fsl_elbc_nand.c 29.2 KB
Newer Older
1 2
/* Freescale Enhanced Local Bus Controller NAND driver
 *
3
 * Copyright © 2006-2007, 2010 Freescale Semiconductor
4 5 6
 *
 * Authors: Nick Spence <nick.spence@freescale.com>,
 *          Scott Wood <scottwood@freescale.com>
7 8
 *          Jack Lan <jack.lan@freescale.com>
 *          Roy Zang <tie-fei.zang@freescale.com>
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/of_platform.h>
32
#include <linux/platform_device.h>
33 34 35 36 37 38 39 40 41
#include <linux/slab.h>
#include <linux/interrupt.h>

#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>

#include <asm/io.h>
42
#include <asm/fsl_lbc.h>
43 44 45 46 47 48 49 50 51 52

#define MAX_BANKS 8
#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */

/* mtd information per set */

struct fsl_elbc_mtd {
	struct mtd_info mtd;
	struct nand_chip chip;
53
	struct fsl_lbc_ctrl *ctrl;
54 55 56 57 58 59 60 61

	struct device *dev;
	int bank;               /* Chip select bank number           */
	u8 __iomem *vbase;      /* Chip select base virtual address  */
	int page_size;          /* NAND page size (0=512, 1=2048)    */
	unsigned int fmr;       /* FCM Flash Mode Register value     */
};

L
Lucas De Marchi 已提交
62
/* Freescale eLBC FCM controller information */
63

64
struct fsl_elbc_fcm_ctrl {
65 66 67 68 69 70 71 72 73 74 75 76
	struct nand_hw_control controller;
	struct fsl_elbc_mtd *chips[MAX_BANKS];

	u8 __iomem *addr;        /* Address of assigned FCM buffer        */
	unsigned int page;       /* Last page written to / read from      */
	unsigned int read_bytes; /* Number of bytes read during command   */
	unsigned int column;     /* Saved column from SEQIN               */
	unsigned int index;      /* Pointer to next byte to 'read'        */
	unsigned int status;     /* status read from LTESR after last op  */
	unsigned int mdr;        /* UPM/FCM Data Register value           */
	unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
	unsigned int oob;        /* Non zero if operating on OOB data     */
77
	unsigned int counter;	 /* counter for the initializations	  */
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	char *oob_poi;           /* Place to write ECC after read back    */
};

/* These map to the positions used by the FCM hardware ECC generator */

/* Small Page FLASH with FMR[ECCM] = 0 */
static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
	.eccbytes = 3,
	.eccpos = {6, 7, 8},
	.oobfree = { {0, 5}, {9, 7} },
};

/* Small Page FLASH with FMR[ECCM] = 1 */
static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
	.eccbytes = 3,
	.eccpos = {8, 9, 10},
	.oobfree = { {0, 5}, {6, 2}, {11, 5} },
};

/* Large Page FLASH with FMR[ECCM] = 0 */
static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
	.eccbytes = 12,
	.eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
	.oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
};

/* Large Page FLASH with FMR[ECCM] = 1 */
static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
	.eccbytes = 12,
	.eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
	.oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
};

111 112 113 114 115 116 117 118 119 120 121 122 123 124
/*
 * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
 * 1, so we have to adjust bad block pattern. This pattern should be used for
 * x8 chips only. So far hardware does not support x16 chips anyway.
 */
static u8 scan_ff_pattern[] = { 0xff, };

static struct nand_bbt_descr largepage_memorybased = {
	.options = 0,
	.offs = 0,
	.len = 1,
	.pattern = scan_ff_pattern,
};

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
 * interfere with ECC positions, that's why we implement our own descriptors.
 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
 */
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
		   NAND_BBT_2BIT | NAND_BBT_VERSION,
	.offs =	11,
	.len = 4,
	.veroffs = 15,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
		   NAND_BBT_2BIT | NAND_BBT_VERSION,
	.offs =	11,
	.len = 4,
	.veroffs = 15,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

153 154 155 156 157 158 159 160 161 162
/*=================================*/

/*
 * Set up the FCM hardware block and page address fields, and the fcm
 * structure addr field to point to the correct FCM buffer in memory
 */
static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_elbc_mtd *priv = chip->priv;
163
	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
164
	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
165
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
166 167
	int buf_num;

168
	elbc_fcm_ctrl->page = page_addr;
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

	out_be32(&lbc->fbar,
	         page_addr >> (chip->phys_erase_shift - chip->page_shift));

	if (priv->page_size) {
		out_be32(&lbc->fpar,
		         ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
		         (oob ? FPAR_LP_MS : 0) | column);
		buf_num = (page_addr & 1) << 2;
	} else {
		out_be32(&lbc->fpar,
		         ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
		         (oob ? FPAR_SP_MS : 0) | column);
		buf_num = page_addr & 7;
	}

185 186
	elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
	elbc_fcm_ctrl->index = column;
187 188 189

	/* for OOB data point to the second half of the buffer */
	if (oob)
190
		elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
191

192 193
	dev_vdbg(priv->dev, "set_addr: bank=%d, "
			    "elbc_fcm_ctrl->addr=0x%p (0x%p), "
194
	                    "index %x, pes %d ps %d\n",
195 196
		 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
		 elbc_fcm_ctrl->index,
197 198 199 200 201 202 203 204 205 206
	         chip->phys_erase_shift, chip->page_shift);
}

/*
 * execute FCM command and wait for it to complete
 */
static int fsl_elbc_run_command(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_elbc_mtd *priv = chip->priv;
207 208
	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
209
	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
210 211 212

	/* Setup the FMR[OP] to execute without write protection */
	out_be32(&lbc->fmr, priv->fmr | 3);
213 214
	if (elbc_fcm_ctrl->use_mdr)
		out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
215

216
	dev_vdbg(priv->dev,
217 218
	         "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
	         in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
219
	dev_vdbg(priv->dev,
220 221 222 223 224
	         "fsl_elbc_run_command: fbar=%08x fpar=%08x "
	         "fbcr=%08x bank=%d\n",
	         in_be32(&lbc->fbar), in_be32(&lbc->fpar),
	         in_be32(&lbc->fbcr), priv->bank);

225
	ctrl->irq_status = 0;
226 227 228 229 230 231
	/* execute special operation */
	out_be32(&lbc->lsor, priv->bank);

	/* wait for FCM complete flag or timeout */
	wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
	                   FCM_TIMEOUT_MSECS * HZ/1000);
232
	elbc_fcm_ctrl->status = ctrl->irq_status;
233
	/* store mdr value in case it was needed */
234 235
	if (elbc_fcm_ctrl->use_mdr)
		elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
236

237
	elbc_fcm_ctrl->use_mdr = 0;
238

239 240
	if (elbc_fcm_ctrl->status != LTESR_CC) {
		dev_info(priv->dev,
241 242
		         "command failed: fir %x fcr %x status %x mdr %x\n",
		         in_be32(&lbc->fir), in_be32(&lbc->fcr),
243
			 elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
244 245
		return -EIO;
	}
246

247
	return 0;
248 249 250 251 252
}

static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
{
	struct fsl_elbc_mtd *priv = chip->priv;
253
	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
254
	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
255 256 257

	if (priv->page_size) {
		out_be32(&lbc->fir,
258
		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
259 260
		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
261
		         (FIR_OP_CM1 << FIR_OP3_SHIFT) |
262 263 264 265 266 267
		         (FIR_OP_RBW << FIR_OP4_SHIFT));

		out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
		                    (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
	} else {
		out_be32(&lbc->fir,
268
		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
		         (FIR_OP_RBW << FIR_OP3_SHIFT));

		if (oob)
			out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
		else
			out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
	}
}

/* cmdfunc send commands to the FCM */
static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
                             int column, int page_addr)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_elbc_mtd *priv = chip->priv;
286 287
	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
288
	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
289

290
	elbc_fcm_ctrl->use_mdr = 0;
291 292

	/* clear the read buffer */
293
	elbc_fcm_ctrl->read_bytes = 0;
294
	if (command != NAND_CMD_PAGEPROG)
295
		elbc_fcm_ctrl->index = 0;
296 297 298 299 300 301 302 303

	switch (command) {
	/* READ0 and READ1 read the entire buffer to use hardware ECC. */
	case NAND_CMD_READ1:
		column += 256;

	/* fall-through */
	case NAND_CMD_READ0:
304
		dev_dbg(priv->dev,
305 306 307 308 309 310 311
		        "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
		        " 0x%x, column: 0x%x.\n", page_addr, column);


		out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
		set_addr(mtd, 0, page_addr, 0);

312 313
		elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
		elbc_fcm_ctrl->index += column;
314 315 316 317 318 319 320

		fsl_elbc_do_read(chip, 0);
		fsl_elbc_run_command(mtd);
		return;

	/* READOOB reads only the OOB because no ECC is performed. */
	case NAND_CMD_READOOB:
321
		dev_vdbg(priv->dev,
322 323 324 325 326 327
		         "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
			 " 0x%x, column: 0x%x.\n", page_addr, column);

		out_be32(&lbc->fbcr, mtd->oobsize - column);
		set_addr(mtd, column, page_addr, 1);

328
		elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
329 330 331 332 333 334 335

		fsl_elbc_do_read(chip, 1);
		fsl_elbc_run_command(mtd);
		return;

	/* READID must read all 5 possible bytes while CEB is active */
	case NAND_CMD_READID:
336
		dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
337

338
		out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
339 340 341
		                    (FIR_OP_UA  << FIR_OP1_SHIFT) |
		                    (FIR_OP_RBW << FIR_OP2_SHIFT));
		out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
342 343 344
		/* nand_get_flash_type() reads 8 bytes of entire ID string */
		out_be32(&lbc->fbcr, 8);
		elbc_fcm_ctrl->read_bytes = 8;
345 346
		elbc_fcm_ctrl->use_mdr = 1;
		elbc_fcm_ctrl->mdr = 0;
347 348 349 350 351 352 353

		set_addr(mtd, 0, 0, 0);
		fsl_elbc_run_command(mtd);
		return;

	/* ERASE1 stores the block and page address */
	case NAND_CMD_ERASE1:
354
		dev_vdbg(priv->dev,
355 356 357 358 359 360 361
		         "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
		         "page_addr: 0x%x.\n", page_addr);
		set_addr(mtd, 0, page_addr, 0);
		return;

	/* ERASE2 uses the block and page address from ERASE1 */
	case NAND_CMD_ERASE2:
362
		dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
363 364

		out_be32(&lbc->fir,
365
		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
366
		         (FIR_OP_PA  << FIR_OP1_SHIFT) |
367 368 369
		         (FIR_OP_CM2 << FIR_OP2_SHIFT) |
		         (FIR_OP_CW1 << FIR_OP3_SHIFT) |
		         (FIR_OP_RS  << FIR_OP4_SHIFT));
370 371 372

		out_be32(&lbc->fcr,
		         (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
373 374
		         (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
		         (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
375 376

		out_be32(&lbc->fbcr, 0);
377 378
		elbc_fcm_ctrl->read_bytes = 0;
		elbc_fcm_ctrl->use_mdr = 1;
379 380 381 382 383 384 385

		fsl_elbc_run_command(mtd);
		return;

	/* SEQIN sets up the addr buffer and all registers except the length */
	case NAND_CMD_SEQIN: {
		__be32 fcr;
386 387
		dev_vdbg(priv->dev,
			 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
388 389 390
		         "page_addr: 0x%x, column: 0x%x.\n",
		         page_addr, column);

391 392
		elbc_fcm_ctrl->column = column;
		elbc_fcm_ctrl->oob = 0;
393
		elbc_fcm_ctrl->use_mdr = 1;
394

395 396 397
		fcr = (NAND_CMD_STATUS   << FCR_CMD1_SHIFT) |
		      (NAND_CMD_SEQIN    << FCR_CMD2_SHIFT) |
		      (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
398

399
		if (priv->page_size) {
400
			out_be32(&lbc->fir,
401
			         (FIR_OP_CM2 << FIR_OP0_SHIFT) |
402 403 404
			         (FIR_OP_CA  << FIR_OP1_SHIFT) |
			         (FIR_OP_PA  << FIR_OP2_SHIFT) |
			         (FIR_OP_WB  << FIR_OP3_SHIFT) |
405 406 407
			         (FIR_OP_CM3 << FIR_OP4_SHIFT) |
			         (FIR_OP_CW1 << FIR_OP5_SHIFT) |
			         (FIR_OP_RS  << FIR_OP6_SHIFT));
408 409
		} else {
			out_be32(&lbc->fir,
410
			         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
411 412 413 414
			         (FIR_OP_CM2 << FIR_OP1_SHIFT) |
			         (FIR_OP_CA  << FIR_OP2_SHIFT) |
			         (FIR_OP_PA  << FIR_OP3_SHIFT) |
			         (FIR_OP_WB  << FIR_OP4_SHIFT) |
415 416 417
			         (FIR_OP_CM3 << FIR_OP5_SHIFT) |
			         (FIR_OP_CW1 << FIR_OP6_SHIFT) |
			         (FIR_OP_RS  << FIR_OP7_SHIFT));
418 419 420 421 422

			if (column >= mtd->writesize) {
				/* OOB area --> READOOB */
				column -= mtd->writesize;
				fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
423
				elbc_fcm_ctrl->oob = 1;
424 425
			} else {
				WARN_ON(column != 0);
426 427 428 429 430 431
				/* First 256 bytes --> READ0 */
				fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
			}
		}

		out_be32(&lbc->fcr, fcr);
432
		set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
433 434 435 436 437 438
		return;
	}

	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
	case NAND_CMD_PAGEPROG: {
		int full_page;
439
		dev_vdbg(priv->dev,
440
		         "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
441
			 "writing %d bytes.\n", elbc_fcm_ctrl->index);
442 443 444 445 446

		/* if the write did not start at 0 or is not a full page
		 * then set the exact length, otherwise use a full page
		 * write so the HW generates the ECC.
		 */
447 448 449
		if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
		    elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize) {
			out_be32(&lbc->fbcr, elbc_fcm_ctrl->index);
450 451 452 453 454 455 456 457 458 459 460
			full_page = 0;
		} else {
			out_be32(&lbc->fbcr, 0);
			full_page = 1;
		}

		fsl_elbc_run_command(mtd);

		/* Read back the page in order to fill in the ECC for the
		 * caller.  Is this really needed?
		 */
461
		if (full_page && elbc_fcm_ctrl->oob_poi) {
462 463 464
			out_be32(&lbc->fbcr, 3);
			set_addr(mtd, 6, page_addr, 1);

465
			elbc_fcm_ctrl->read_bytes = mtd->writesize + 9;
466 467 468 469

			fsl_elbc_do_read(chip, 1);
			fsl_elbc_run_command(mtd);

470 471 472
			memcpy_fromio(elbc_fcm_ctrl->oob_poi + 6,
				&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], 3);
			elbc_fcm_ctrl->index += 3;
473 474
		}

475
		elbc_fcm_ctrl->oob_poi = NULL;
476 477 478 479 480 481 482 483 484 485 486 487
		return;
	}

	/* CMD_STATUS must read the status byte while CEB is active */
	/* Note - it does not wait for the ready line */
	case NAND_CMD_STATUS:
		out_be32(&lbc->fir,
		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
		         (FIR_OP_RBW << FIR_OP1_SHIFT));
		out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
		out_be32(&lbc->fbcr, 1);
		set_addr(mtd, 0, 0, 0);
488
		elbc_fcm_ctrl->read_bytes = 1;
489 490 491 492 493 494

		fsl_elbc_run_command(mtd);

		/* The chip always seems to report that it is
		 * write-protected, even when it is not.
		 */
495
		setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
496 497 498 499
		return;

	/* RESET without waiting for the ready line */
	case NAND_CMD_RESET:
500
		dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
501 502 503 504 505 506
		out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
		out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
		fsl_elbc_run_command(mtd);
		return;

	default:
507
		dev_err(priv->dev,
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
		        "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
		        command);
	}
}

static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
{
	/* The hardware does not seem to support multiple
	 * chips per bank.
	 */
}

/*
 * Write buf to the FCM Controller Data Buffer
 */
static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_elbc_mtd *priv = chip->priv;
527
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
528 529
	unsigned int bufsize = mtd->writesize + mtd->oobsize;

530
	if (len <= 0) {
531 532
		dev_err(priv->dev, "write_buf of %d bytes", len);
		elbc_fcm_ctrl->status = 0;
533 534 535
		return;
	}

536 537
	if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
		dev_err(priv->dev,
538 539
		        "write_buf beyond end of buffer "
		        "(%d requested, %u available)\n",
540 541
			len, bufsize - elbc_fcm_ctrl->index);
		len = bufsize - elbc_fcm_ctrl->index;
542 543
	}

544
	memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
545 546 547 548 549 550 551
	/*
	 * This is workaround for the weird elbc hangs during nand write,
	 * Scott Wood says: "...perhaps difference in how long it takes a
	 * write to make it through the localbus compared to a write to IMMR
	 * is causing problems, and sync isn't helping for some reason."
	 * Reading back the last byte helps though.
	 */
552
	in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
553

554
	elbc_fcm_ctrl->index += len;
555 556 557 558 559 560 561 562 563 564
}

/*
 * read a byte from either the FCM hardware buffer if it has any data left
 * otherwise issue a command to read a single byte.
 */
static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_elbc_mtd *priv = chip->priv;
565
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
566 567

	/* If there are still bytes in the FCM, then use the next byte. */
568 569
	if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
		return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
570

571
	dev_err(priv->dev, "read_byte beyond end of buffer\n");
572 573 574 575 576 577 578 579 580 581
	return ERR_BYTE;
}

/*
 * Read from the FCM Controller Data Buffer
 */
static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_elbc_mtd *priv = chip->priv;
582
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
583 584 585 586 587
	int avail;

	if (len < 0)
		return;

588 589 590 591
	avail = min((unsigned int)len,
			elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
	memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
	elbc_fcm_ctrl->index += avail;
592 593

	if (len > avail)
594
		dev_err(priv->dev,
595 596 597 598 599 600 601 602 603 604 605 606
		        "read_buf beyond end of buffer "
		        "(%d requested, %d available)\n",
		        len, avail);
}

/*
 * Verify buffer against the FCM Controller Data Buffer
 */
static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_elbc_mtd *priv = chip->priv;
607
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
608 609 610
	int i;

	if (len < 0) {
611
		dev_err(priv->dev, "write_buf of %d bytes", len);
612 613 614
		return -EINVAL;
	}

615 616 617 618 619 620
	if ((unsigned int)len >
			elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index) {
		dev_err(priv->dev,
			"verify_buf beyond end of buffer "
			"(%d requested, %u available)\n",
			len, elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
621

622
		elbc_fcm_ctrl->index = elbc_fcm_ctrl->read_bytes;
623 624 625 626
		return -EINVAL;
	}

	for (i = 0; i < len; i++)
627 628
		if (in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index + i])
				!= buf[i])
629 630
			break;

631 632
	elbc_fcm_ctrl->index += len;
	return i == len && elbc_fcm_ctrl->status == LTESR_CC ? 0 : -EIO;
633 634 635 636 637 638 639 640
}

/* This function is called after Program and Erase Operations to
 * check for success or failure.
 */
static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct fsl_elbc_mtd *priv = chip->priv;
641
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
642

643
	if (elbc_fcm_ctrl->status != LTESR_CC)
644 645 646 647 648
		return NAND_STATUS_FAIL;

	/* The chip always seems to report that it is
	 * write-protected, even when it is not.
	 */
649
	return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
650 651 652 653 654 655
}

static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_elbc_mtd *priv = chip->priv;
656
	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
657
	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
658 659 660 661 662 663 664 665 666 667 668 669 670
	unsigned int al;

	/* calculate FMR Address Length field */
	al = 0;
	if (chip->pagemask & 0xffff0000)
		al++;
	if (chip->pagemask & 0xff000000)
		al++;

	/* add to ECCM mode set in fsl_elbc_init */
	priv->fmr |= (12 << FMR_CWTO_SHIFT) |  /* Timeout > 12 ms */
	             (al << FMR_AL_SHIFT);

671
	dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
672
	        chip->numchips);
673
	dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
674
	        chip->chipsize);
675
	dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
676
	        chip->pagemask);
677
	dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
678
	        chip->chip_delay);
679
	dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
680
	        chip->badblockpos);
681
	dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
682
	        chip->chip_shift);
683
	dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
684
	        chip->page_shift);
685
	dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
686
	        chip->phys_erase_shift);
687
	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
688
	        chip->ecclayout);
689
	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
690
	        chip->ecc.mode);
691
	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
692
	        chip->ecc.steps);
693
	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
694
	        chip->ecc.bytes);
695
	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
696
	        chip->ecc.total);
697
	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
698
	        chip->ecc.layout);
699 700 701
	dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
	dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
	dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
702
	        mtd->erasesize);
703
	dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
704
	        mtd->writesize);
705
	dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
706 707 708 709 710
	        mtd->oobsize);

	/* adjust Option Register and ECC to match Flash page size */
	if (mtd->writesize == 512) {
		priv->page_size = 0;
711
		clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
712 713 714 715 716 717 718 719 720 721
	} else if (mtd->writesize == 2048) {
		priv->page_size = 1;
		setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
		/* adjust ecc setup if needed */
		if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
		    BR_DECC_CHK_GEN) {
			chip->ecc.size = 512;
			chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
			                   &fsl_elbc_oob_lp_eccm1 :
			                   &fsl_elbc_oob_lp_eccm0;
722
			chip->badblock_pattern = &largepage_memorybased;
723 724
		}
	} else {
725
		dev_err(priv->dev,
726 727 728 729 730 731 732 733 734 735
		        "fsl_elbc_init: page size %d is not supported\n",
		        mtd->writesize);
		return -1;
	}

	return 0;
}

static int fsl_elbc_read_page(struct mtd_info *mtd,
                              struct nand_chip *chip,
736 737
			      uint8_t *buf,
			      int page)
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
{
	fsl_elbc_read_buf(mtd, buf, mtd->writesize);
	fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);

	if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
		mtd->ecc_stats.failed++;

	return 0;
}

/* ECC will be calculated automatically, and errors will be detected in
 * waitfunc.
 */
static void fsl_elbc_write_page(struct mtd_info *mtd,
                                struct nand_chip *chip,
                                const uint8_t *buf)
{
	struct fsl_elbc_mtd *priv = chip->priv;
756
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
757 758 759 760

	fsl_elbc_write_buf(mtd, buf, mtd->writesize);
	fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);

761
	elbc_fcm_ctrl->oob_poi = chip->oob_poi;
762 763 764 765
}

static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
{
766
	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
767
	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
768
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
769 770 771 772 773 774 775
	struct nand_chip *chip = &priv->chip;

	dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);

	/* Fill in fsl_elbc_mtd structure */
	priv->mtd.priv = chip;
	priv->mtd.owner = THIS_MODULE;
776 777 778

	/* Set the ECCM according to the settings in bootloader.*/
	priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM;
779 780 781 782 783 784 785 786 787 788 789

	/* fill in nand_chip structure */
	/* set up function call table */
	chip->read_byte = fsl_elbc_read_byte;
	chip->write_buf = fsl_elbc_write_buf;
	chip->read_buf = fsl_elbc_read_buf;
	chip->verify_buf = fsl_elbc_verify_buf;
	chip->select_chip = fsl_elbc_select_chip;
	chip->cmdfunc = fsl_elbc_cmdfunc;
	chip->waitfunc = fsl_elbc_wait;

790 791 792
	chip->bbt_td = &bbt_main_descr;
	chip->bbt_md = &bbt_mirror_descr;

793
	/* set up nand options */
794
	chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
795
	chip->bbt_options = NAND_BBT_USE_FLASH;
796

797
	chip->controller = &elbc_fcm_ctrl->controller;
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	chip->priv = priv;

	chip->ecc.read_page = fsl_elbc_read_page;
	chip->ecc.write_page = fsl_elbc_write_page;

	/* If CS Base Register selects full hardware ECC then use it */
	if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
	    BR_DECC_CHK_GEN) {
		chip->ecc.mode = NAND_ECC_HW;
		/* put in small page settings and adjust later if needed */
		chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
				&fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
		chip->ecc.size = 512;
		chip->ecc.bytes = 3;
	} else {
		/* otherwise fall back to default software ECC */
		chip->ecc.mode = NAND_ECC_SOFT;
	}

	return 0;
}

static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
{
822
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
823 824
	nand_release(&priv->mtd);

825 826
	kfree(priv->mtd.name);

827 828 829
	if (priv->vbase)
		iounmap(priv->vbase);

830
	elbc_fcm_ctrl->chips[priv->bank] = NULL;
831
	kfree(priv);
832
	kfree(elbc_fcm_ctrl);
833 834 835
	return 0;
}

836 837 838
static DEFINE_MUTEX(fsl_elbc_nand_mutex);

static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev)
839
{
840
	struct fsl_lbc_regs __iomem *lbc;
841 842
	struct fsl_elbc_mtd *priv;
	struct resource res;
843
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
844 845 846 847 848
	static const char *part_probe_types[]
		= { "cmdlinepart", "RedBoot", NULL };
	struct mtd_partition *parts;
	int ret;
	int bank;
849 850 851 852 853 854 855
	struct device *dev;
	struct device_node *node = pdev->dev.of_node;

	if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
		return -ENODEV;
	lbc = fsl_lbc_ctrl_dev->regs;
	dev = fsl_lbc_ctrl_dev->dev;
856 857 858 859

	/* get, allocate and map the memory resource */
	ret = of_address_to_resource(node, 0, &res);
	if (ret) {
860
		dev_err(dev, "failed to get resource\n");
861 862 863 864 865 866 867 868 869
		return ret;
	}

	/* find which chip select it is connected to */
	for (bank = 0; bank < MAX_BANKS; bank++)
		if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
		    (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
		    (in_be32(&lbc->bank[bank].br) &
		     in_be32(&lbc->bank[bank].or) & BR_BA)
870
		     == fsl_lbc_addr(res.start))
871 872 873
			break;

	if (bank >= MAX_BANKS) {
874
		dev_err(dev, "address did not match any chip selects\n");
875 876 877 878 879 880 881
		return -ENODEV;
	}

	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	mutex_lock(&fsl_elbc_nand_mutex);
	if (!fsl_lbc_ctrl_dev->nand) {
		elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
		if (!elbc_fcm_ctrl) {
			dev_err(dev, "failed to allocate memory\n");
			mutex_unlock(&fsl_elbc_nand_mutex);
			ret = -ENOMEM;
			goto err;
		}
		elbc_fcm_ctrl->counter++;

		spin_lock_init(&elbc_fcm_ctrl->controller.lock);
		init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
		fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
	} else {
		elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
	}
	mutex_unlock(&fsl_elbc_nand_mutex);

	elbc_fcm_ctrl->chips[bank] = priv;
902
	priv->bank = bank;
903 904
	priv->ctrl = fsl_lbc_ctrl_dev;
	priv->dev = dev;
905

906
	priv->vbase = ioremap(res.start, resource_size(&res));
907
	if (!priv->vbase) {
908
		dev_err(dev, "failed to map chip region\n");
909 910 911 912
		ret = -ENOMEM;
		goto err;
	}

913
	priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
914 915 916 917 918
	if (!priv->mtd.name) {
		ret = -ENOMEM;
		goto err;
	}

919 920 921 922
	ret = fsl_elbc_chip_init(priv);
	if (ret)
		goto err;

923
	ret = nand_scan_ident(&priv->mtd, 1, NULL);
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
	if (ret)
		goto err;

	ret = fsl_elbc_chip_init_tail(&priv->mtd);
	if (ret)
		goto err;

	ret = nand_scan_tail(&priv->mtd);
	if (ret)
		goto err;

	/* First look for RedBoot table or partitions on the command
	 * line, these take precedence over device tree information */
	ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
	if (ret < 0)
		goto err;

	if (ret == 0) {
942
		ret = of_mtd_parse_partitions(priv->dev, node, &parts);
943 944 945 946
		if (ret < 0)
			goto err;
	}

947
	mtd_device_register(&priv->mtd, parts, ret);
948

949 950
	printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
	       (unsigned long long)res.start, priv->bank);
951 952 953 954 955 956 957
	return 0;

err:
	fsl_elbc_chip_remove(priv);
	return ret;
}

958
static int fsl_elbc_nand_remove(struct platform_device *pdev)
959 960
{
	int i;
961
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
962
	for (i = 0; i < MAX_BANKS; i++)
963 964 965 966 967 968 969 970
		if (elbc_fcm_ctrl->chips[i])
			fsl_elbc_chip_remove(elbc_fcm_ctrl->chips[i]);

	mutex_lock(&fsl_elbc_nand_mutex);
	elbc_fcm_ctrl->counter--;
	if (!elbc_fcm_ctrl->counter) {
		fsl_lbc_ctrl_dev->nand = NULL;
		kfree(elbc_fcm_ctrl);
971
	}
972
	mutex_unlock(&fsl_elbc_nand_mutex);
973 974 975 976 977

	return 0;

}

978 979
static const struct of_device_id fsl_elbc_nand_match[] = {
	{ .compatible = "fsl,elbc-fcm-nand", },
980 981 982
	{}
};

983
static struct platform_driver fsl_elbc_nand_driver = {
984
	.driver = {
985
		.name = "fsl,elbc-fcm-nand",
986
		.owner = THIS_MODULE,
987
		.of_match_table = fsl_elbc_nand_match,
988
	},
989 990
	.probe = fsl_elbc_nand_probe,
	.remove = fsl_elbc_nand_remove,
991 992
};

993
static int __init fsl_elbc_nand_init(void)
994
{
995
	return platform_driver_register(&fsl_elbc_nand_driver);
996 997
}

998
static void __exit fsl_elbc_nand_exit(void)
999
{
1000
	platform_driver_unregister(&fsl_elbc_nand_driver);
1001 1002
}

1003 1004
module_init(fsl_elbc_nand_init);
module_exit(fsl_elbc_nand_exit);
1005 1006 1007 1008

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Freescale");
MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");