!check_device(dev))
		return;

1239 1240 1241 1242 1243 1244 1245 1246 1247
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		goto free_mem;

	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);

1248
	if (unlikely(iommu->need_sync))
1249 1250 1251 1252 1253 1254 1255 1256
		iommu_completion_wait(iommu);

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
	u16 bdf;
	struct pci_dev *pcidev;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return 0;

	pcidev = to_pci_dev(dev);

	bdf = calc_devid(pcidev->bus->number, pcidev->devfn);

	/* Out of our scope? */
	if (bdf > amd_iommu_last_bdf)
		return 0;

	return 1;
}

1281
/*
1282 1283
 * The function for pre-allocating protection domains.
 *
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
void prealloc_protection_domains(void)
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
	struct amd_iommu *iommu;
	int order = amd_iommu_aperture_order;
	u16 devid;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
		devid = (dev->bus->number << 8) | dev->devfn;
1298
		if (devid > amd_iommu_last_bdf)
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
			continue;
		devid = amd_iommu_alias_table[devid];
		if (domain_for_device(devid))
			continue;
		iommu = amd_iommu_rlookup_table[devid];
		if (!iommu)
			continue;
		dma_dom = dma_ops_domain_alloc(iommu, order);
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
1310 1311 1312
		dma_dom->target_dev = devid;

		list_add_tail(&dma_dom->list, &iommu_pd_list);
1313 1314 1315
	}
}

1316 1317 1318 1319 1320 1321 1322
static struct dma_mapping_ops amd_iommu_dma_ops = {
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
	.map_single = map_single,
	.unmap_single = unmap_single,
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
1323
	.dma_supported = amd_iommu_dma_supported,
1324 1325
};

1326 1327 1328
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
1329 1330 1331 1332 1333 1334
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int order = amd_iommu_aperture_order;
	int ret;

1335 1336 1337 1338 1339
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
1340 1341 1342 1343 1344 1345 1346 1347 1348
	list_for_each_entry(iommu, &amd_iommu_list, list) {
		iommu->default_dom = dma_ops_domain_alloc(iommu, order);
		if (iommu->default_dom == NULL)
			return -ENOMEM;
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

1349 1350 1351 1352
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
1353 1354 1355 1356 1357 1358
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
	force_iommu = 1;
	bad_dma_address = 0;
I
Ingo Molnar 已提交
1359
#ifdef CONFIG_GART_IOMMU
1360 1361
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
1362
#endif
1363

1364
	/* Make the driver finally visible to the drivers */
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	dma_ops = &amd_iommu_dma_ops;

	return 0;

free_domains:

	list_for_each_entry(iommu, &amd_iommu_list, list) {
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}