perf_counter.c 29.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Performance counter support - powerpc architecture code
 *
 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/perf_counter.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <asm/reg.h>
#include <asm/pmc.h>
18
#include <asm/machdep.h>
19
#include <asm/firmware.h>
20
#include <asm/ptrace.h>
21 22 23 24 25 26

struct cpu_hw_counters {
	int n_counters;
	int n_percpu;
	int disabled;
	int n_added;
27 28
	int n_limited;
	u8  pmcs_enabled;
29
	struct perf_counter *counter[MAX_HWCOUNTERS];
30
	u64 events[MAX_HWCOUNTERS];
31
	unsigned int flags[MAX_HWCOUNTERS];
32
	u64 mmcr[3];
33 34
	struct perf_counter *limited_counter[MAX_LIMITED_HWCOUNTERS];
	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
35 36 37 38 39
};
DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);

struct power_pmu *ppmu;

40 41 42 43 44 45 46 47 48
/*
 * Normally, to ignore kernel events we set the FCS (freeze counters
 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 * hypervisor bit set in the MSR, or if we are running on a processor
 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 * then we need to use the FCHV bit to ignore kernel events.
 */
static unsigned int freeze_counters_kernel = MMCR0_FCS;

49 50
static void perf_counter_interrupt(struct pt_regs *regs);

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
void perf_counter_print_debug(void)
{
}

/*
 * Read one performance monitor counter (PMC).
 */
static unsigned long read_pmc(int idx)
{
	unsigned long val;

	switch (idx) {
	case 1:
		val = mfspr(SPRN_PMC1);
		break;
	case 2:
		val = mfspr(SPRN_PMC2);
		break;
	case 3:
		val = mfspr(SPRN_PMC3);
		break;
	case 4:
		val = mfspr(SPRN_PMC4);
		break;
	case 5:
		val = mfspr(SPRN_PMC5);
		break;
	case 6:
		val = mfspr(SPRN_PMC6);
		break;
	case 7:
		val = mfspr(SPRN_PMC7);
		break;
	case 8:
		val = mfspr(SPRN_PMC8);
		break;
	default:
		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
		val = 0;
	}
	return val;
}

/*
 * Write one PMC.
 */
static void write_pmc(int idx, unsigned long val)
{
	switch (idx) {
	case 1:
		mtspr(SPRN_PMC1, val);
		break;
	case 2:
		mtspr(SPRN_PMC2, val);
		break;
	case 3:
		mtspr(SPRN_PMC3, val);
		break;
	case 4:
		mtspr(SPRN_PMC4, val);
		break;
	case 5:
		mtspr(SPRN_PMC5, val);
		break;
	case 6:
		mtspr(SPRN_PMC6, val);
		break;
	case 7:
		mtspr(SPRN_PMC7, val);
		break;
	case 8:
		mtspr(SPRN_PMC8, val);
		break;
	default:
		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
	}
}

/*
 * Check if a set of events can all go on the PMU at once.
 * If they can't, this will look at alternative codes for the events
 * and see if any combination of alternative codes is feasible.
 * The feasible set is returned in event[].
 */
135
static int power_check_constraints(u64 event[], unsigned int cflags[],
136
				   int n_ev)
137 138
{
	u64 mask, value, nv;
139
	u64 alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
140 141 142 143 144 145 146 147 148 149 150 151 152
	u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
	u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
	u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
	int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
	int i, j;
	u64 addf = ppmu->add_fields;
	u64 tadd = ppmu->test_adder;

	if (n_ev > ppmu->n_counter)
		return -1;

	/* First see if the events will go on as-is */
	for (i = 0; i < n_ev; ++i) {
153 154 155 156 157 158
		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
		    && !ppmu->limited_pmc_event(event[i])) {
			ppmu->get_alternatives(event[i], cflags[i],
					       alternatives[i]);
			event[i] = alternatives[i][0];
		}
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
		if (ppmu->get_constraint(event[i], &amasks[i][0],
					 &avalues[i][0]))
			return -1;
	}
	value = mask = 0;
	for (i = 0; i < n_ev; ++i) {
		nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
		if ((((nv + tadd) ^ value) & mask) != 0 ||
		    (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
			break;
		value = nv;
		mask |= amasks[i][0];
	}
	if (i == n_ev)
		return 0;	/* all OK */

	/* doesn't work, gather alternatives... */
	if (!ppmu->get_alternatives)
		return -1;
	for (i = 0; i < n_ev; ++i) {
179 180 181
		choice[i] = 0;
		n_alt[i] = ppmu->get_alternatives(event[i], cflags[i],
						  alternatives[i]);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
		for (j = 1; j < n_alt[i]; ++j)
			ppmu->get_constraint(alternatives[i][j],
					     &amasks[i][j], &avalues[i][j]);
	}

	/* enumerate all possibilities and see if any will work */
	i = 0;
	j = -1;
	value = mask = nv = 0;
	while (i < n_ev) {
		if (j >= 0) {
			/* we're backtracking, restore context */
			value = svalues[i];
			mask = smasks[i];
			j = choice[i];
		}
		/*
		 * See if any alternative k for event i,
		 * where k > j, will satisfy the constraints.
		 */
		while (++j < n_alt[i]) {
			nv = (value | avalues[i][j]) +
				(value & avalues[i][j] & addf);
			if ((((nv + tadd) ^ value) & mask) == 0 &&
			    (((nv + tadd) ^ avalues[i][j])
			     & amasks[i][j]) == 0)
				break;
		}
		if (j >= n_alt[i]) {
			/*
			 * No feasible alternative, backtrack
			 * to event i-1 and continue enumerating its
			 * alternatives from where we got up to.
			 */
			if (--i < 0)
				return -1;
		} else {
			/*
			 * Found a feasible alternative for event i,
			 * remember where we got up to with this event,
			 * go on to the next event, and start with
			 * the first alternative for it.
			 */
			choice[i] = j;
			svalues[i] = value;
			smasks[i] = mask;
			value = nv;
			mask |= amasks[i][j];
			++i;
			j = -1;
		}
	}

	/* OK, we have a feasible combination, tell the caller the solution */
	for (i = 0; i < n_ev; ++i)
		event[i] = alternatives[i][choice[i]];
	return 0;
}

241 242 243 244 245
/*
 * Check if newly-added counters have consistent settings for
 * exclude_{user,kernel,hv} with each other and any previously
 * added counters.
 */
246 247
static int check_excludes(struct perf_counter **ctrs, unsigned int cflags[],
			  int n_prev, int n_new)
248
{
249 250
	int eu = 0, ek = 0, eh = 0;
	int i, n, first;
251 252 253 254 255 256
	struct perf_counter *counter;

	n = n_prev + n_new;
	if (n <= 1)
		return 0;

257 258 259 260 261 262
	first = 1;
	for (i = 0; i < n; ++i) {
		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
			continue;
		}
263
		counter = ctrs[i];
264
		if (first) {
265 266 267
			eu = counter->attr.exclude_user;
			ek = counter->attr.exclude_kernel;
			eh = counter->attr.exclude_hv;
268
			first = 0;
269 270 271
		} else if (counter->attr.exclude_user != eu ||
			   counter->attr.exclude_kernel != ek ||
			   counter->attr.exclude_hv != eh) {
272
			return -EAGAIN;
273
		}
274
	}
275 276 277 278 279 280

	if (eu || ek || eh)
		for (i = 0; i < n; ++i)
			if (cflags[i] & PPMU_LIMITED_PMC_OK)
				cflags[i] |= PPMU_LIMITED_PMC_REQD;

281 282 283
	return 0;
}

284
static void power_pmu_read(struct perf_counter *counter)
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
{
	long val, delta, prev;

	if (!counter->hw.idx)
		return;
	/*
	 * Performance monitor interrupts come even when interrupts
	 * are soft-disabled, as long as interrupts are hard-enabled.
	 * Therefore we treat them like NMIs.
	 */
	do {
		prev = atomic64_read(&counter->hw.prev_count);
		barrier();
		val = read_pmc(counter->hw.idx);
	} while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);

	/* The counters are only 32 bits wide */
	delta = (val - prev) & 0xfffffffful;
	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &counter->hw.period_left);
}

307 308 309 310 311 312 313
/*
 * On some machines, PMC5 and PMC6 can't be written, don't respect
 * the freeze conditions, and don't generate interrupts.  This tells
 * us if `counter' is using such a PMC.
 */
static int is_limited_pmc(int pmcnum)
{
314 315
	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
		&& (pmcnum == 5 || pmcnum == 6);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
}

static void freeze_limited_counters(struct cpu_hw_counters *cpuhw,
				    unsigned long pmc5, unsigned long pmc6)
{
	struct perf_counter *counter;
	u64 val, prev, delta;
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
		counter = cpuhw->limited_counter[i];
		if (!counter->hw.idx)
			continue;
		val = (counter->hw.idx == 5) ? pmc5 : pmc6;
		prev = atomic64_read(&counter->hw.prev_count);
		counter->hw.idx = 0;
		delta = (val - prev) & 0xfffffffful;
		atomic64_add(delta, &counter->count);
	}
}

static void thaw_limited_counters(struct cpu_hw_counters *cpuhw,
				  unsigned long pmc5, unsigned long pmc6)
{
	struct perf_counter *counter;
	u64 val;
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
		counter = cpuhw->limited_counter[i];
		counter->hw.idx = cpuhw->limited_hwidx[i];
		val = (counter->hw.idx == 5) ? pmc5 : pmc6;
		atomic64_set(&counter->hw.prev_count, val);
		perf_counter_update_userpage(counter);
	}
}

/*
 * Since limited counters don't respect the freeze conditions, we
 * have to read them immediately after freezing or unfreezing the
 * other counters.  We try to keep the values from the limited
 * counters as consistent as possible by keeping the delay (in
 * cycles and instructions) between freezing/unfreezing and reading
 * the limited counters as small and consistent as possible.
 * Therefore, if any limited counters are in use, we read them
 * both, and always in the same order, to minimize variability,
 * and do it inside the same asm that writes MMCR0.
 */
static void write_mmcr0(struct cpu_hw_counters *cpuhw, unsigned long mmcr0)
{
	unsigned long pmc5, pmc6;

	if (!cpuhw->n_limited) {
		mtspr(SPRN_MMCR0, mmcr0);
		return;
	}

	/*
	 * Write MMCR0, then read PMC5 and PMC6 immediately.
375 376 377 378
	 * To ensure we don't get a performance monitor interrupt
	 * between writing MMCR0 and freezing/thawing the limited
	 * counters, we first write MMCR0 with the counter overflow
	 * interrupt enable bits turned off.
379 380 381
	 */
	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
		     : "=&r" (pmc5), "=&r" (pmc6)
382 383
		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
		       "i" (SPRN_MMCR0),
384 385 386 387 388 389
		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));

	if (mmcr0 & MMCR0_FC)
		freeze_limited_counters(cpuhw, pmc5, pmc6);
	else
		thaw_limited_counters(cpuhw, pmc5, pmc6);
390 391 392 393 394 395 396

	/*
	 * Write the full MMCR0 including the counter overflow interrupt
	 * enable bits, if necessary.
	 */
	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
		mtspr(SPRN_MMCR0, mmcr0);
397 398
}

399 400 401 402
/*
 * Disable all counters to prevent PMU interrupts and to allow
 * counters to be added or removed.
 */
403
void hw_perf_disable(void)
404 405 406 407 408 409 410 411 412 413 414 415 416
{
	struct cpu_hw_counters *cpuhw;
	unsigned long ret;
	unsigned long flags;

	local_irq_save(flags);
	cpuhw = &__get_cpu_var(cpu_hw_counters);

	ret = cpuhw->disabled;
	if (!ret) {
		cpuhw->disabled = 1;
		cpuhw->n_added = 0;

417 418 419 420 421 422 423 424 425
		/*
		 * Check if we ever enabled the PMU on this cpu.
		 */
		if (!cpuhw->pmcs_enabled) {
			if (ppc_md.enable_pmcs)
				ppc_md.enable_pmcs();
			cpuhw->pmcs_enabled = 1;
		}

426 427 428 429 430 431 432 433 434
		/*
		 * Disable instruction sampling if it was enabled
		 */
		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
			mtspr(SPRN_MMCRA,
			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
			mb();
		}

435 436 437 438 439 440
		/*
		 * Set the 'freeze counters' bit.
		 * The barrier is to make sure the mtspr has been
		 * executed and the PMU has frozen the counters
		 * before we return.
		 */
441
		write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
442 443 444 445 446 447 448 449 450 451
		mb();
	}
	local_irq_restore(flags);
}

/*
 * Re-enable all counters if disable == 0.
 * If we were previously disabled and counters were added, then
 * put the new config on the PMU.
 */
452
void hw_perf_enable(void)
453 454 455 456 457 458 459 460
{
	struct perf_counter *counter;
	struct cpu_hw_counters *cpuhw;
	unsigned long flags;
	long i;
	unsigned long val;
	s64 left;
	unsigned int hwc_index[MAX_HWCOUNTERS];
461 462
	int n_lim;
	int idx;
463 464

	local_irq_save(flags);
465
	cpuhw = &__get_cpu_var(cpu_hw_counters);
466 467 468 469
	if (!cpuhw->disabled) {
		local_irq_restore(flags);
		return;
	}
470 471 472 473 474 475 476 477 478
	cpuhw->disabled = 0;

	/*
	 * If we didn't change anything, or only removed counters,
	 * no need to recalculate MMCR* settings and reset the PMCs.
	 * Just reenable the PMU with the current MMCR* settings
	 * (possibly updated for removal of counters).
	 */
	if (!cpuhw->n_added) {
479
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
480
		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
481 482
		if (cpuhw->n_counters == 0)
			get_lppaca()->pmcregs_in_use = 0;
483
		goto out_enable;
484 485 486 487 488 489 490 491 492 493 494 495
	}

	/*
	 * Compute MMCR* values for the new set of counters
	 */
	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
			       cpuhw->mmcr)) {
		/* shouldn't ever get here */
		printk(KERN_ERR "oops compute_mmcr failed\n");
		goto out;
	}

496 497
	/*
	 * Add in MMCR0 freeze bits corresponding to the
498
	 * attr.exclude_* bits for the first counter.
499 500 501 502
	 * We have already checked that all counters have the
	 * same values for these bits as the first counter.
	 */
	counter = cpuhw->counter[0];
503
	if (counter->attr.exclude_user)
504
		cpuhw->mmcr[0] |= MMCR0_FCP;
505
	if (counter->attr.exclude_kernel)
506
		cpuhw->mmcr[0] |= freeze_counters_kernel;
507
	if (counter->attr.exclude_hv)
508 509
		cpuhw->mmcr[0] |= MMCR0_FCHV;

510 511 512 513 514
	/*
	 * Write the new configuration to MMCR* with the freeze
	 * bit set and set the hardware counters to their initial values.
	 * Then unfreeze the counters.
	 */
515
	get_lppaca()->pmcregs_in_use = 1;
516
	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
517 518 519 520 521 522 523 524 525 526 527
	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
				| MMCR0_FC);

	/*
	 * Read off any pre-existing counters that need to move
	 * to another PMC.
	 */
	for (i = 0; i < cpuhw->n_counters; ++i) {
		counter = cpuhw->counter[i];
		if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
528
			power_pmu_read(counter);
529 530 531 532 533 534 535 536
			write_pmc(counter->hw.idx, 0);
			counter->hw.idx = 0;
		}
	}

	/*
	 * Initialize the PMCs for all the new and moved counters.
	 */
537
	cpuhw->n_limited = n_lim = 0;
538 539 540 541
	for (i = 0; i < cpuhw->n_counters; ++i) {
		counter = cpuhw->counter[i];
		if (counter->hw.idx)
			continue;
542 543 544 545 546 547 548
		idx = hwc_index[i] + 1;
		if (is_limited_pmc(idx)) {
			cpuhw->limited_counter[n_lim] = counter;
			cpuhw->limited_hwidx[n_lim] = idx;
			++n_lim;
			continue;
		}
549
		val = 0;
550
		if (counter->hw.sample_period) {
551 552 553 554 555
			left = atomic64_read(&counter->hw.period_left);
			if (left < 0x80000000L)
				val = 0x80000000L - left;
		}
		atomic64_set(&counter->hw.prev_count, val);
556 557
		counter->hw.idx = idx;
		write_pmc(idx, val);
558
		perf_counter_update_userpage(counter);
559
	}
560
	cpuhw->n_limited = n_lim;
561
	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
562 563 564

 out_enable:
	mb();
565
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
566

567 568 569 570 571 572 573 574
	/*
	 * Enable instruction sampling if necessary
	 */
	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
		mb();
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
	}

575 576 577 578 579
 out:
	local_irq_restore(flags);
}

static int collect_events(struct perf_counter *group, int max_count,
580
			  struct perf_counter *ctrs[], u64 *events,
581
			  unsigned int *flags)
582 583 584 585 586 587 588 589
{
	int n = 0;
	struct perf_counter *counter;

	if (!is_software_counter(group)) {
		if (n >= max_count)
			return -1;
		ctrs[n] = group;
590
		flags[n] = group->hw.counter_base;
591 592 593 594 595 596 597 598
		events[n++] = group->hw.config;
	}
	list_for_each_entry(counter, &group->sibling_list, list_entry) {
		if (!is_software_counter(counter) &&
		    counter->state != PERF_COUNTER_STATE_OFF) {
			if (n >= max_count)
				return -1;
			ctrs[n] = counter;
599
			flags[n] = counter->hw.counter_base;
600 601 602 603 604 605 606 607 608 609
			events[n++] = counter->hw.config;
		}
	}
	return n;
}

static void counter_sched_in(struct perf_counter *counter, int cpu)
{
	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;
P
Paul Mackerras 已提交
610
	counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped;
611
	if (is_software_counter(counter))
612
		counter->pmu->enable(counter);
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
}

/*
 * Called to enable a whole group of counters.
 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
 * Assumes the caller has disabled interrupts and has
 * frozen the PMU with hw_perf_save_disable.
 */
int hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	struct cpu_hw_counters *cpuhw;
	long i, n, n0;
	struct perf_counter *sub;

	cpuhw = &__get_cpu_var(cpu_hw_counters);
	n0 = cpuhw->n_counters;
	n = collect_events(group_leader, ppmu->n_counter - n0,
632 633
			   &cpuhw->counter[n0], &cpuhw->events[n0],
			   &cpuhw->flags[n0]);
634 635
	if (n < 0)
		return -EAGAIN;
636
	if (check_excludes(cpuhw->counter, cpuhw->flags, n0, n))
637
		return -EAGAIN;
638 639
	i = power_check_constraints(cpuhw->events, cpuhw->flags, n + n0);
	if (i < 0)
640 641 642 643 644 645 646 647 648 649
		return -EAGAIN;
	cpuhw->n_counters = n0 + n;
	cpuhw->n_added += n;

	/*
	 * OK, this group can go on; update counter states etc.,
	 * and enable any software counters
	 */
	for (i = n0; i < n0 + n; ++i)
		cpuhw->counter[i]->hw.config = cpuhw->events[i];
650
	cpuctx->active_oncpu += n;
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
	n = 1;
	counter_sched_in(group_leader, cpu);
	list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
		if (sub->state != PERF_COUNTER_STATE_OFF) {
			counter_sched_in(sub, cpu);
			++n;
		}
	}
	ctx->nr_active += n;

	return 1;
}

/*
 * Add a counter to the PMU.
 * If all counters are not already frozen, then we disable and
667
 * re-enable the PMU in order to get hw_perf_enable to do the
668 669
 * actual work of reconfiguring the PMU.
 */
670
static int power_pmu_enable(struct perf_counter *counter)
671 672 673 674 675 676 677
{
	struct cpu_hw_counters *cpuhw;
	unsigned long flags;
	int n0;
	int ret = -EAGAIN;

	local_irq_save(flags);
678
	perf_disable();
679 680 681 682 683 684 685 686 687 688 689

	/*
	 * Add the counter to the list (if there is room)
	 * and check whether the total set is still feasible.
	 */
	cpuhw = &__get_cpu_var(cpu_hw_counters);
	n0 = cpuhw->n_counters;
	if (n0 >= ppmu->n_counter)
		goto out;
	cpuhw->counter[n0] = counter;
	cpuhw->events[n0] = counter->hw.config;
690 691
	cpuhw->flags[n0] = counter->hw.counter_base;
	if (check_excludes(cpuhw->counter, cpuhw->flags, n0, 1))
692
		goto out;
693
	if (power_check_constraints(cpuhw->events, cpuhw->flags, n0 + 1))
694 695 696 697 698 699 700 701
		goto out;

	counter->hw.config = cpuhw->events[n0];
	++cpuhw->n_counters;
	++cpuhw->n_added;

	ret = 0;
 out:
702
	perf_enable();
703 704 705 706 707 708 709
	local_irq_restore(flags);
	return ret;
}

/*
 * Remove a counter from the PMU.
 */
710
static void power_pmu_disable(struct perf_counter *counter)
711 712 713 714 715 716
{
	struct cpu_hw_counters *cpuhw;
	long i;
	unsigned long flags;

	local_irq_save(flags);
717
	perf_disable();
718

719
	power_pmu_read(counter);
720 721 722 723 724 725 726 727

	cpuhw = &__get_cpu_var(cpu_hw_counters);
	for (i = 0; i < cpuhw->n_counters; ++i) {
		if (counter == cpuhw->counter[i]) {
			while (++i < cpuhw->n_counters)
				cpuhw->counter[i-1] = cpuhw->counter[i];
			--cpuhw->n_counters;
			ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
728 729 730 731
			if (counter->hw.idx) {
				write_pmc(counter->hw.idx, 0);
				counter->hw.idx = 0;
			}
732
			perf_counter_update_userpage(counter);
733 734 735
			break;
		}
	}
736 737 738 739 740 741 742 743 744 745
	for (i = 0; i < cpuhw->n_limited; ++i)
		if (counter == cpuhw->limited_counter[i])
			break;
	if (i < cpuhw->n_limited) {
		while (++i < cpuhw->n_limited) {
			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
		}
		--cpuhw->n_limited;
	}
746 747 748 749 750
	if (cpuhw->n_counters == 0) {
		/* disable exceptions if no counters are running */
		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
	}

751
	perf_enable();
752 753 754
	local_irq_restore(flags);
}

755 756 757 758 759 760 761 762 763
/*
 * Re-enable interrupts on a counter after they were throttled
 * because they were coming too fast.
 */
static void power_pmu_unthrottle(struct perf_counter *counter)
{
	s64 val, left;
	unsigned long flags;

764
	if (!counter->hw.idx || !counter->hw.sample_period)
765 766 767 768
		return;
	local_irq_save(flags);
	perf_disable();
	power_pmu_read(counter);
769
	left = counter->hw.sample_period;
770 771 772 773 774 775 776 777 778 779 780
	val = 0;
	if (left < 0x80000000L)
		val = 0x80000000L - left;
	write_pmc(counter->hw.idx, val);
	atomic64_set(&counter->hw.prev_count, val);
	atomic64_set(&counter->hw.period_left, left);
	perf_counter_update_userpage(counter);
	perf_enable();
	local_irq_restore(flags);
}

781 782 783 784
struct pmu power_pmu = {
	.enable		= power_pmu_enable,
	.disable	= power_pmu_disable,
	.read		= power_pmu_read,
785
	.unthrottle	= power_pmu_unthrottle,
786 787
};

788 789 790 791 792 793 794
/*
 * Return 1 if we might be able to put counter on a limited PMC,
 * or 0 if not.
 * A counter can only go on a limited PMC if it counts something
 * that a limited PMC can count, doesn't require interrupts, and
 * doesn't exclude any processor mode.
 */
795
static int can_go_on_limited_pmc(struct perf_counter *counter, u64 ev,
796 797 798
				 unsigned int flags)
{
	int n;
799
	u64 alt[MAX_EVENT_ALTERNATIVES];
800

801 802 803 804
	if (counter->attr.exclude_user
	    || counter->attr.exclude_kernel
	    || counter->attr.exclude_hv
	    || counter->attr.sample_period)
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
		return 0;

	if (ppmu->limited_pmc_event(ev))
		return 1;

	/*
	 * The requested event isn't on a limited PMC already;
	 * see if any alternative code goes on a limited PMC.
	 */
	if (!ppmu->get_alternatives)
		return 0;

	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
	n = ppmu->get_alternatives(ev, flags, alt);

820
	return n > 0;
821 822 823 824 825 826 827
}

/*
 * Find an alternative event that goes on a normal PMC, if possible,
 * and return the event code, or 0 if there is no such alternative.
 * (Note: event code 0 is "don't count" on all machines.)
 */
828
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
829
{
830
	u64 alt[MAX_EVENT_ALTERNATIVES];
831 832 833 834 835 836 837 838 839
	int n;

	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
	n = ppmu->get_alternatives(ev, flags, alt);
	if (!n)
		return 0;
	return alt[0];
}

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
/* Number of perf_counters counting hardware events */
static atomic_t num_counters;
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);

/*
 * Release the PMU if this is the last perf_counter.
 */
static void hw_perf_counter_destroy(struct perf_counter *counter)
{
	if (!atomic_add_unless(&num_counters, -1, 1)) {
		mutex_lock(&pmc_reserve_mutex);
		if (atomic_dec_return(&num_counters) == 0)
			release_pmc_hardware();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

858
const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
859
{
860 861
	u64 ev;
	unsigned long flags;
862
	struct perf_counter *ctrs[MAX_HWCOUNTERS];
863
	u64 events[MAX_HWCOUNTERS];
864
	unsigned int cflags[MAX_HWCOUNTERS];
865
	int n;
866
	int err;
867 868

	if (!ppmu)
869
		return ERR_PTR(-ENXIO);
870 871
	if (counter->attr.type != PERF_TYPE_RAW) {
		ev = counter->attr.config;
872
		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
873
			return ERR_PTR(-EOPNOTSUPP);
874
		ev = ppmu->generic_events[ev];
875
	} else {
876
		ev = counter->attr.config;
877 878 879 880
	}
	counter->hw.config_base = ev;
	counter->hw.idx = 0;

881 882 883
	/*
	 * If we are not running on a hypervisor, force the
	 * exclude_hv bit to 0 so that we don't care what
884
	 * the user set it to.
885 886
	 */
	if (!firmware_has_feature(FW_FEATURE_LPAR))
887
		counter->attr.exclude_hv = 0;
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

	/*
	 * If this is a per-task counter, then we can use
	 * PM_RUN_* events interchangeably with their non RUN_*
	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
	 * XXX we should check if the task is an idle task.
	 */
	flags = 0;
	if (counter->ctx->task)
		flags |= PPMU_ONLY_COUNT_RUN;

	/*
	 * If this machine has limited counters, check whether this
	 * event could go on a limited counter.
	 */
903
	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
904 905 906 907 908 909 910 911 912 913 914 915 916 917
		if (can_go_on_limited_pmc(counter, ev, flags)) {
			flags |= PPMU_LIMITED_PMC_OK;
		} else if (ppmu->limited_pmc_event(ev)) {
			/*
			 * The requested event is on a limited PMC,
			 * but we can't use a limited PMC; see if any
			 * alternative goes on a normal PMC.
			 */
			ev = normal_pmc_alternative(ev, flags);
			if (!ev)
				return ERR_PTR(-EINVAL);
		}
	}

918 919 920 921 922 923 924 925
	/*
	 * If this is in a group, check if it can go on with all the
	 * other hardware counters in the group.  We assume the counter
	 * hasn't been linked into its leader's sibling list at this point.
	 */
	n = 0;
	if (counter->group_leader != counter) {
		n = collect_events(counter->group_leader, ppmu->n_counter - 1,
926
				   ctrs, events, cflags);
927
		if (n < 0)
928
			return ERR_PTR(-EINVAL);
929
	}
930
	events[n] = ev;
931
	ctrs[n] = counter;
932 933
	cflags[n] = flags;
	if (check_excludes(ctrs, cflags, n, 1))
934
		return ERR_PTR(-EINVAL);
935
	if (power_check_constraints(events, cflags, n + 1))
936
		return ERR_PTR(-EINVAL);
937

938
	counter->hw.config = events[n];
939
	counter->hw.counter_base = cflags[n];
940
	atomic64_set(&counter->hw.period_left, counter->hw.sample_period);
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960

	/*
	 * See if we need to reserve the PMU.
	 * If no counters are currently in use, then we have to take a
	 * mutex to ensure that we don't race with another task doing
	 * reserve_pmc_hardware or release_pmc_hardware.
	 */
	err = 0;
	if (!atomic_inc_not_zero(&num_counters)) {
		mutex_lock(&pmc_reserve_mutex);
		if (atomic_read(&num_counters) == 0 &&
		    reserve_pmc_hardware(perf_counter_interrupt))
			err = -EBUSY;
		else
			atomic_inc(&num_counters);
		mutex_unlock(&pmc_reserve_mutex);
	}
	counter->destroy = hw_perf_counter_destroy;

	if (err)
961
		return ERR_PTR(err);
962
	return &power_pmu;
963 964 965 966 967 968 969 970
}

/*
 * A counter has overflowed; update its count and record
 * things if requested.  Note that interrupts are hard-disabled
 * here so there is no possibility of being interrupted.
 */
static void record_and_restart(struct perf_counter *counter, long val,
971
			       struct pt_regs *regs, int nmi)
972
{
973
	u64 period = counter->hw.sample_period;
974 975
	s64 prev, delta, left;
	int record = 0;
976
	u64 addr, mmcra, sdsync;
977 978 979 980 981 982 983 984 985 986 987 988

	/* we don't have to worry about interrupts here */
	prev = atomic64_read(&counter->hw.prev_count);
	delta = (val - prev) & 0xfffffffful;
	atomic64_add(delta, &counter->count);

	/*
	 * See if the total period for this counter has expired,
	 * and update for the next period.
	 */
	val = 0;
	left = atomic64_read(&counter->hw.period_left) - delta;
989
	if (period) {
990
		if (left <= 0) {
991
			left += period;
992
			if (left <= 0)
993
				left = period;
994 995 996 997 998 999 1000 1001 1002
			record = 1;
		}
		if (left < 0x80000000L)
			val = 0x80000000L - left;
	}

	/*
	 * Finally record data if requested.
	 */
1003 1004
	if (record) {
		addr = 0;
1005
		if (counter->attr.sample_type & PERF_SAMPLE_ADDR) {
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
			/*
			 * The user wants a data address recorded.
			 * If we're not doing instruction sampling,
			 * give them the SDAR (sampled data address).
			 * If we are doing instruction sampling, then only
			 * give them the SDAR if it corresponds to the
			 * instruction pointed to by SIAR; this is indicated
			 * by the [POWER6_]MMCRA_SDSYNC bit in MMCRA.
			 */
			mmcra = regs->dsisr;
			sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
				POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
			if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
				addr = mfspr(SPRN_SDAR);
		}
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
		if (perf_counter_overflow(counter, nmi, regs, addr)) {
			/*
			 * Interrupts are coming too fast - throttle them
			 * by setting the counter to 0, so it will be
			 * at least 2^30 cycles until the next interrupt
			 * (assuming each counter counts at most 2 counts
			 * per cycle).
			 */
			val = 0;
			left = ~0ULL >> 1;
		}
1032
	}
1033 1034 1035 1036 1037

	write_pmc(counter->hw.idx, val);
	atomic64_set(&counter->hw.prev_count, val);
	atomic64_set(&counter->hw.period_left, left);
	perf_counter_update_userpage(counter);
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
}

/*
 * Called from generic code to get the misc flags (i.e. processor mode)
 * for an event.
 */
unsigned long perf_misc_flags(struct pt_regs *regs)
{
	unsigned long mmcra;

	if (TRAP(regs) != 0xf00) {
		/* not a PMU interrupt */
		return user_mode(regs) ? PERF_EVENT_MISC_USER :
			PERF_EVENT_MISC_KERNEL;
	}

	mmcra = regs->dsisr;
	if (ppmu->flags & PPMU_ALT_SIPR) {
		if (mmcra & POWER6_MMCRA_SIHV)
			return PERF_EVENT_MISC_HYPERVISOR;
		return (mmcra & POWER6_MMCRA_SIPR) ? PERF_EVENT_MISC_USER :
			PERF_EVENT_MISC_KERNEL;
	}
	if (mmcra & MMCRA_SIHV)
		return PERF_EVENT_MISC_HYPERVISOR;
	return (mmcra & MMCRA_SIPR) ? PERF_EVENT_MISC_USER :
			PERF_EVENT_MISC_KERNEL;
}

/*
 * Called from generic code to get the instruction pointer
 * for an event.
 */
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
	unsigned long mmcra;
	unsigned long ip;
	unsigned long slot;

	if (TRAP(regs) != 0xf00)
		return regs->nip;	/* not a PMU interrupt */

	ip = mfspr(SPRN_SIAR);
	mmcra = regs->dsisr;
	if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
		slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
		if (slot > 1)
			ip += 4 * (slot - 1);
	}
	return ip;
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
}

/*
 * Performance monitor interrupt stuff
 */
static void perf_counter_interrupt(struct pt_regs *regs)
{
	int i;
	struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
	struct perf_counter *counter;
	long val;
1099
	int found = 0;
1100 1101
	int nmi;

1102 1103 1104 1105
	if (cpuhw->n_limited)
		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
					mfspr(SPRN_PMC6));

1106 1107 1108 1109 1110
	/*
	 * Overload regs->dsisr to store MMCRA so we only need to read it once.
	 */
	regs->dsisr = mfspr(SPRN_MMCRA);

1111 1112 1113 1114 1115 1116 1117 1118 1119
	/*
	 * If interrupts were soft-disabled when this PMU interrupt
	 * occurred, treat it as an NMI.
	 */
	nmi = !regs->softe;
	if (nmi)
		nmi_enter();
	else
		irq_enter();
1120 1121 1122

	for (i = 0; i < cpuhw->n_counters; ++i) {
		counter = cpuhw->counter[i];
1123
		if (!counter->hw.idx || is_limited_pmc(counter->hw.idx))
1124
			continue;
1125 1126 1127 1128
		val = read_pmc(counter->hw.idx);
		if ((int)val < 0) {
			/* counter has overflowed */
			found = 1;
1129
			record_and_restart(counter, val, regs, nmi);
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
		}
	}

	/*
	 * In case we didn't find and reset the counter that caused
	 * the interrupt, scan all counters and reset any that are
	 * negative, to avoid getting continual interrupts.
	 * Any that we processed in the previous loop will not be negative.
	 */
	if (!found) {
		for (i = 0; i < ppmu->n_counter; ++i) {
1141 1142
			if (is_limited_pmc(i + 1))
				continue;
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
			val = read_pmc(i + 1);
			if ((int)val < 0)
				write_pmc(i + 1, 0);
		}
	}

	/*
	 * Reset MMCR0 to its normal value.  This will set PMXE and
	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
	 * and thus allow interrupts to occur again.
	 * XXX might want to use MSR.PM to keep the counters frozen until
	 * we get back out of this interrupt.
	 */
1156
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1157

1158 1159 1160
	if (nmi)
		nmi_exit();
	else
1161
		irq_exit();
1162 1163
}

1164 1165 1166 1167 1168 1169 1170 1171
void hw_perf_counter_setup(int cpu)
{
	struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);

	memset(cpuhw, 0, sizeof(*cpuhw));
	cpuhw->mmcr[0] = MMCR0_FC;
}

1172
extern struct power_pmu power4_pmu;
1173
extern struct power_pmu ppc970_pmu;
1174
extern struct power_pmu power5_pmu;
1175
extern struct power_pmu power5p_pmu;
1176
extern struct power_pmu power6_pmu;
1177

1178 1179
static int init_perf_counters(void)
{
1180 1181 1182 1183 1184
	unsigned long pvr;

	/* XXX should get this from cputable */
	pvr = mfspr(SPRN_PVR);
	switch (PVR_VER(pvr)) {
1185 1186 1187 1188
	case PV_POWER4:
	case PV_POWER4p:
		ppmu = &power4_pmu;
		break;
1189 1190 1191 1192 1193
	case PV_970:
	case PV_970FX:
	case PV_970MP:
		ppmu = &ppc970_pmu;
		break;
1194 1195 1196
	case PV_POWER5:
		ppmu = &power5_pmu;
		break;
1197 1198 1199
	case PV_POWER5p:
		ppmu = &power5p_pmu;
		break;
1200 1201 1202
	case 0x3e:
		ppmu = &power6_pmu;
		break;
1203
	}
1204 1205 1206 1207 1208 1209 1210

	/*
	 * Use FCHV to ignore kernel events if MSR.HV is set.
	 */
	if (mfmsr() & MSR_HV)
		freeze_counters_kernel = MMCR0_FCHV;

1211 1212 1213 1214
	return 0;
}

arch_initcall(init_perf_counters);