spi.c 47.3 KB
Newer Older
1
/*
G
Grant Likely 已提交
2
 * SPI init/core code
3 4
 *
 * Copyright (C) 2005 David Brownell
5
 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kernel.h>
23
#include <linux/kmod.h>
24 25 26
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
27
#include <linux/mutex.h>
28
#include <linux/of_device.h>
29
#include <linux/of_irq.h>
30
#include <linux/slab.h>
31
#include <linux/mod_devicetable.h>
32
#include <linux/spi/spi.h>
33
#include <linux/of_gpio.h>
M
Mark Brown 已提交
34
#include <linux/pm_runtime.h>
35
#include <linux/export.h>
36
#include <linux/sched/rt.h>
37 38
#include <linux/delay.h>
#include <linux/kthread.h>
39 40
#include <linux/ioport.h>
#include <linux/acpi.h>
41 42 43

static void spidev_release(struct device *dev)
{
44
	struct spi_device	*spi = to_spi_device(dev);
45 46 47 48 49

	/* spi masters may cleanup for released devices */
	if (spi->master->cleanup)
		spi->master->cleanup(spi);

D
David Brownell 已提交
50
	spi_master_put(spi->master);
51
	kfree(spi);
52 53 54 55 56 57 58
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);

59
	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
60 61 62 63 64 65 66 67 68 69 70
}

static struct device_attribute spi_dev_attrs[] = {
	__ATTR_RO(modalias),
	__ATTR_NULL,
};

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
						const struct spi_device *sdev)
{
	while (id->name[0]) {
		if (!strcmp(sdev->modalias, id->name))
			return id;
		id++;
	}
	return NULL;
}

const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
{
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);

	return spi_match_id(sdrv->id_table, sdev);
}
EXPORT_SYMBOL_GPL(spi_get_device_id);

90 91 92
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);
93 94
	const struct spi_driver	*sdrv = to_spi_driver(drv);

95 96 97 98
	/* Attempt an OF style match */
	if (of_driver_match_device(dev, drv))
		return 1;

99 100 101 102
	/* Then try ACPI */
	if (acpi_driver_match_device(dev, drv))
		return 1;

103 104
	if (sdrv->id_table)
		return !!spi_match_id(sdrv->id_table, spi);
105

106
	return strcmp(spi->modalias, drv->name) == 0;
107 108
}

109
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
110 111 112
{
	const struct spi_device		*spi = to_spi_device(dev);

113
	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
114 115 116
	return 0;
}

M
Mark Brown 已提交
117 118
#ifdef CONFIG_PM_SLEEP
static int spi_legacy_suspend(struct device *dev, pm_message_t message)
119
{
120
	int			value = 0;
121
	struct spi_driver	*drv = to_spi_driver(dev->driver);
122 123

	/* suspend will stop irqs and dma; no more i/o */
124 125 126 127 128 129
	if (drv) {
		if (drv->suspend)
			value = drv->suspend(to_spi_device(dev), message);
		else
			dev_dbg(dev, "... can't suspend\n");
	}
130 131 132
	return value;
}

M
Mark Brown 已提交
133
static int spi_legacy_resume(struct device *dev)
134
{
135
	int			value = 0;
136
	struct spi_driver	*drv = to_spi_driver(dev->driver);
137 138

	/* resume may restart the i/o queue */
139 140 141 142 143 144
	if (drv) {
		if (drv->resume)
			value = drv->resume(to_spi_device(dev));
		else
			dev_dbg(dev, "... can't resume\n");
	}
145 146 147
	return value;
}

M
Mark Brown 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
static int spi_pm_suspend(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_suspend(dev);
	else
		return spi_legacy_suspend(dev, PMSG_SUSPEND);
}

static int spi_pm_resume(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_resume(dev);
	else
		return spi_legacy_resume(dev);
}

static int spi_pm_freeze(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_freeze(dev);
	else
		return spi_legacy_suspend(dev, PMSG_FREEZE);
}

static int spi_pm_thaw(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_thaw(dev);
	else
		return spi_legacy_resume(dev);
}

static int spi_pm_poweroff(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_poweroff(dev);
	else
		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
}

static int spi_pm_restore(struct device *dev)
{
	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;

	if (pm)
		return pm_generic_restore(dev);
	else
		return spi_legacy_resume(dev);
}
207
#else
M
Mark Brown 已提交
208 209 210 211 212 213
#define spi_pm_suspend	NULL
#define spi_pm_resume	NULL
#define spi_pm_freeze	NULL
#define spi_pm_thaw	NULL
#define spi_pm_poweroff	NULL
#define spi_pm_restore	NULL
214 215
#endif

M
Mark Brown 已提交
216 217 218 219 220 221 222 223 224 225
static const struct dev_pm_ops spi_pm = {
	.suspend = spi_pm_suspend,
	.resume = spi_pm_resume,
	.freeze = spi_pm_freeze,
	.thaw = spi_pm_thaw,
	.poweroff = spi_pm_poweroff,
	.restore = spi_pm_restore,
	SET_RUNTIME_PM_OPS(
		pm_generic_runtime_suspend,
		pm_generic_runtime_resume,
226
		NULL
M
Mark Brown 已提交
227 228 229
	)
};

230 231 232 233 234
struct bus_type spi_bus_type = {
	.name		= "spi",
	.dev_attrs	= spi_dev_attrs,
	.match		= spi_match_device,
	.uevent		= spi_uevent,
M
Mark Brown 已提交
235
	.pm		= &spi_pm,
236 237 238
};
EXPORT_SYMBOL_GPL(spi_bus_type);

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	return sdrv->probe(to_spi_device(dev));
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	return sdrv->remove(to_spi_device(dev));
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

D
David Brownell 已提交
261 262 263 264 265
/**
 * spi_register_driver - register a SPI driver
 * @sdrv: the driver to register
 * Context: can sleep
 */
266 267 268 269 270 271 272 273 274 275 276 277 278
int spi_register_driver(struct spi_driver *sdrv)
{
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
EXPORT_SYMBOL_GPL(spi_register_driver);

279 280 281 282 283 284 285 286 287 288
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
 * would make them board-specific.  Similarly with SPI master drivers.
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
289
	struct spi_board_info	board_info;
290 291 292
};

static LIST_HEAD(board_list);
293 294 295 296 297 298
static LIST_HEAD(spi_master_list);

/*
 * Used to protect add/del opertion for board_info list and
 * spi_master list, and their matching process
 */
299
static DEFINE_MUTEX(board_lock);
300

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
/**
 * spi_alloc_device - Allocate a new SPI device
 * @master: Controller to which device is connected
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
 * spi_device structure to add it to the SPI master.  If the caller
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
 * Returns a pointer to the new device, or NULL.
 */
struct spi_device *spi_alloc_device(struct spi_master *master)
{
	struct spi_device	*spi;
	struct device		*dev = master->dev.parent;

	if (!spi_master_get(master))
		return NULL;

	spi = kzalloc(sizeof *spi, GFP_KERNEL);
	if (!spi) {
		dev_err(dev, "cannot alloc spi_device\n");
		spi_master_put(master);
		return NULL;
	}

	spi->master = master;
334
	spi->dev.parent = &master->dev;
335 336
	spi->dev.bus = &spi_bus_type;
	spi->dev.release = spidev_release;
337
	spi->cs_gpio = -ENOENT;
338 339 340 341 342 343 344 345 346 347 348 349
	device_initialize(&spi->dev);
	return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
350
 * Returns 0 on success; negative errno on failure
351 352 353
 */
int spi_add_device(struct spi_device *spi)
{
354
	static DEFINE_MUTEX(spi_add_lock);
355 356
	struct spi_master *master = spi->master;
	struct device *dev = master->dev.parent;
357
	struct device *d;
358 359 360
	int status;

	/* Chipselects are numbered 0..max; validate. */
361
	if (spi->chip_select >= master->num_chipselect) {
362 363
		dev_err(dev, "cs%d >= max %d\n",
			spi->chip_select,
364
			master->num_chipselect);
365 366 367 368
		return -EINVAL;
	}

	/* Set the bus ID string */
369
	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
370 371
			spi->chip_select);

372 373 374 375 376 377 378

	/* We need to make sure there's no other device with this
	 * chipselect **BEFORE** we call setup(), else we'll trash
	 * its configuration.  Lock against concurrent add() calls.
	 */
	mutex_lock(&spi_add_lock);

379 380
	d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
	if (d != NULL) {
381 382
		dev_err(dev, "chipselect %d already in use\n",
				spi->chip_select);
383
		put_device(d);
384 385 386 387
		status = -EBUSY;
		goto done;
	}

388 389 390
	if (master->cs_gpios)
		spi->cs_gpio = master->cs_gpios[spi->chip_select];

391 392 393 394
	/* Drivers may modify this initial i/o setup, but will
	 * normally rely on the device being setup.  Devices
	 * using SPI_CS_HIGH can't coexist well otherwise...
	 */
395
	status = spi_setup(spi);
396
	if (status < 0) {
397 398
		dev_err(dev, "can't setup %s, status %d\n",
				dev_name(&spi->dev), status);
399
		goto done;
400 401
	}

402
	/* Device may be bound to an active driver when this returns */
403
	status = device_add(&spi->dev);
404
	if (status < 0)
405 406
		dev_err(dev, "can't add %s, status %d\n",
				dev_name(&spi->dev), status);
407
	else
408
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
409

410 411 412
done:
	mutex_unlock(&spi_add_lock);
	return status;
413 414
}
EXPORT_SYMBOL_GPL(spi_add_device);
415

D
David Brownell 已提交
416 417 418 419 420 421 422
/**
 * spi_new_device - instantiate one new SPI device
 * @master: Controller to which device is connected
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
423 424 425 426
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
427 428
 *
 * Returns the new device, or NULL.
429
 */
430 431
struct spi_device *spi_new_device(struct spi_master *master,
				  struct spi_board_info *chip)
432 433 434 435
{
	struct spi_device	*proxy;
	int			status;

436 437 438 439 440 441 442
	/* NOTE:  caller did any chip->bus_num checks necessary.
	 *
	 * Also, unless we change the return value convention to use
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
	 * suggests syslogged diagnostics are best here (ugh).
	 */

443 444
	proxy = spi_alloc_device(master);
	if (!proxy)
445 446
		return NULL;

447 448
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

449 450
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
451
	proxy->mode = chip->mode;
452
	proxy->irq = chip->irq;
453
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
454 455 456 457
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;

458
	status = spi_add_device(proxy);
459
	if (status < 0) {
460 461
		spi_dev_put(proxy);
		return NULL;
462 463 464 465 466 467
	}

	return proxy;
}
EXPORT_SYMBOL_GPL(spi_new_device);

468 469 470 471 472 473 474 475 476 477 478 479 480 481
static void spi_match_master_to_boardinfo(struct spi_master *master,
				struct spi_board_info *bi)
{
	struct spi_device *dev;

	if (master->bus_num != bi->bus_num)
		return;

	dev = spi_new_device(master, bi);
	if (!dev)
		dev_err(master->dev.parent, "can't create new device for %s\n",
			bi->modalias);
}

D
David Brownell 已提交
482 483 484 485 486 487
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
488 489 490 491 492 493 494 495 496 497 498 499 500
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
 */
501
int spi_register_board_info(struct spi_board_info const *info, unsigned n)
502
{
503 504
	struct boardinfo *bi;
	int i;
505

506
	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
507 508 509
	if (!bi)
		return -ENOMEM;

510 511
	for (i = 0; i < n; i++, bi++, info++) {
		struct spi_master *master;
512

513 514 515 516 517 518
		memcpy(&bi->board_info, info, sizeof(*info));
		mutex_lock(&board_lock);
		list_add_tail(&bi->list, &board_list);
		list_for_each_entry(master, &spi_master_list, list)
			spi_match_master_to_boardinfo(master, &bi->board_info);
		mutex_unlock(&board_lock);
519
	}
520 521

	return 0;
522 523 524 525
}

/*-------------------------------------------------------------------------*/

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
/**
 * spi_pump_messages - kthread work function which processes spi message queue
 * @work: pointer to kthread work struct contained in the master struct
 *
 * This function checks if there is any spi message in the queue that
 * needs processing and if so call out to the driver to initialize hardware
 * and transfer each message.
 *
 */
static void spi_pump_messages(struct kthread_work *work)
{
	struct spi_master *master =
		container_of(work, struct spi_master, pump_messages);
	unsigned long flags;
	bool was_busy = false;
	int ret;

	/* Lock queue and check for queue work */
	spin_lock_irqsave(&master->queue_lock, flags);
	if (list_empty(&master->queue) || !master->running) {
546 547 548
		if (!master->busy) {
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
549 550 551
		}
		master->busy = false;
		spin_unlock_irqrestore(&master->queue_lock, flags);
552 553 554 555
		if (master->unprepare_transfer_hardware &&
		    master->unprepare_transfer_hardware(master))
			dev_err(&master->dev,
				"failed to unprepare transfer hardware\n");
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
		return;
	}

	/* Make sure we are not already running a message */
	if (master->cur_msg) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}
	/* Extract head of queue */
	master->cur_msg =
	    list_entry(master->queue.next, struct spi_message, queue);

	list_del_init(&master->cur_msg->queue);
	if (master->busy)
		was_busy = true;
	else
		master->busy = true;
	spin_unlock_irqrestore(&master->queue_lock, flags);

575
	if (!was_busy && master->prepare_transfer_hardware) {
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
		ret = master->prepare_transfer_hardware(master);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare transfer hardware\n");
			return;
		}
	}

	ret = master->transfer_one_message(master, master->cur_msg);
	if (ret) {
		dev_err(&master->dev,
			"failed to transfer one message from queue\n");
		return;
	}
}

static int spi_init_queue(struct spi_master *master)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };

	INIT_LIST_HEAD(&master->queue);
	spin_lock_init(&master->queue_lock);

	master->running = false;
	master->busy = false;

	init_kthread_worker(&master->kworker);
	master->kworker_task = kthread_run(kthread_worker_fn,
604
					   &master->kworker, "%s",
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
					   dev_name(&master->dev));
	if (IS_ERR(master->kworker_task)) {
		dev_err(&master->dev, "failed to create message pump task\n");
		return -ENOMEM;
	}
	init_kthread_work(&master->pump_messages, spi_pump_messages);

	/*
	 * Master config will indicate if this controller should run the
	 * message pump with high (realtime) priority to reduce the transfer
	 * latency on the bus by minimising the delay between a transfer
	 * request and the scheduling of the message pump thread. Without this
	 * setting the message pump thread will remain at default priority.
	 */
	if (master->rt) {
		dev_info(&master->dev,
			"will run message pump with realtime priority\n");
		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
	}

	return 0;
}

/**
 * spi_get_next_queued_message() - called by driver to check for queued
 * messages
 * @master: the master to check for queued messages
 *
 * If there are more messages in the queue, the next message is returned from
 * this call.
 */
struct spi_message *spi_get_next_queued_message(struct spi_master *master)
{
	struct spi_message *next;
	unsigned long flags;

	/* get a pointer to the next message, if any */
	spin_lock_irqsave(&master->queue_lock, flags);
	if (list_empty(&master->queue))
		next = NULL;
	else
		next = list_entry(master->queue.next,
				  struct spi_message, queue);
	spin_unlock_irqrestore(&master->queue_lock, flags);

	return next;
}
EXPORT_SYMBOL_GPL(spi_get_next_queued_message);

/**
 * spi_finalize_current_message() - the current message is complete
 * @master: the master to return the message to
 *
 * Called by the driver to notify the core that the message in the front of the
 * queue is complete and can be removed from the queue.
 */
void spi_finalize_current_message(struct spi_master *master)
{
	struct spi_message *mesg;
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);
	mesg = master->cur_msg;
	master->cur_msg = NULL;

	queue_kthread_work(&master->kworker, &master->pump_messages);
	spin_unlock_irqrestore(&master->queue_lock, flags);

	mesg->state = NULL;
	if (mesg->complete)
		mesg->complete(mesg->context);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_message);

static int spi_start_queue(struct spi_master *master)
{
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (master->running || master->busy) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -EBUSY;
	}

	master->running = true;
	master->cur_msg = NULL;
	spin_unlock_irqrestore(&master->queue_lock, flags);

	queue_kthread_work(&master->kworker, &master->pump_messages);

	return 0;
}

static int spi_stop_queue(struct spi_master *master)
{
	unsigned long flags;
	unsigned limit = 500;
	int ret = 0;

	spin_lock_irqsave(&master->queue_lock, flags);

	/*
	 * This is a bit lame, but is optimized for the common execution path.
	 * A wait_queue on the master->busy could be used, but then the common
	 * execution path (pump_messages) would be required to call wake_up or
	 * friends on every SPI message. Do this instead.
	 */
	while ((!list_empty(&master->queue) || master->busy) && limit--) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		msleep(10);
		spin_lock_irqsave(&master->queue_lock, flags);
	}

	if (!list_empty(&master->queue) || master->busy)
		ret = -EBUSY;
	else
		master->running = false;

	spin_unlock_irqrestore(&master->queue_lock, flags);

	if (ret) {
		dev_warn(&master->dev,
			 "could not stop message queue\n");
		return ret;
	}
	return ret;
}

static int spi_destroy_queue(struct spi_master *master)
{
	int ret;

	ret = spi_stop_queue(master);

	/*
	 * flush_kthread_worker will block until all work is done.
	 * If the reason that stop_queue timed out is that the work will never
	 * finish, then it does no good to call flush/stop thread, so
	 * return anyway.
	 */
	if (ret) {
		dev_err(&master->dev, "problem destroying queue\n");
		return ret;
	}

	flush_kthread_worker(&master->kworker);
	kthread_stop(master->kworker_task);

	return 0;
}

/**
 * spi_queued_transfer - transfer function for queued transfers
 * @spi: spi device which is requesting transfer
 * @msg: spi message which is to handled is queued to driver queue
 */
static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
{
	struct spi_master *master = spi->master;
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (!master->running) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -ESHUTDOWN;
	}
	msg->actual_length = 0;
	msg->status = -EINPROGRESS;

	list_add_tail(&msg->queue, &master->queue);
777
	if (!master->busy)
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
		queue_kthread_work(&master->kworker, &master->pump_messages);

	spin_unlock_irqrestore(&master->queue_lock, flags);
	return 0;
}

static int spi_master_initialize_queue(struct spi_master *master)
{
	int ret;

	master->queued = true;
	master->transfer = spi_queued_transfer;

	/* Initialize and start queue */
	ret = spi_init_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem initializing queue\n");
		goto err_init_queue;
	}
	ret = spi_start_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem starting queue\n");
		goto err_start_queue;
	}

	return 0;

err_start_queue:
err_init_queue:
	spi_destroy_queue(master);
	return ret;
}

/*-------------------------------------------------------------------------*/

813
#if defined(CONFIG_OF)
814 815 816 817 818 819 820 821 822 823 824 825
/**
 * of_register_spi_devices() - Register child devices onto the SPI bus
 * @master:	Pointer to spi_master device
 *
 * Registers an spi_device for each child node of master node which has a 'reg'
 * property.
 */
static void of_register_spi_devices(struct spi_master *master)
{
	struct spi_device *spi;
	struct device_node *nc;
	const __be32 *prop;
826
	char modalias[SPI_NAME_SIZE + 4];
827 828 829 830 831 832
	int rc;
	int len;

	if (!master->dev.of_node)
		return;

833
	for_each_available_child_of_node(master->dev.of_node, nc) {
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
		/* Alloc an spi_device */
		spi = spi_alloc_device(master);
		if (!spi) {
			dev_err(&master->dev, "spi_device alloc error for %s\n",
				nc->full_name);
			spi_dev_put(spi);
			continue;
		}

		/* Select device driver */
		if (of_modalias_node(nc, spi->modalias,
				     sizeof(spi->modalias)) < 0) {
			dev_err(&master->dev, "cannot find modalias for %s\n",
				nc->full_name);
			spi_dev_put(spi);
			continue;
		}

		/* Device address */
		prop = of_get_property(nc, "reg", &len);
		if (!prop || len < sizeof(*prop)) {
			dev_err(&master->dev, "%s has no 'reg' property\n",
				nc->full_name);
			spi_dev_put(spi);
			continue;
		}
		spi->chip_select = be32_to_cpup(prop);

		/* Mode (clock phase/polarity/etc.) */
		if (of_find_property(nc, "spi-cpha", NULL))
			spi->mode |= SPI_CPHA;
		if (of_find_property(nc, "spi-cpol", NULL))
			spi->mode |= SPI_CPOL;
		if (of_find_property(nc, "spi-cs-high", NULL))
			spi->mode |= SPI_CS_HIGH;
869 870
		if (of_find_property(nc, "spi-3wire", NULL))
			spi->mode |= SPI_3WIRE;
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889

		/* Device speed */
		prop = of_get_property(nc, "spi-max-frequency", &len);
		if (!prop || len < sizeof(*prop)) {
			dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n",
				nc->full_name);
			spi_dev_put(spi);
			continue;
		}
		spi->max_speed_hz = be32_to_cpup(prop);

		/* IRQ */
		spi->irq = irq_of_parse_and_map(nc, 0);

		/* Store a pointer to the node in the device structure */
		of_node_get(nc);
		spi->dev.of_node = nc;

		/* Register the new device */
890 891 892
		snprintf(modalias, sizeof(modalias), "%s%s", SPI_MODULE_PREFIX,
			 spi->modalias);
		request_module(modalias);
893 894 895 896 897 898 899 900 901 902 903 904 905
		rc = spi_add_device(spi);
		if (rc) {
			dev_err(&master->dev, "spi_device register error %s\n",
				nc->full_name);
			spi_dev_put(spi);
		}

	}
}
#else
static void of_register_spi_devices(struct spi_master *master) { }
#endif

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
#ifdef CONFIG_ACPI
static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
{
	struct spi_device *spi = data;

	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
		struct acpi_resource_spi_serialbus *sb;

		sb = &ares->data.spi_serial_bus;
		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
			spi->chip_select = sb->device_selection;
			spi->max_speed_hz = sb->connection_speed;

			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
				spi->mode |= SPI_CPHA;
			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
				spi->mode |= SPI_CPOL;
			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
				spi->mode |= SPI_CS_HIGH;
		}
	} else if (spi->irq < 0) {
		struct resource r;

		if (acpi_dev_resource_interrupt(ares, 0, &r))
			spi->irq = r.start;
	}

	/* Always tell the ACPI core to skip this resource */
	return 1;
}

static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
				       void *data, void **return_value)
{
	struct spi_master *master = data;
	struct list_head resource_list;
	struct acpi_device *adev;
	struct spi_device *spi;
	int ret;

	if (acpi_bus_get_device(handle, &adev))
		return AE_OK;
	if (acpi_bus_get_status(adev) || !adev->status.present)
		return AE_OK;

	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
			dev_name(&adev->dev));
		return AE_NO_MEMORY;
	}

	ACPI_HANDLE_SET(&spi->dev, handle);
	spi->irq = -1;

	INIT_LIST_HEAD(&resource_list);
	ret = acpi_dev_get_resources(adev, &resource_list,
				     acpi_spi_add_resource, spi);
	acpi_dev_free_resource_list(&resource_list);

	if (ret < 0 || !spi->max_speed_hz) {
		spi_dev_put(spi);
		return AE_OK;
	}

	strlcpy(spi->modalias, dev_name(&adev->dev), sizeof(spi->modalias));
	if (spi_add_device(spi)) {
		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
			dev_name(&adev->dev));
		spi_dev_put(spi);
	}

	return AE_OK;
}

static void acpi_register_spi_devices(struct spi_master *master)
{
	acpi_status status;
	acpi_handle handle;

986
	handle = ACPI_HANDLE(master->dev.parent);
987 988 989 990 991 992 993 994 995 996 997 998 999
	if (!handle)
		return;

	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
				     acpi_spi_add_device, NULL,
				     master, NULL);
	if (ACPI_FAILURE(status))
		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
}
#else
static inline void acpi_register_spi_devices(struct spi_master *master) {}
#endif /* CONFIG_ACPI */

T
Tony Jones 已提交
1000
static void spi_master_release(struct device *dev)
1001 1002 1003
{
	struct spi_master *master;

T
Tony Jones 已提交
1004
	master = container_of(dev, struct spi_master, dev);
1005 1006 1007 1008 1009 1010
	kfree(master);
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
T
Tony Jones 已提交
1011
	.dev_release	= spi_master_release,
1012 1013 1014
};


1015

1016 1017 1018
/**
 * spi_alloc_master - allocate SPI master controller
 * @dev: the controller, possibly using the platform_bus
D
David Brownell 已提交
1019
 * @size: how much zeroed driver-private data to allocate; the pointer to this
T
Tony Jones 已提交
1020
 *	memory is in the driver_data field of the returned device,
D
David Brownell 已提交
1021
 *	accessible with spi_master_get_devdata().
D
David Brownell 已提交
1022
 * Context: can sleep
1023 1024 1025
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.  It's how they allocate
D
dmitry pervushin 已提交
1026
 * an spi_master structure, prior to calling spi_register_master().
1027 1028 1029 1030 1031
 *
 * This must be called from context that can sleep.  It returns the SPI
 * master structure on success, else NULL.
 *
 * The caller is responsible for assigning the bus number and initializing
D
dmitry pervushin 已提交
1032
 * the master's methods before calling spi_register_master(); and (after errors
1033 1034
 * adding the device) calling spi_master_put() and kfree() to prevent a memory
 * leak.
1035
 */
1036
struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1037 1038 1039
{
	struct spi_master	*master;

D
David Brownell 已提交
1040 1041 1042
	if (!dev)
		return NULL;

1043
	master = kzalloc(size + sizeof *master, GFP_KERNEL);
1044 1045 1046
	if (!master)
		return NULL;

T
Tony Jones 已提交
1047
	device_initialize(&master->dev);
1048 1049
	master->bus_num = -1;
	master->num_chipselect = 1;
T
Tony Jones 已提交
1050 1051
	master->dev.class = &spi_master_class;
	master->dev.parent = get_device(dev);
D
David Brownell 已提交
1052
	spi_master_set_devdata(master, &master[1]);
1053 1054 1055 1056 1057

	return master;
}
EXPORT_SYMBOL_GPL(spi_alloc_master);

1058 1059 1060
#ifdef CONFIG_OF
static int of_spi_register_master(struct spi_master *master)
{
1061
	int nb, i, *cs;
1062 1063 1064 1065 1066 1067
	struct device_node *np = master->dev.of_node;

	if (!np)
		return 0;

	nb = of_gpio_named_count(np, "cs-gpios");
1068
	master->num_chipselect = max(nb, (int)master->num_chipselect);
1069

1070 1071
	/* Return error only for an incorrectly formed cs-gpios property */
	if (nb == 0 || nb == -ENOENT)
1072
		return 0;
1073 1074
	else if (nb < 0)
		return nb;
1075 1076 1077 1078 1079 1080 1081 1082 1083

	cs = devm_kzalloc(&master->dev,
			  sizeof(int) * master->num_chipselect,
			  GFP_KERNEL);
	master->cs_gpios = cs;

	if (!master->cs_gpios)
		return -ENOMEM;

1084
	for (i = 0; i < master->num_chipselect; i++)
1085
		cs[i] = -ENOENT;
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098

	for (i = 0; i < nb; i++)
		cs[i] = of_get_named_gpio(np, "cs-gpios", i);

	return 0;
}
#else
static int of_spi_register_master(struct spi_master *master)
{
	return 0;
}
#endif

1099 1100 1101
/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
D
David Brownell 已提交
1102
 * Context: can sleep
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
D
David Brownell 已提交
1116 1117
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
1118
 */
1119
int spi_register_master(struct spi_master *master)
1120
{
1121
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
T
Tony Jones 已提交
1122
	struct device		*dev = master->dev.parent;
1123
	struct boardinfo	*bi;
1124 1125 1126
	int			status = -ENODEV;
	int			dynamic = 0;

D
David Brownell 已提交
1127 1128 1129
	if (!dev)
		return -ENODEV;

1130 1131 1132 1133
	status = of_spi_register_master(master);
	if (status)
		return status;

1134 1135 1136 1137 1138 1139
	/* even if it's just one always-selected device, there must
	 * be at least one chipselect
	 */
	if (master->num_chipselect == 0)
		return -EINVAL;

1140 1141 1142
	if ((master->bus_num < 0) && master->dev.of_node)
		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");

1143
	/* convention:  dynamically assigned bus IDs count down from the max */
1144
	if (master->bus_num < 0) {
1145 1146 1147
		/* FIXME switch to an IDR based scheme, something like
		 * I2C now uses, so we can't run out of "dynamic" IDs
		 */
1148
		master->bus_num = atomic_dec_return(&dyn_bus_id);
1149
		dynamic = 1;
1150 1151
	}

1152 1153 1154 1155
	spin_lock_init(&master->bus_lock_spinlock);
	mutex_init(&master->bus_lock_mutex);
	master->bus_lock_flag = 0;

1156 1157 1158
	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
1159
	dev_set_name(&master->dev, "spi%u", master->bus_num);
T
Tony Jones 已提交
1160
	status = device_add(&master->dev);
1161
	if (status < 0)
1162
		goto done;
1163
	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1164 1165
			dynamic ? " (dynamic)" : "");

1166 1167 1168 1169 1170 1171
	/* If we're using a queued driver, start the queue */
	if (master->transfer)
		dev_info(dev, "master is unqueued, this is deprecated\n");
	else {
		status = spi_master_initialize_queue(master);
		if (status) {
1172
			device_del(&master->dev);
1173 1174 1175 1176
			goto done;
		}
	}

1177 1178 1179 1180 1181 1182
	mutex_lock(&board_lock);
	list_add_tail(&master->list, &spi_master_list);
	list_for_each_entry(bi, &board_list, list)
		spi_match_master_to_boardinfo(master, &bi->board_info);
	mutex_unlock(&board_lock);

1183
	/* Register devices from the device tree and ACPI */
1184
	of_register_spi_devices(master);
1185
	acpi_register_spi_devices(master);
1186 1187 1188 1189 1190
done:
	return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);

1191
static int __unregister(struct device *dev, void *null)
1192
{
1193
	spi_unregister_device(to_spi_device(dev));
1194 1195 1196 1197 1198 1199
	return 0;
}

/**
 * spi_unregister_master - unregister SPI master controller
 * @master: the master being unregistered
D
David Brownell 已提交
1200
 * Context: can sleep
1201 1202 1203 1204 1205 1206 1207 1208
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
void spi_unregister_master(struct spi_master *master)
{
1209 1210
	int dummy;

1211 1212 1213 1214 1215
	if (master->queued) {
		if (spi_destroy_queue(master))
			dev_err(&master->dev, "queue remove failed\n");
	}

1216 1217 1218 1219
	mutex_lock(&board_lock);
	list_del(&master->list);
	mutex_unlock(&board_lock);

1220
	dummy = device_for_each_child(&master->dev, NULL, __unregister);
T
Tony Jones 已提交
1221
	device_unregister(&master->dev);
1222 1223 1224
}
EXPORT_SYMBOL_GPL(spi_unregister_master);

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
int spi_master_suspend(struct spi_master *master)
{
	int ret;

	/* Basically no-ops for non-queued masters */
	if (!master->queued)
		return 0;

	ret = spi_stop_queue(master);
	if (ret)
		dev_err(&master->dev, "queue stop failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_suspend);

int spi_master_resume(struct spi_master *master)
{
	int ret;

	if (!master->queued)
		return 0;

	ret = spi_start_queue(master);
	if (ret)
		dev_err(&master->dev, "queue restart failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_resume);

1256
static int __spi_master_match(struct device *dev, const void *data)
D
Dave Young 已提交
1257 1258
{
	struct spi_master *m;
1259
	const u16 *bus_num = data;
D
Dave Young 已提交
1260 1261 1262 1263 1264

	m = container_of(dev, struct spi_master, dev);
	return m->bus_num == *bus_num;
}

1265 1266 1267
/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
D
David Brownell 已提交
1268
 * Context: can sleep
1269 1270 1271 1272 1273 1274 1275 1276
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
 * spi_master (which the caller must release), or NULL if there is
 * no such master registered.
 */
struct spi_master *spi_busnum_to_master(u16 bus_num)
{
T
Tony Jones 已提交
1277
	struct device		*dev;
1278
	struct spi_master	*master = NULL;
D
Dave Young 已提交
1279

1280
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
D
Dave Young 已提交
1281 1282 1283 1284
				__spi_master_match);
	if (dev)
		master = container_of(dev, struct spi_master, dev);
	/* reference got in class_find_device */
1285
	return master;
1286 1287 1288 1289 1290 1291
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);


/*-------------------------------------------------------------------------*/

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
/* Core methods for SPI master protocol drivers.  Some of the
 * other core methods are currently defined as inline functions.
 */

/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
 */
int spi_setup(struct spi_device *spi)
{
1316
	unsigned	bad_bits;
1317
	int		status = 0;
1318

1319 1320 1321 1322 1323
	/* help drivers fail *cleanly* when they need options
	 * that aren't supported with their current master
	 */
	bad_bits = spi->mode & ~spi->master->mode_bits;
	if (bad_bits) {
1324
		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1325 1326 1327 1328
			bad_bits);
		return -EINVAL;
	}

1329 1330 1331
	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

1332 1333
	if (spi->master->setup)
		status = spi->master->setup(spi);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
				"%u bits/w, %u Hz max --> %d\n",
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz,
			status);

	return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

1349 1350 1351
static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
1352
	struct spi_transfer *xfer;
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

	/* Half-duplex links include original MicroWire, and ones with
	 * only one data pin like SPI_3WIRE (switches direction) or where
	 * either MOSI or MISO is missing.  They can also be caused by
	 * software limitations.
	 */
	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
			|| (spi->mode & SPI_3WIRE)) {
		unsigned flags = master->flags;

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			if (xfer->rx_buf && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
				return -EINVAL;
		}
	}

1373
	/**
1374 1375
	 * Set transfer bits_per_word and max speed as spi device default if
	 * it is not set for this transfer.
1376 1377 1378 1379
	 */
	list_for_each_entry(xfer, &message->transfers, transfer_list) {
		if (!xfer->bits_per_word)
			xfer->bits_per_word = spi->bits_per_word;
1380 1381
		if (!xfer->speed_hz)
			xfer->speed_hz = spi->max_speed_hz;
1382 1383 1384 1385 1386 1387 1388 1389
		if (master->bits_per_word_mask) {
			/* Only 32 bits fit in the mask */
			if (xfer->bits_per_word > 32)
				return -EINVAL;
			if (!(master->bits_per_word_mask &
					BIT(xfer->bits_per_word - 1)))
				return -EINVAL;
		}
1390 1391
	}

1392 1393 1394 1395 1396
	message->spi = spi;
	message->status = -EINPROGRESS;
	return master->transfer(spi, message);
}

D
David Brownell 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
1429 1430
	int ret;
	unsigned long flags;
D
David Brownell 已提交
1431

1432
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
D
David Brownell 已提交
1433

1434 1435 1436 1437
	if (master->bus_lock_flag)
		ret = -EBUSY;
	else
		ret = __spi_async(spi, message);
D
David Brownell 已提交
1438

1439 1440 1441
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;
D
David Brownell 已提交
1442 1443 1444
}
EXPORT_SYMBOL_GPL(spi_async);

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
/**
 * spi_async_locked - version of spi_async with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
	int ret;
	unsigned long flags;

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);

	ret = __spi_async(spi, message);

	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;

}
EXPORT_SYMBOL_GPL(spi_async_locked);

1491 1492 1493 1494 1495 1496 1497 1498

/*-------------------------------------------------------------------------*/

/* Utility methods for SPI master protocol drivers, layered on
 * top of the core.  Some other utility methods are defined as
 * inline functions.
 */

1499 1500 1501 1502 1503
static void spi_complete(void *arg)
{
	complete(arg);
}

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
static int __spi_sync(struct spi_device *spi, struct spi_message *message,
		      int bus_locked)
{
	DECLARE_COMPLETION_ONSTACK(done);
	int status;
	struct spi_master *master = spi->master;

	message->complete = spi_complete;
	message->context = &done;

	if (!bus_locked)
		mutex_lock(&master->bus_lock_mutex);

	status = spi_async_locked(spi, message);

	if (!bus_locked)
		mutex_unlock(&master->bus_lock_mutex);

	if (status == 0) {
		wait_for_completion(&done);
		status = message->status;
	}
	message->context = NULL;
	return status;
}

1530 1531 1532 1533
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
D
David Brownell 已提交
1534
 * Context: can sleep
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
D
David Brownell 已提交
1546 1547 1548
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
1549
 * It returns zero on success, else a negative error code.
1550 1551 1552
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
1553
	return __spi_sync(spi, message, 0);
1554 1555 1556
}
EXPORT_SYMBOL_GPL(spi_sync);

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
/**
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * This call should be used by drivers that require exclusive access to the
L
Lucas De Marchi 已提交
1568
 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
 * be released by a spi_bus_unlock call when the exclusive access is over.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
{
	return __spi_sync(spi, message, 1);
}
EXPORT_SYMBOL_GPL(spi_sync_locked);

/**
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 * @master: SPI bus master that should be locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 * and spi_async_locked calls when the SPI bus lock is held.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_lock(struct spi_master *master)
{
	unsigned long flags;

	mutex_lock(&master->bus_lock_mutex);

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
	master->bus_lock_flag = 1;
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	/* mutex remains locked until spi_bus_unlock is called */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_lock);

/**
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
 * @master: SPI bus master that was locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 * call.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_unlock(struct spi_master *master)
{
	master->bus_lock_flag = 0;

	mutex_unlock(&master->bus_lock_mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_unlock);

1633 1634
/* portable code must never pass more than 32 bytes */
#define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
1635 1636 1637 1638 1639 1640 1641 1642

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
1643 1644
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
D
David Brownell 已提交
1645
 * Context: can sleep
1646 1647 1648 1649
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
1650
 * This call may only be used from a context that may sleep.
1651
 *
D
David Brownell 已提交
1652
 * Parameters to this routine are always copied using a small buffer;
D
David Brownell 已提交
1653 1654
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
D
David Brownell 已提交
1655
 * spi_{async,sync}() calls with dma-safe buffers.
1656 1657
 */
int spi_write_then_read(struct spi_device *spi,
1658 1659
		const void *txbuf, unsigned n_tx,
		void *rxbuf, unsigned n_rx)
1660
{
D
David Brownell 已提交
1661
	static DEFINE_MUTEX(lock);
1662 1663 1664

	int			status;
	struct spi_message	message;
1665
	struct spi_transfer	x[2];
1666 1667
	u8			*local_buf;

1668 1669 1670 1671
	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
	 * copying here, (as a pure convenience thing), but we can
	 * keep heap costs out of the hot path unless someone else is
	 * using the pre-allocated buffer or the transfer is too large.
1672
	 */
1673
	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
1674 1675
		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
				    GFP_KERNEL | GFP_DMA);
1676 1677 1678 1679 1680
		if (!local_buf)
			return -ENOMEM;
	} else {
		local_buf = buf;
	}
1681

1682
	spi_message_init(&message);
1683 1684 1685 1686 1687 1688 1689 1690 1691
	memset(x, 0, sizeof x);
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}
1692

1693
	memcpy(local_buf, txbuf, n_tx);
1694 1695
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;
1696 1697 1698

	/* do the i/o */
	status = spi_sync(spi, &message);
1699
	if (status == 0)
1700
		memcpy(rxbuf, x[1].rx_buf, n_rx);
1701

1702
	if (x[0].tx_buf == buf)
D
David Brownell 已提交
1703
		mutex_unlock(&lock);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

static int __init spi_init(void)
{
1715 1716
	int	status;

1717
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1718 1719 1720 1721 1722 1723 1724 1725
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
1726

1727 1728 1729
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
1730
	return 0;
1731 1732 1733 1734 1735 1736 1737 1738

err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
1739
}
1740

1741 1742
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
1743 1744 1745 1746
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
1747
 */
1748
postcore_initcall(spi_init);
1749