fw-ohci.c 52.4 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/poll.h>
A
Andrew Morton 已提交
28
#include <linux/dma-mapping.h>
A
Al Viro 已提交
29
#include <linux/mm.h>
A
Andrew Morton 已提交
30

31 32 33 34 35 36
#include <asm/uaccess.h>
#include <asm/semaphore.h>

#include "fw-transaction.h"
#include "fw-ohci.h"

37 38 39 40 41 42 43 44 45 46 47 48 49
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
50 51 52 53 54 55 56 57 58 59

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

60 61 62 63 64 65 66 67 68 69 70 71 72 73
struct db_descriptor {
	__le16 first_size;
	__le16 control;
	__le16 second_req_count;
	__le16 first_req_count;
	__le32 branch_address;
	__le16 second_res_count;
	__le16 first_res_count;
	__le32 reserved0;
	__le32 first_buffer;
	__le32 second_buffer;
	__le32 reserved1;
} __attribute__((aligned(16)));

74 75 76 77
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
78

79
struct ar_buffer {
80
	struct descriptor descriptor;
81 82 83
	struct ar_buffer *next;
	__le32 data[0];
};
84

85 86 87 88 89
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
90
	u32 regs;
91 92 93
	struct tasklet_struct tasklet;
};

94 95 96 97 98 99
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
struct context {
S
Stefan Richter 已提交
100
	struct fw_ohci *ohci;
101
	u32 regs;
S
Stefan Richter 已提交
102

103 104 105 106 107 108 109 110 111 112
	struct descriptor *buffer;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	struct descriptor *head_descriptor;
	struct descriptor *tail_descriptor;
	struct descriptor *tail_descriptor_last;
	struct descriptor *prev_descriptor;

	descriptor_callback_t callback;

S
Stefan Richter 已提交
113
	struct tasklet_struct tasklet;
114 115
};

116 117 118 119 120 121
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
122 123 124

struct iso_context {
	struct fw_iso_context base;
125
	struct context context;
126 127
	void *header;
	size_t header_length;
128 129 130 131 132 133 134
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

135
	u32 version;
136 137 138 139
	__iomem char *registers;
	dma_addr_t self_id_bus;
	__le32 *self_id_cpu;
	struct tasklet_struct bus_reset_tasklet;
140
	int node_id;
141 142
	int generation;
	int request_generation;
143
	u32 bus_seconds;
144

145 146 147 148
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
149 150 151 152 153 154 155 156 157 158 159 160
	spinlock_t lock;
	u32 self_id_buffer[512];

	/* Config rom buffers */
	__be32 *config_rom;
	dma_addr_t config_rom_bus;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;
	u32 next_header;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
161 162
	struct context at_request_ctx;
	struct context at_response_ctx;
163 164 165 166 167 168 169

	u32 it_context_mask;
	struct iso_context *it_context_list;
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
};

A
Adrian Bunk 已提交
170
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
171 172 173 174
{
	return container_of(card, struct fw_ohci, card);
}

175 176 177 178 179 180
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

#define OHCI1394_MAX_AT_REQ_RETRIES	0x2
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define FW_OHCI_MAJOR			240
#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
196
#define OHCI_TCODE_PHY_PACKET		0x0e
197
#define OHCI_VERSION_1_1		0x010010
198 199
#define ISO_BUFFER_SIZE			(64 * 1024)
#define AT_BUFFER_SIZE			4096
200

201 202
static char ohci_driver_name[] = KBUILD_MODNAME;

A
Adrian Bunk 已提交
203
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
204 205 206 207
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
208
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
209 210 211 212
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
213
static inline void flush_writes(const struct fw_ohci *ohci)
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

static int
ohci_update_phy_reg(struct fw_card *card, int addr,
		    int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

242
static int ar_context_add_page(struct ar_context *ctx)
243
{
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
	dma_addr_t ab_bus;
	size_t offset;

	ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
	if (ab == NULL)
		return -ENOMEM;

	ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
	if (dma_mapping_error(ab_bus)) {
		free_page((unsigned long) ab);
		return -ENOMEM;
	}

259
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
260 261 262
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
263 264 265 266 267 268 269 270
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

	dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);

271
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
272 273 274
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

275
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
276
	flush_writes(ctx->ohci);
277 278

	return 0;
279 280
}

281
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
282 283
{
	struct fw_ohci *ohci = ctx->ohci;
284 285 286
	struct fw_packet p;
	u32 status, length, tcode;

287 288 289
	p.header[0] = le32_to_cpu(buffer[0]);
	p.header[1] = le32_to_cpu(buffer[1]);
	p.header[2] = le32_to_cpu(buffer[2]);
290 291 292 293 294

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
295
		p.header[3] = (__force __u32) buffer[3];
296
		p.header_length = 16;
297
		p.payload_length = 0;
298 299 300
		break;

	case TCODE_READ_BLOCK_REQUEST :
301 302 303 304 305 306
		p.header[3] = le32_to_cpu(buffer[3]);
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
307 308 309
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
310
		p.header[3] = le32_to_cpu(buffer[3]);
311
		p.header_length = 16;
312
		p.payload_length = p.header[3] >> 16;
313 314 315 316
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
317
	case OHCI_TCODE_PHY_PACKET:
318
		p.header_length = 12;
319
		p.payload_length = 0;
320 321
		break;
	}
322

323 324 325 326 327 328 329 330 331 332
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
	status = le32_to_cpu(buffer[length]);

	p.ack        = ((status >> 16) & 0x1f) - 16;
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
333

334 335
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
336 337 338 339 340
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
341 342
	 * request.
	 */
343

344
	if (p.ack + 16 == 0x09)
345
		ohci->request_generation = (buffer[2] >> 16) & 0xff;
346
	else if (ctx == &ohci->ar_request_ctx)
347
		fw_core_handle_request(&ohci->card, &p);
348
	else
349
		fw_core_handle_response(&ohci->card, &p);
350

351 352
	return buffer + length + 1;
}
353

354 355 356 357 358 359 360 361 362 363 364 365 366 367
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;

368 369
		/*
		 * This descriptor is finished and we may have a
370
		 * packet split across this and the next buffer. We
371 372
		 * reuse the page for reassembling the split packet.
		 */
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

		offset = offsetof(struct ar_buffer, data);
		dma_unmap_single(ohci->card.device,
				 ab->descriptor.data_address - offset,
				 PAGE_SIZE, DMA_BIDIRECTIONAL);

		buffer = ab;
		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

		free_page((unsigned long)buffer);
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
403 404 405
}

static int
406
ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
407
{
408
	struct ar_buffer ab;
409

410 411 412
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
413 414
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

415 416 417 418 419
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

420 421
	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs),
		  le32_to_cpu(ab.descriptor.branch_address));
422
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
423
	flush_writes(ctx->ohci);
424 425 426

	return 0;
}
S
Stefan Richter 已提交
427

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct fw_ohci *ohci = ctx->ohci;
	struct descriptor *d, *last;
	u32 address;
	int z;

	dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
				ctx->buffer_size, DMA_TO_DEVICE);

	d    = ctx->tail_descriptor;
	last = ctx->tail_descriptor_last;

	while (last->branch_address != 0) {
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
445
		d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
		last = (z == 2) ? d : d + z - 1;

		if (!ctx->callback(ctx, d, last))
			break;

		ctx->tail_descriptor      = d;
		ctx->tail_descriptor_last = last;
	}
}

static int
context_init(struct context *ctx, struct fw_ohci *ohci,
	     size_t buffer_size, u32 regs,
	     descriptor_callback_t callback)
{
	ctx->ohci = ohci;
	ctx->regs = regs;
	ctx->buffer_size = buffer_size;
	ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
	if (ctx->buffer == NULL)
		return -ENOMEM;

	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

	ctx->buffer_bus =
		dma_map_single(ohci->card.device, ctx->buffer,
			       buffer_size, DMA_TO_DEVICE);
	if (dma_mapping_error(ctx->buffer_bus)) {
		kfree(ctx->buffer);
		return -ENOMEM;
	}

	ctx->head_descriptor      = ctx->buffer;
	ctx->prev_descriptor      = ctx->buffer;
	ctx->tail_descriptor      = ctx->buffer;
	ctx->tail_descriptor_last = ctx->buffer;

484 485
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
486 487 488
	 * branch address and looks like it's been sent.  That way we
	 * have a descriptor to append DMA programs to.  Also, the
	 * ring buffer invariant is that it always has at least one
489 490
	 * element so that head == tail means buffer full.
	 */
491

492
	memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
493
	ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
494 495 496 497 498 499
	ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
	ctx->head_descriptor++;

	return 0;
}

500
static void
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
context_release(struct context *ctx)
{
	struct fw_card *card = &ctx->ohci->card;

	dma_unmap_single(card->device, ctx->buffer_bus,
			 ctx->buffer_size, DMA_TO_DEVICE);
	kfree(ctx->buffer);
}

static struct descriptor *
context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
{
	struct descriptor *d, *tail, *end;

	d = ctx->head_descriptor;
	tail = ctx->tail_descriptor;
517
	end = ctx->buffer + ctx->buffer_size / sizeof(*d);
518 519 520 521 522 523 524 525 526 527 528 529 530

	if (d + z <= tail) {
		goto has_space;
	} else if (d > tail && d + z <= end) {
		goto has_space;
	} else if (d > tail && ctx->buffer + z <= tail) {
		d = ctx->buffer;
		goto has_space;
	}

	return NULL;

 has_space:
531 532
	memset(d, 0, z * sizeof(*d));
	*d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
533 534 535 536

	return d;
}

537
static void context_run(struct context *ctx, u32 extra)
538 539 540
{
	struct fw_ohci *ohci = ctx->ohci;

541
	reg_write(ohci, COMMAND_PTR(ctx->regs),
542
		  le32_to_cpu(ctx->tail_descriptor_last->branch_address));
543 544
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
545 546 547 548 549 550 551 552
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;

553
	d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
554 555 556 557 558 559 560 561

	ctx->head_descriptor = d + z + extra;
	ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev_descriptor = z == 2 ? d : d + z - 1;

	dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
				   ctx->buffer_size, DMA_TO_DEVICE);

562
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
563 564 565 566 567 568
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
569
	int i;
570

571
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
572
	flush_writes(ctx->ohci);
573

574
	for (i = 0; i < 10; i++) {
575
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
576 577 578 579 580 581
		if ((reg & CONTEXT_ACTIVE) == 0)
			break;

		fw_notify("context_stop: still active (0x%08x)\n", reg);
		msleep(1);
	}
582
}
583

584 585 586
struct driver_data {
	struct fw_packet *packet;
};
587

588 589
/*
 * This function apppends a packet to the DMA queue for transmission.
590
 * Must always be called with the ochi->lock held to ensure proper
591 592
 * generation handling and locking around packet queue manipulation.
 */
593 594
static int
at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
595 596
{
	struct fw_ohci *ohci = ctx->ohci;
597 598 599 600
	dma_addr_t d_bus, payload_bus;
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
601
	int z, tcode;
602
	u32 reg;
603

604 605 606 607
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
608 609
	}

610
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
611 612
	d[0].res_count = cpu_to_le16(packet->timestamp);

613 614
	/*
	 * The DMA format for asyncronous link packets is different
615 616
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
617 618
	 * which we need to prepend an extra quadlet.
	 */
619 620

	header = (__le32 *) &d[1];
621
	if (packet->header_length > 8) {
622 623 624 625 626
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
627 628 629

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
630
			header[3] = cpu_to_le32(packet->header[3]);
631
		else
632 633 634
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
635
	} else {
636 637 638 639 640
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
641 642
	}

643 644
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
645
	packet->driver_data = driver_data;
646 647 648 649 650 651 652 653 654 655 656 657 658 659
	
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
		if (dma_mapping_error(payload_bus)) {
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
660
	} else {
661 662
		last = &d[0];
		z = 2;
663 664
	}

665 666 667
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
668

669 670 671 672 673 674 675
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
676

677
	/* If the context isn't already running, start it up. */
678
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
679
	if ((reg & CONTEXT_RUN) == 0)
680 681 682
		context_run(ctx, 0);

	return 0;
683 684
}

685 686 687
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
688
{
689
	struct driver_data *driver_data;
690
	struct fw_packet *packet;
691 692
	struct fw_ohci *ohci = context->ohci;
	dma_addr_t payload_bus;
693 694
	int evt;

695 696 697
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
698

699 700 701 702 703
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
704

705 706 707
	payload_bus = le32_to_cpu(last->data_address);
	if (payload_bus != 0)
		dma_unmap_single(ohci->card.device, payload_bus,
708 709
				 packet->payload_length, DMA_TO_DEVICE);

710 711
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
712

713 714 715 716 717
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
718

719
	case OHCI1394_evt_flushed:
720 721 722 723
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
724 725
		packet->ack = RCODE_GENERATION;
		break;
726

727
	case OHCI1394_evt_missing_ack:
728 729 730 731
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
732 733
		packet->ack = RCODE_NO_ACK;
		break;
734

735 736 737 738 739 740 741 742 743
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
744

745 746 747 748
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
749

750
	packet->callback(packet, &ohci->card, packet->ack);
751

752
	return 1;
753 754
}

755 756 757 758 759
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
760 761 762 763 764 765 766

static void
handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, i;

767
	tcode = HEADER_GET_TCODE(packet->header[0]);
768
	if (TCODE_IS_BLOCK_PACKET(tcode))
769
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

static void
handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

796 797
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
798
	payload = packet->payload;
799
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
825
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
826 827 828 829 830
 out:
	fw_core_handle_response(&ohci->card, &response);
}

static void
831
handle_local_request(struct context *ctx, struct fw_packet *packet)
832 833 834 835
{
	u64 offset;
	u32 csr;

836 837 838 839
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
840 841 842

	offset =
		((unsigned long long)
843
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
864 865 866 867 868

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
869
}
870

871
static void
872
at_context_transmit(struct context *ctx, struct fw_packet *packet)
873 874
{
	unsigned long flags;
875
	int retval;
876 877 878

	spin_lock_irqsave(&ctx->ohci->lock, flags);

879
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
880
	    ctx->ohci->generation == packet->generation) {
881 882 883
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
884
	}
885

886
	retval = at_context_queue_packet(ctx, packet);
887 888
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

889 890 891
	if (retval < 0)
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	
892 893 894 895 896
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
897
	int self_id_count, i, j, reg;
898 899 900 901 902 903 904 905
	int generation, new_generation;
	unsigned long flags;

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
		fw_error("node ID not valid, new bus reset in progress\n");
		return;
	}
906
	ohci->node_id = reg & 0xffff;
907

908 909
	/*
	 * The count in the SelfIDCount register is the number of
910 911
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
912 913
	 * bit extra to get the actual number of self IDs.
	 */
914 915 916 917 918 919 920 921 922 923

	self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
	generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
			fw_error("inconsistent self IDs\n");
		ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
	}

924 925
	/*
	 * Check the consistency of the self IDs we just read.  The
926 927 928 929 930 931 932 933 934
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
935 936
	 * of self IDs.
	 */
937 938 939 940 941 942 943 944 945 946 947 948

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
949 950
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
951 952
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

953 954
	/*
	 * This next bit is unrelated to the AT context stuff but we
955 956 957 958
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
959 960
	 * next_config_rom pointer so a new udpate can take place.
	 */
961 962 963 964 965 966 967 968

	if (ohci->next_config_rom != NULL) {
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

969 970
		/*
		 * Restore config_rom image and manually update
971 972
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
973 974
		 * do that last.
		 */
975 976 977 978 979 980 981 982
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
		ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
		reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

983
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
984 985 986 987 988 989
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
990
	u32 event, iso_event, cycle_time;
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

	if (!event)
		return IRQ_NONE;

	reg_write(ohci, OHCI1394_IntEventClear, event);

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1015
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1016 1017 1018 1019
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1020
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1021 1022 1023
		iso_event &= ~(1 << i);
	}

1024
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1025 1026 1027 1028
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1029
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1030 1031 1032
		iso_event &= ~(1 << i);
	}

1033 1034 1035 1036 1037 1038
	if (event & OHCI1394_cycle64Seconds) {
		cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		if ((cycle_time & 0x80000000) == 0)
			ohci->bus_seconds++;
	}

1039 1040 1041 1042 1043 1044 1045 1046
	return IRQ_HANDLED;
}

static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);

1047 1048
	/*
	 * When the link is not yet enabled, the atomic config rom
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

	ohci->next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &ohci->next_config_rom_bus, GFP_KERNEL);
	if (ohci->next_config_rom == NULL)
		return -ENOMEM;

	memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
	fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);

	ohci->next_header = config_rom[0];
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
	reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1084
			IRQF_SHARED, ohci_driver_name, ohci)) {
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1097 1098 1099 1100
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

static int
ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci;
	unsigned long flags;
	int retval = 0;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;

	ohci = fw_ohci(card);

1118 1119
	/*
	 * When the OHCI controller is enabled, the config rom update
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
				  length * 4);

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
	} else {
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
		retval = -EBUSY;
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1174 1175
	/*
	 * Now initiate a bus reset to have the changes take
1176 1177 1178
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1179 1180
	 * takes effect.
	 */
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	if (retval == 0)
		fw_core_initiate_bus_reset(&ohci->card, 1);

	return retval;
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1201 1202 1203
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1204 1205 1206
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
	int retval = -ENOENT;
1207

1208
	tasklet_disable(&ctx->tasklet);
1209

1210 1211
	if (packet->ack != 0)
		goto out;
1212

1213 1214 1215 1216
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
	retval = 0;
1217

1218 1219
 out:
	tasklet_enable(&ctx->tasklet);
1220

1221
	return retval;
1222 1223
}

1224 1225 1226 1227 1228
static int
ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
{
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1229
	int n, retval = 0;
1230

1231 1232 1233 1234
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1235 1236 1237 1238 1239 1240 1241 1242

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
		retval = -ESTALE;
		goto out;
	}

1243 1244 1245 1246
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1247 1248 1249 1250 1251 1252 1253

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1254 1255
	flush_writes(ohci);
 out:
1256
	spin_unlock_irqrestore(&ohci->lock, flags);
1257 1258
	return retval;
}
S
Stefan Richter 已提交
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
static u64
ohci_get_bus_time(struct fw_card *card)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 cycle_time;
	u64 bus_time;

	cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
	bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;

	return bus_time;
}

1273 1274 1275
static int handle_ir_dualbuffer_packet(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
1276
{
1277 1278 1279
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
	struct db_descriptor *db = (struct db_descriptor *) d;
1280
	__le32 *ir_header;
1281
	size_t header_length;
1282 1283
	void *p, *end;
	int i;
1284

1285 1286 1287 1288
	if (db->first_res_count > 0 && db->second_res_count > 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

1289 1290 1291 1292 1293 1294 1295
	header_length = le16_to_cpu(db->first_req_count) -
		le16_to_cpu(db->first_res_count);

	i = ctx->header_length;
	p = db + 1;
	end = p + header_length;
	while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1296 1297
		/*
		 * The iso header is byteswapped to little endian by
1298 1299 1300
		 * the controller, but the remaining header quadlets
		 * are big endian.  We want to present all the headers
		 * as big endian, so we have to swap the first
1301 1302
		 * quadlet.
		 */
1303 1304
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1305 1306 1307 1308 1309
		i += ctx->base.header_size;
		p += ctx->base.header_size + 4;
	}

	ctx->header_length = i;
1310

1311
	if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1312 1313 1314
		ir_header = (__le32 *) (db + 1);
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
1315
				   ctx->header_length, ctx->header,
1316
				   ctx->base.callback_data);
1317 1318
		ctx->header_length = 0;
	}
1319

1320
	return 1;
1321 1322
}

1323 1324 1325
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1326
{
1327 1328
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
S
Stefan Richter 已提交
1329

1330 1331 1332 1333
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

1334
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1335 1336
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
				   0, NULL, ctx->base.callback_data);
1337 1338

	return 1;
1339 1340
}

1341
static struct fw_iso_context *
1342
ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1343 1344 1345
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1346
	descriptor_callback_t callback;
1347
	u32 *mask, regs;
1348
	unsigned long flags;
1349
	int index, retval = -ENOMEM;
1350 1351 1352 1353

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1354
		callback = handle_it_packet;
1355
	} else {
S
Stefan Richter 已提交
1356 1357
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
1358
		callback = handle_ir_dualbuffer_packet;
1359 1360
	}

1361
	/* FIXME: We need a fallback for pre 1.1 OHCI. */
1362 1363 1364 1365
	if (callback == handle_ir_dualbuffer_packet &&
	    ohci->version < OHCI_VERSION_1_1)
		return ERR_PTR(-EINVAL);

1366 1367 1368 1369 1370 1371 1372 1373 1374
	spin_lock_irqsave(&ohci->lock, flags);
	index = ffs(*mask) - 1;
	if (index >= 0)
		*mask &= ~(1 << index);
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
1375 1376 1377 1378 1379
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

1380
	ctx = &list[index];
1381
	memset(ctx, 0, sizeof(*ctx));
1382 1383 1384 1385 1386
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

1387
	retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1388
			      regs, callback);
1389 1390
	if (retval < 0)
		goto out_with_header;
1391 1392

	return &ctx->base;
1393 1394 1395 1396 1397 1398 1399 1400 1401

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

	return ERR_PTR(retval);
1402 1403
}

1404 1405
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
1406
{
S
Stefan Richter 已提交
1407
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1408
	struct fw_ohci *ohci = ctx->context.ohci;
1409
	u32 control, match;
1410 1411
	int index;

1412 1413
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
1414 1415 1416
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1417
				(cycle & 0x7fff) << 16;
1418

1419 1420
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1421
		context_run(&ctx->context, match);
1422 1423
	} else {
		index = ctx - ohci->ir_context_list;
1424 1425 1426 1427 1428 1429
		control = IR_CONTEXT_DUAL_BUFFER_MODE | IR_CONTEXT_ISOCH_HEADER;
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
1430

1431 1432
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1433
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1434
		context_run(&ctx->context, control);
1435
	}
1436 1437 1438 1439

	return 0;
}

1440 1441 1442
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1443
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

1459 1460 1461
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1462
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1463 1464 1465
	unsigned long flags;
	int index;

1466 1467
	ohci_stop_iso(base);
	context_release(&ctx->context);
1468
	free_page((unsigned long)ctx->header);
1469

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

static int
1484 1485 1486 1487
ohci_queue_iso_transmit(struct fw_iso_context *base,
			struct fw_iso_packet *packet,
			struct fw_iso_buffer *buffer,
			unsigned long payload)
1488
{
S
Stefan Richter 已提交
1489
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1490
	struct descriptor *d, *last, *pd;
1491 1492
	struct fw_iso_packet *p;
	__le32 *header;
1493
	dma_addr_t d_bus, page_bus;
1494 1495
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
1496
	int page, end_page, i, length, offset;
1497

1498 1499 1500 1501
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
1502 1503

	p = packet;
1504
	payload_index = payload;
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
1523
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1524

1525 1526 1527
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
1528 1529

	if (!p->skip) {
1530
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1531 1532 1533
		d[0].req_count = cpu_to_le16(8);

		header = (__le32 *) &d[1];
1534 1535 1536 1537 1538
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
1539
		header[1] =
1540
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1541 1542 1543 1544 1545
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
1546
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
1559 1560 1561

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
1562 1563 1564 1565 1566

		payload_index += length;
	}

	if (p->interrupt)
1567
		irq = DESCRIPTOR_IRQ_ALWAYS;
1568
	else
1569
		irq = DESCRIPTOR_NO_IRQ;
1570

1571
	last = z == 2 ? d : d + z - 1;
1572 1573 1574
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
1575
				     irq);
1576

1577
	context_append(&ctx->context, d, z, header_z);
1578 1579 1580

	return 0;
}
S
Stefan Richter 已提交
1581

1582
static int
1583 1584 1585 1586
ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
				  struct fw_iso_packet *packet,
				  struct fw_iso_buffer *buffer,
				  unsigned long payload)
1587 1588 1589 1590 1591 1592 1593
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct db_descriptor *db = NULL;
	struct descriptor *d;
	struct fw_iso_packet *p;
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, length, rest;
1594
	int page, offset, packet_count, header_size;
S
Stefan Richter 已提交
1595

1596 1597 1598 1599
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
1600

1601 1602 1603 1604 1605 1606
	if (packet->skip) {
		d = context_get_descriptors(&ctx->context, 2, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
1607 1608 1609
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS |
					  DESCRIPTOR_WAIT);
1610 1611 1612
		db->first_size = cpu_to_le16(ctx->base.header_size + 4);
		context_append(&ctx->context, d, 2, 0);
	}
1613

1614 1615 1616
	p = packet;
	z = 2;

1617 1618 1619 1620
	/*
	 * The OHCI controller puts the status word in the header
	 * buffer too, so we need 4 extra bytes per packet.
	 */
1621 1622 1623
	packet_count = p->header_length / ctx->base.header_size;
	header_size = packet_count * (ctx->base.header_size + 4);

1624
	/* Get header size in number of descriptors. */
1625
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
	rest     = p->payload_length;

	/* FIXME: OHCI 1.0 doesn't support dual buffer receive */
	/* FIXME: make packet-per-buffer/dual-buffer a context option */
	while (rest > 0) {
		d = context_get_descriptors(&ctx->context,
					    z + header_z, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
1639 1640
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS);
1641 1642
		db->first_size = cpu_to_le16(ctx->base.header_size + 4);
		db->first_req_count = cpu_to_le16(header_size);
1643
		db->first_res_count = db->first_req_count;
1644
		db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
S
Stefan Richter 已提交
1645

1646 1647 1648 1649 1650
		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;

1651 1652
		db->second_req_count = cpu_to_le16(length);
		db->second_res_count = db->second_req_count;
1653 1654 1655
		page_bus = page_private(buffer->pages[page]);
		db->second_buffer = cpu_to_le32(page_bus + offset);

1656
		if (p->interrupt && length == rest)
1657
			db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1658

1659 1660 1661 1662 1663 1664
		context_append(&ctx->context, d, z, header_z);
		offset = (offset + length) & ~PAGE_MASK;
		rest -= length;
		page++;
	}

1665 1666
	return 0;
}
1667

1668 1669 1670 1671 1672 1673
static int
ohci_queue_iso(struct fw_iso_context *base,
	       struct fw_iso_packet *packet,
	       struct fw_iso_buffer *buffer,
	       unsigned long payload)
{
1674 1675
	struct iso_context *ctx = container_of(base, struct iso_context, base);

1676 1677
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
		return ohci_queue_iso_transmit(base, packet, buffer, payload);
1678
	else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1679 1680
		return ohci_queue_iso_receive_dualbuffer(base, packet,
							 buffer, payload);
1681 1682 1683
	else
		/* FIXME: Implement fallback for OHCI 1.0 controllers. */
		return -EINVAL;
1684 1685
}

1686
static const struct fw_card_driver ohci_driver = {
1687 1688 1689 1690 1691 1692
	.name			= ohci_driver_name,
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
1693
	.cancel_packet		= ohci_cancel_packet,
1694
	.enable_phys_dma	= ohci_enable_phys_dma,
1695
	.get_bus_time		= ohci_get_bus_time,
1696 1697 1698 1699

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
1700
	.start_iso		= ohci_start_iso,
1701
	.stop_iso		= ohci_stop_iso,
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
};

static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

static int __devinit
pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
{
	struct fw_ohci *ohci;
1724
	u32 bus_options, max_receive, link_speed;
1725
	u64 guid;
1726
	int err;
1727 1728
	size_t size;

1729
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
1730 1731 1732 1733 1734 1735 1736
	if (ohci == NULL) {
		fw_error("Could not malloc fw_ohci data.\n");
		return -ENOMEM;
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

1737 1738
	err = pci_enable_device(dev);
	if (err) {
1739
		fw_error("Failed to enable OHCI hardware.\n");
1740
		goto fail_put_card;
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

1752 1753
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
1754
		fw_error("MMIO resource unavailable\n");
1755
		goto fail_disable;
1756 1757 1758 1759 1760
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
1761 1762
		err = -ENXIO;
		goto fail_iomem;
1763 1764 1765 1766
	}

	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
1767 1768
		err = -EBUSY;
		goto fail_registers;
1769 1770
	}

1771 1772
	/*
	 * Now enable LPS, which we need in order to start accessing
1773 1774 1775
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1776 1777
	 * full link enabled.
	 */
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
	msleep(50);

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

1798 1799
	context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
1800

1801 1802
	context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
		fw_error("Out of memory for it/ir contexts.\n");
1823 1824
		err = -ENOMEM;
		goto fail_registers;
1825 1826 1827 1828 1829 1830 1831 1832 1833
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
		fw_error("Out of memory for self ID buffer.\n");
1834 1835
		err = -ENOMEM;
		goto fail_registers;
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	}

	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
1847 1848
		  OHCI1394_masterIntEnable |
		  OHCI1394_cycle64Seconds);
1849 1850 1851 1852 1853 1854 1855

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

1856 1857 1858
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
	if (err < 0)
		goto fail_self_id;
1859

1860
	ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1861
	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
1862
		  dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
1863 1864

	return 0;
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
 fail_registers:
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
 fail_put_card:
	fw_card_put(&ohci->card);

	return err;
1881 1882 1883 1884 1885 1886 1887
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
1888 1889
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
1890 1891
	fw_core_remove_card(&ohci->card);

1892 1893 1894 1895
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
1896 1897 1898

	software_reset(ohci);
	free_irq(dev->irq, ohci);
1899 1900 1901 1902 1903 1904 1905 1906
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
	fw_card_put(&ohci->card);
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928

	fw_notify("Removed fw-ohci device.\n");
}

static struct pci_device_id pci_table[] = {
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

1929 1930 1931 1932 1933
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);