percpu.c 34.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/*
 * linux/mm/percpu.c - percpu memory allocator
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 *
 * This is percpu allocator which can handle both static and dynamic
 * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
 * chunk is consisted of num_possible_cpus() units and the first chunk
 * is used for static percpu variables in the kernel image (special
 * boot time alloc/init handling necessary as these areas need to be
 * brought up before allocation services are running).  Unit grows as
 * necessary and all units grow or shrink in unison.  When a chunk is
 * filled up, another chunk is allocated.  ie. in vmalloc area
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
 * Allocation is done in offset-size areas of single unit space.  Ie,
 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
 * c1:u1, c1:u2 and c1:u3.  Percpu access can be done by configuring
 * percpu base registers UNIT_SIZE apart.
 *
 * There are usually many small percpu allocations many of them as
 * small as 4 bytes.  The allocator organizes chunks into lists
 * according to free size and tries to allocate from the fullest one.
 * Each chunk keeps the maximum contiguous area size hint which is
 * guaranteed to be eqaul to or larger than the maximum contiguous
 * area in the chunk.  This helps the allocator not to iterate the
 * chunk maps unnecessarily.
 *
 * Allocation state in each chunk is kept using an array of integers
 * on chunk->map.  A positive value in the map represents a free
 * region and negative allocated.  Allocation inside a chunk is done
 * by scanning this map sequentially and serving the first matching
 * entry.  This is mostly copied from the percpu_modalloc() allocator.
 * Chunks are also linked into a rb tree to ease address to chunk
 * mapping during free.
 *
 * To use this allocator, arch code should do the followings.
 *
 * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 50
 *   regular address to percpu pointer and back if they need to be
 *   different from the default
51
 *
52 53
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
54 55 56 57 58 59 60 61 62 63 64 65
 */

#include <linux/bitmap.h>
#include <linux/bootmem.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/rbtree.h>
#include <linux/slab.h>
66
#include <linux/spinlock.h>
67
#include <linux/vmalloc.h>
68
#include <linux/workqueue.h>
69 70

#include <asm/cacheflush.h>
71
#include <asm/sections.h>
72 73 74 75 76
#include <asm/tlbflush.h>

#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */

77 78 79 80 81 82 83 84 85 86 87 88
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr)					\
	(void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr	\
		 + (unsigned long)__per_cpu_start)
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr)						\
	(void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr	\
		 - (unsigned long)__per_cpu_start)
#endif

89 90 91 92 93 94 95 96 97
struct pcpu_chunk {
	struct list_head	list;		/* linked to pcpu_slot lists */
	struct rb_node		rb_node;	/* key is chunk->vm->addr */
	int			free_size;	/* free bytes in the chunk */
	int			contig_hint;	/* max contiguous size hint */
	struct vm_struct	*vm;		/* mapped vmalloc region */
	int			map_used;	/* # of map entries used */
	int			map_alloc;	/* # of map entries allocated */
	int			*map;		/* allocation map */
98
	bool			immutable;	/* no [de]population allowed */
99 100
	struct page		**page;		/* points to page array */
	struct page		*page_ar[];	/* #cpus * UNIT_PAGES */
101 102
};

103 104 105 106 107
static int pcpu_unit_pages __read_mostly;
static int pcpu_unit_size __read_mostly;
static int pcpu_chunk_size __read_mostly;
static int pcpu_nr_slots __read_mostly;
static size_t pcpu_chunk_struct_size __read_mostly;
108 109

/* the address of the first chunk which starts with the kernel static area */
110
void *pcpu_base_addr __read_mostly;
111 112
EXPORT_SYMBOL_GPL(pcpu_base_addr);

113 114 115 116 117
/* optional reserved chunk, only accessible for reserved allocations */
static struct pcpu_chunk *pcpu_reserved_chunk;
/* offset limit of the reserved chunk */
static int pcpu_reserved_chunk_limit;

118
/*
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
 * Synchronization rules.
 *
 * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
 * protects allocation/reclaim paths, chunks and chunk->page arrays.
 * The latter is a spinlock and protects the index data structures -
 * chunk slots, rbtree, chunks and area maps in chunks.
 *
 * During allocation, pcpu_alloc_mutex is kept locked all the time and
 * pcpu_lock is grabbed and released as necessary.  All actual memory
 * allocations are done using GFP_KERNEL with pcpu_lock released.
 *
 * Free path accesses and alters only the index data structures, so it
 * can be safely called from atomic context.  When memory needs to be
 * returned to the system, free path schedules reclaim_work which
 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
 * reclaimed, release both locks and frees the chunks.  Note that it's
 * necessary to grab both locks to remove a chunk from circulation as
 * allocation path might be referencing the chunk with only
 * pcpu_alloc_mutex locked.
138
 */
139 140
static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
141

142
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
143 144
static struct rb_root pcpu_addr_root = RB_ROOT;	/* chunks by address */

145 146 147 148
/* reclaim work to release fully free chunks, scheduled from free path */
static void pcpu_reclaim(struct work_struct *work);
static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);

149
static int __pcpu_size_to_slot(int size)
150
{
T
Tejun Heo 已提交
151
	int highbit = fls(size);	/* size is in bytes */
152 153 154
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

155 156 157 158 159 160 161
static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

162 163 164 165 166 167 168 169 170 171
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
		return 0;

	return pcpu_size_to_slot(chunk->free_size);
}

static int pcpu_page_idx(unsigned int cpu, int page_idx)
{
172
	return cpu * pcpu_unit_pages + page_idx;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
}

static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk,
				      unsigned int cpu, int page_idx)
{
	return &chunk->page[pcpu_page_idx(cpu, page_idx)];
}

static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
{
	return (unsigned long)chunk->vm->addr +
		(pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
}

static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
				     int page_idx)
{
	return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL;
}

/**
195 196
 * pcpu_mem_alloc - allocate memory
 * @size: bytes to allocate
197
 *
198 199 200
 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 * kzalloc() is used; otherwise, vmalloc() is used.  The returned
 * memory is always zeroed.
201
 *
202 203 204
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
205
 * RETURNS:
206
 * Pointer to the allocated area on success, NULL on failure.
207
 */
208
static void *pcpu_mem_alloc(size_t size)
209
{
210 211 212 213 214 215 216 217 218
	if (size <= PAGE_SIZE)
		return kzalloc(size, GFP_KERNEL);
	else {
		void *ptr = vmalloc(size);
		if (ptr)
			memset(ptr, 0, size);
		return ptr;
	}
}
219

220 221 222 223 224 225 226 227 228
/**
 * pcpu_mem_free - free memory
 * @ptr: memory to free
 * @size: size of the area
 *
 * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
 */
static void pcpu_mem_free(void *ptr, size_t size)
{
229
	if (size <= PAGE_SIZE)
230
		kfree(ptr);
231
	else
232
		vfree(ptr);
233 234 235 236 237 238 239 240 241
}

/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
242 243
 * moved to the slot.  Note that the reserved chunk is never put on
 * chunk slots.
244 245 246
 *
 * CONTEXT:
 * pcpu_lock.
247 248 249 250 251
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

252
	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

static struct rb_node **pcpu_chunk_rb_search(void *addr,
					     struct rb_node **parentp)
{
	struct rb_node **p = &pcpu_addr_root.rb_node;
	struct rb_node *parent = NULL;
	struct pcpu_chunk *chunk;

	while (*p) {
		parent = *p;
		chunk = rb_entry(parent, struct pcpu_chunk, rb_node);

		if (addr < chunk->vm->addr)
			p = &(*p)->rb_left;
		else if (addr > chunk->vm->addr)
			p = &(*p)->rb_right;
		else
			break;
	}

	if (parentp)
		*parentp = parent;
	return p;
}

/**
 * pcpu_chunk_addr_search - search for chunk containing specified address
 * @addr: address to search for
 *
 * Look for chunk which might contain @addr.  More specifically, it
 * searchs for the chunk with the highest start address which isn't
 * beyond @addr.
 *
292 293 294
 * CONTEXT:
 * pcpu_lock.
 *
295 296 297 298 299 300 301 302
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
	struct rb_node *n, *parent;
	struct pcpu_chunk *chunk;

303 304 305 306 307 308 309 310 311
	/* is it in the reserved chunk? */
	if (pcpu_reserved_chunk) {
		void *start = pcpu_reserved_chunk->vm->addr;

		if (addr >= start && addr < start + pcpu_reserved_chunk_limit)
			return pcpu_reserved_chunk;
	}

	/* nah... search the regular ones */
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	n = *pcpu_chunk_rb_search(addr, &parent);
	if (!n) {
		/* no exactly matching chunk, the parent is the closest */
		n = parent;
		BUG_ON(!n);
	}
	chunk = rb_entry(n, struct pcpu_chunk, rb_node);

	if (addr < chunk->vm->addr) {
		/* the parent was the next one, look for the previous one */
		n = rb_prev(n);
		BUG_ON(!n);
		chunk = rb_entry(n, struct pcpu_chunk, rb_node);
	}

	return chunk;
}

/**
 * pcpu_chunk_addr_insert - insert chunk into address rb tree
 * @new: chunk to insert
 *
 * Insert @new into address rb tree.
335 336 337
 *
 * CONTEXT:
 * pcpu_lock.
338 339 340 341 342 343 344 345 346 347 348
 */
static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
{
	struct rb_node **p, *parent;

	p = pcpu_chunk_rb_search(new->vm->addr, &parent);
	BUG_ON(*p);
	rb_link_node(&new->rb_node, parent, p);
	rb_insert_color(&new->rb_node, &pcpu_addr_root);
}

349 350 351 352 353 354 355 356
/**
 * pcpu_extend_area_map - extend area map for allocation
 * @chunk: target chunk
 *
 * Extend area map of @chunk so that it can accomodate an allocation.
 * A single allocation can split an area into three areas, so this
 * function makes sure that @chunk->map has at least two extra slots.
 *
357 358 359 360
 * CONTEXT:
 * pcpu_alloc_mutex, pcpu_lock.  pcpu_lock is released and reacquired
 * if area map is extended.
 *
361 362 363 364 365 366 367 368 369 370 371 372 373
 * RETURNS:
 * 0 if noop, 1 if successfully extended, -errno on failure.
 */
static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
{
	int new_alloc;
	int *new;
	size_t size;

	/* has enough? */
	if (chunk->map_alloc >= chunk->map_used + 2)
		return 0;

374 375
	spin_unlock_irq(&pcpu_lock);

376 377 378 379 380
	new_alloc = PCPU_DFL_MAP_ALLOC;
	while (new_alloc < chunk->map_used + 2)
		new_alloc *= 2;

	new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
381 382
	if (!new) {
		spin_lock_irq(&pcpu_lock);
383
		return -ENOMEM;
384 385 386 387 388 389 390 391 392
	}

	/*
	 * Acquire pcpu_lock and switch to new area map.  Only free
	 * could have happened inbetween, so map_used couldn't have
	 * grown.
	 */
	spin_lock_irq(&pcpu_lock);
	BUG_ON(new_alloc < chunk->map_used + 2);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408

	size = chunk->map_alloc * sizeof(chunk->map[0]);
	memcpy(new, chunk->map, size);

	/*
	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
	 * one of the first chunks and still using static map.
	 */
	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
		pcpu_mem_free(chunk->map, size);

	chunk->map_alloc = new_alloc;
	chunk->map = new;
	return 0;
}

409 410 411 412
/**
 * pcpu_split_block - split a map block
 * @chunk: chunk of interest
 * @i: index of map block to split
T
Tejun Heo 已提交
413 414
 * @head: head size in bytes (can be 0)
 * @tail: tail size in bytes (can be 0)
415 416 417 418 419 420 421 422 423
 *
 * Split the @i'th map block into two or three blocks.  If @head is
 * non-zero, @head bytes block is inserted before block @i moving it
 * to @i+1 and reducing its size by @head bytes.
 *
 * If @tail is non-zero, the target block, which can be @i or @i+1
 * depending on @head, is reduced by @tail bytes and @tail byte block
 * is inserted after the target block.
 *
424
 * @chunk->map must have enough free slots to accomodate the split.
425 426 427
 *
 * CONTEXT:
 * pcpu_lock.
428
 */
429 430
static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
			     int head, int tail)
431 432
{
	int nr_extra = !!head + !!tail;
433

434
	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
435

436
	/* insert new subblocks */
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
		sizeof(chunk->map[0]) * (chunk->map_used - i));
	chunk->map_used += nr_extra;

	if (head) {
		chunk->map[i + 1] = chunk->map[i] - head;
		chunk->map[i++] = head;
	}
	if (tail) {
		chunk->map[i++] -= tail;
		chunk->map[i] = tail;
	}
}

/**
 * pcpu_alloc_area - allocate area from a pcpu_chunk
 * @chunk: chunk of interest
T
Tejun Heo 已提交
454
 * @size: wanted size in bytes
455 456 457 458 459 460
 * @align: wanted align
 *
 * Try to allocate @size bytes area aligned at @align from @chunk.
 * Note that this function only allocates the offset.  It doesn't
 * populate or map the area.
 *
461 462
 * @chunk->map must have at least two free slots.
 *
463 464 465
 * CONTEXT:
 * pcpu_lock.
 *
466
 * RETURNS:
467 468
 * Allocated offset in @chunk on success, -1 if no matching area is
 * found.
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
 */
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
{
	int oslot = pcpu_chunk_slot(chunk);
	int max_contig = 0;
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
		bool is_last = i + 1 == chunk->map_used;
		int head, tail;

		/* extra for alignment requirement */
		head = ALIGN(off, align) - off;
		BUG_ON(i == 0 && head != 0);

		if (chunk->map[i] < 0)
			continue;
		if (chunk->map[i] < head + size) {
			max_contig = max(chunk->map[i], max_contig);
			continue;
		}

		/*
		 * If head is small or the previous block is free,
		 * merge'em.  Note that 'small' is defined as smaller
		 * than sizeof(int), which is very small but isn't too
		 * uncommon for percpu allocations.
		 */
		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
			if (chunk->map[i - 1] > 0)
				chunk->map[i - 1] += head;
			else {
				chunk->map[i - 1] -= head;
				chunk->free_size -= head;
			}
			chunk->map[i] -= head;
			off += head;
			head = 0;
		}

		/* if tail is small, just keep it around */
		tail = chunk->map[i] - head - size;
		if (tail < sizeof(int))
			tail = 0;

		/* split if warranted */
		if (head || tail) {
516
			pcpu_split_block(chunk, i, head, tail);
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
			if (head) {
				i++;
				off += head;
				max_contig = max(chunk->map[i - 1], max_contig);
			}
			if (tail)
				max_contig = max(chunk->map[i + 1], max_contig);
		}

		/* update hint and mark allocated */
		if (is_last)
			chunk->contig_hint = max_contig; /* fully scanned */
		else
			chunk->contig_hint = max(chunk->contig_hint,
						 max_contig);

		chunk->free_size -= chunk->map[i];
		chunk->map[i] = -chunk->map[i];

		pcpu_chunk_relocate(chunk, oslot);
		return off;
	}

	chunk->contig_hint = max_contig;	/* fully scanned */
	pcpu_chunk_relocate(chunk, oslot);

543 544
	/* tell the upper layer that this chunk has no matching area */
	return -1;
545 546 547 548 549 550 551 552 553 554
}

/**
 * pcpu_free_area - free area to a pcpu_chunk
 * @chunk: chunk of interest
 * @freeme: offset of area to free
 *
 * Free area starting from @freeme to @chunk.  Note that this function
 * only modifies the allocation map.  It doesn't depopulate or unmap
 * the area.
555 556 557
 *
 * CONTEXT:
 * pcpu_lock.
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
 */
static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
{
	int oslot = pcpu_chunk_slot(chunk);
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
		if (off == freeme)
			break;
	BUG_ON(off != freeme);
	BUG_ON(chunk->map[i] > 0);

	chunk->map[i] = -chunk->map[i];
	chunk->free_size += chunk->map[i];

	/* merge with previous? */
	if (i > 0 && chunk->map[i - 1] >= 0) {
		chunk->map[i - 1] += chunk->map[i];
		chunk->map_used--;
		memmove(&chunk->map[i], &chunk->map[i + 1],
			(chunk->map_used - i) * sizeof(chunk->map[0]));
		i--;
	}
	/* merge with next? */
	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
		chunk->map[i] += chunk->map[i + 1];
		chunk->map_used--;
		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
	}

	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
	pcpu_chunk_relocate(chunk, oslot);
}

/**
 * pcpu_unmap - unmap pages out of a pcpu_chunk
 * @chunk: chunk of interest
 * @page_start: page index of the first page to unmap
 * @page_end: page index of the last page to unmap + 1
 * @flush: whether to flush cache and tlb or not
 *
 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
 * If @flush is true, vcache is flushed before unmapping and tlb
 * after.
 */
static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end,
		       bool flush)
{
	unsigned int last = num_possible_cpus() - 1;
	unsigned int cpu;

610 611 612
	/* unmap must not be done on immutable chunk */
	WARN_ON(chunk->immutable);

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
	/*
	 * Each flushing trial can be very expensive, issue flush on
	 * the whole region at once rather than doing it for each cpu.
	 * This could be an overkill but is more scalable.
	 */
	if (flush)
		flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start),
				   pcpu_chunk_addr(chunk, last, page_end));

	for_each_possible_cpu(cpu)
		unmap_kernel_range_noflush(
				pcpu_chunk_addr(chunk, cpu, page_start),
				(page_end - page_start) << PAGE_SHIFT);

	/* ditto as flush_cache_vunmap() */
	if (flush)
		flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start),
				       pcpu_chunk_addr(chunk, last, page_end));
}

/**
 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
 * @chunk: chunk to depopulate
 * @off: offset to the area to depopulate
T
Tejun Heo 已提交
637
 * @size: size of the area to depopulate in bytes
638 639 640 641 642
 * @flush: whether to flush cache and tlb or not
 *
 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
 * from @chunk.  If @flush is true, vcache is flushed before unmapping
 * and tlb after.
643 644 645
 *
 * CONTEXT:
 * pcpu_alloc_mutex.
646
 */
T
Tejun Heo 已提交
647 648
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size,
				  bool flush)
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
{
	int page_start = PFN_DOWN(off);
	int page_end = PFN_UP(off + size);
	int unmap_start = -1;
	int uninitialized_var(unmap_end);
	unsigned int cpu;
	int i;

	for (i = page_start; i < page_end; i++) {
		for_each_possible_cpu(cpu) {
			struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);

			if (!*pagep)
				continue;

			__free_page(*pagep);

			/*
			 * If it's partial depopulation, it might get
			 * populated or depopulated again.  Mark the
			 * page gone.
			 */
			*pagep = NULL;

			unmap_start = unmap_start < 0 ? i : unmap_start;
			unmap_end = i + 1;
		}
	}

	if (unmap_start >= 0)
		pcpu_unmap(chunk, unmap_start, unmap_end, flush);
}

/**
 * pcpu_map - map pages into a pcpu_chunk
 * @chunk: chunk of interest
 * @page_start: page index of the first page to map
 * @page_end: page index of the last page to map + 1
 *
 * For each cpu, map pages [@page_start,@page_end) into @chunk.
 * vcache is flushed afterwards.
 */
static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end)
{
	unsigned int last = num_possible_cpus() - 1;
	unsigned int cpu;
	int err;

697 698 699
	/* map must not be done on immutable chunk */
	WARN_ON(chunk->immutable);

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	for_each_possible_cpu(cpu) {
		err = map_kernel_range_noflush(
				pcpu_chunk_addr(chunk, cpu, page_start),
				(page_end - page_start) << PAGE_SHIFT,
				PAGE_KERNEL,
				pcpu_chunk_pagep(chunk, cpu, page_start));
		if (err < 0)
			return err;
	}

	/* flush at once, please read comments in pcpu_unmap() */
	flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start),
			 pcpu_chunk_addr(chunk, last, page_end));
	return 0;
}

/**
 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
 * @chunk: chunk of interest
 * @off: offset to the area to populate
T
Tejun Heo 已提交
720
 * @size: size of the area to populate in bytes
721 722 723
 *
 * For each cpu, populate and map pages [@page_start,@page_end) into
 * @chunk.  The area is cleared on return.
724 725 726
 *
 * CONTEXT:
 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
727 728 729 730 731 732 733
 */
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
{
	const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
	int page_start = PFN_DOWN(off);
	int page_end = PFN_UP(off + size);
	int map_start = -1;
734
	int uninitialized_var(map_end);
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	unsigned int cpu;
	int i;

	for (i = page_start; i < page_end; i++) {
		if (pcpu_chunk_page_occupied(chunk, i)) {
			if (map_start >= 0) {
				if (pcpu_map(chunk, map_start, map_end))
					goto err;
				map_start = -1;
			}
			continue;
		}

		map_start = map_start < 0 ? i : map_start;
		map_end = i + 1;

		for_each_possible_cpu(cpu) {
			struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);

			*pagep = alloc_pages_node(cpu_to_node(cpu),
						  alloc_mask, 0);
			if (!*pagep)
				goto err;
		}
	}

	if (map_start >= 0 && pcpu_map(chunk, map_start, map_end))
		goto err;

	for_each_possible_cpu(cpu)
765
		memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0,
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
		       size);

	return 0;
err:
	/* likely under heavy memory pressure, give memory back */
	pcpu_depopulate_chunk(chunk, off, size, true);
	return -ENOMEM;
}

static void free_pcpu_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
	if (chunk->vm)
		free_vm_area(chunk->vm);
781
	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
782 783 784 785 786 787 788 789 790 791 792
	kfree(chunk);
}

static struct pcpu_chunk *alloc_pcpu_chunk(void)
{
	struct pcpu_chunk *chunk;

	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
	if (!chunk)
		return NULL;

793
	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
794 795
	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
	chunk->map[chunk->map_used++] = pcpu_unit_size;
796
	chunk->page = chunk->page_ar;
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811

	chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
	if (!chunk->vm) {
		free_pcpu_chunk(chunk);
		return NULL;
	}

	INIT_LIST_HEAD(&chunk->list);
	chunk->free_size = pcpu_unit_size;
	chunk->contig_hint = pcpu_unit_size;

	return chunk;
}

/**
812
 * pcpu_alloc - the percpu allocator
T
Tejun Heo 已提交
813
 * @size: size of area to allocate in bytes
814
 * @align: alignment of area (max PAGE_SIZE)
815
 * @reserved: allocate from the reserved chunk if available
816
 *
817 818 819 820
 * Allocate percpu area of @size bytes aligned at @align.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.
821 822 823 824
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
825
static void *pcpu_alloc(size_t size, size_t align, bool reserved)
826 827 828 829
{
	struct pcpu_chunk *chunk;
	int slot, off;

830
	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
831 832 833 834 835
		WARN(true, "illegal size (%zu) or align (%zu) for "
		     "percpu allocation\n", size, align);
		return NULL;
	}

836 837
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
838

839 840 841
	/* serve reserved allocations from the reserved chunk if available */
	if (reserved && pcpu_reserved_chunk) {
		chunk = pcpu_reserved_chunk;
842 843
		if (size > chunk->contig_hint ||
		    pcpu_extend_area_map(chunk) < 0)
844
			goto fail_unlock;
845 846 847
		off = pcpu_alloc_area(chunk, size, align);
		if (off >= 0)
			goto area_found;
848
		goto fail_unlock;
849 850
	}

851
restart:
852
	/* search through normal chunks */
853 854 855 856
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			if (size > chunk->contig_hint)
				continue;
857 858 859 860 861 862 863 864 865 866

			switch (pcpu_extend_area_map(chunk)) {
			case 0:
				break;
			case 1:
				goto restart;	/* pcpu_lock dropped, restart */
			default:
				goto fail_unlock;
			}

867 868 869 870 871 872 873
			off = pcpu_alloc_area(chunk, size, align);
			if (off >= 0)
				goto area_found;
		}
	}

	/* hmmm... no space left, create a new chunk */
874 875
	spin_unlock_irq(&pcpu_lock);

876 877
	chunk = alloc_pcpu_chunk();
	if (!chunk)
878 879 880
		goto fail_unlock_mutex;

	spin_lock_irq(&pcpu_lock);
881 882
	pcpu_chunk_relocate(chunk, -1);
	pcpu_chunk_addr_insert(chunk);
883
	goto restart;
884 885

area_found:
886 887
	spin_unlock_irq(&pcpu_lock);

888 889
	/* populate, map and clear the area */
	if (pcpu_populate_chunk(chunk, off, size)) {
890
		spin_lock_irq(&pcpu_lock);
891
		pcpu_free_area(chunk, off);
892
		goto fail_unlock;
893 894
	}

895 896 897 898 899 900 901 902 903
	mutex_unlock(&pcpu_alloc_mutex);

	return __addr_to_pcpu_ptr(chunk->vm->addr + off);

fail_unlock:
	spin_unlock_irq(&pcpu_lock);
fail_unlock_mutex:
	mutex_unlock(&pcpu_alloc_mutex);
	return NULL;
904
}
905 906 907 908 909 910 911 912 913

/**
 * __alloc_percpu - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate percpu area of @size bytes aligned at @align.  Might
 * sleep.  Might trigger writeouts.
 *
914 915 916
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
917 918 919 920 921 922 923
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
void *__alloc_percpu(size_t size, size_t align)
{
	return pcpu_alloc(size, align, false);
}
924 925
EXPORT_SYMBOL_GPL(__alloc_percpu);

926 927 928 929 930 931 932 933 934
/**
 * __alloc_reserved_percpu - allocate reserved percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate percpu area of @size bytes aligned at @align from reserved
 * percpu area if arch has set it up; otherwise, allocation is served
 * from the same dynamic area.  Might sleep.  Might trigger writeouts.
 *
935 936 937
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
938 939 940 941 942 943 944 945
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
void *__alloc_reserved_percpu(size_t size, size_t align)
{
	return pcpu_alloc(size, align, true);
}

946 947 948 949 950
/**
 * pcpu_reclaim - reclaim fully free chunks, workqueue function
 * @work: unused
 *
 * Reclaim all fully free chunks except for the first one.
951 952 953
 *
 * CONTEXT:
 * workqueue context.
954 955
 */
static void pcpu_reclaim(struct work_struct *work)
956
{
957 958 959 960
	LIST_HEAD(todo);
	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
	struct pcpu_chunk *chunk, *next;

961 962
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
963 964 965 966 967 968 969 970 971 972 973 974

	list_for_each_entry_safe(chunk, next, head, list) {
		WARN_ON(chunk->immutable);

		/* spare the first one */
		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
			continue;

		rb_erase(&chunk->rb_node, &pcpu_addr_root);
		list_move(&chunk->list, &todo);
	}

975 976
	spin_unlock_irq(&pcpu_lock);
	mutex_unlock(&pcpu_alloc_mutex);
977 978 979 980 981

	list_for_each_entry_safe(chunk, next, &todo, list) {
		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
		free_pcpu_chunk(chunk);
	}
982 983 984 985 986 987
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
988 989 990 991
 * Free percpu area @ptr.
 *
 * CONTEXT:
 * Can be called from atomic context.
992 993 994 995 996
 */
void free_percpu(void *ptr)
{
	void *addr = __pcpu_ptr_to_addr(ptr);
	struct pcpu_chunk *chunk;
997
	unsigned long flags;
998 999 1000 1001 1002
	int off;

	if (!ptr)
		return;

1003
	spin_lock_irqsave(&pcpu_lock, flags);
1004 1005 1006 1007 1008 1009

	chunk = pcpu_chunk_addr_search(addr);
	off = addr - chunk->vm->addr;

	pcpu_free_area(chunk, off);

1010
	/* if there are more than one fully free chunks, wake up grim reaper */
1011 1012 1013
	if (chunk->free_size == pcpu_unit_size) {
		struct pcpu_chunk *pos;

1014
		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1015
			if (pos != chunk) {
1016
				schedule_work(&pcpu_reclaim_work);
1017 1018 1019 1020
				break;
			}
	}

1021
	spin_unlock_irqrestore(&pcpu_lock, flags);
1022 1023 1024 1025
}
EXPORT_SYMBOL_GPL(free_percpu);

/**
1026 1027 1028
 * pcpu_setup_first_chunk - initialize the first percpu chunk
 * @get_page_fn: callback to fetch page pointer
 * @static_size: the size of static percpu area in bytes
1029
 * @reserved_size: the size of reserved percpu area in bytes
1030 1031
 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
 * @base_addr: mapped address, NULL for auto
 * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
 * setup path.  The first two parameters are mandatory.  The rest are
 * optional.
 *
 * @get_page_fn() should return pointer to percpu page given cpu
 * number and page number.  It should at least return enough pages to
 * cover the static area.  The returned pages for static area should
 * have been initialized with valid data.  If @unit_size is specified,
 * it can also return pages after the static area.  NULL return
 * indicates end of pages for the cpu.  Note that @get_page_fn() must
 * return the same number of pages for all cpus.
 *
1048 1049 1050 1051 1052 1053 1054 1055
 * @reserved_size, if non-zero, specifies the amount of bytes to
 * reserve after the static area in the first chunk.  This reserves
 * the first chunk such that it's available only through reserved
 * percpu allocation.  This is primarily used to serve module percpu
 * static areas on architectures where the addressing model has
 * limited offset range for symbol relocations to guarantee module
 * percpu symbols fall inside the relocatable range.
 *
1056 1057
 * @unit_size, if non-negative, specifies unit size and must be
 * aligned to PAGE_SIZE and equal to or larger than @static_size +
1058
 * @reserved_size + @dyn_size.
1059
 *
1060 1061 1062
 * @dyn_size, if non-negative, limits the number of bytes available
 * for dynamic allocation in the first chunk.  Specifying non-negative
 * value make percpu leave alone the area beyond @static_size +
1063
 * @reserved_size + @dyn_size.
1064 1065 1066 1067 1068 1069 1070 1071
 *
 * Non-null @base_addr means that the caller already allocated virtual
 * region for the first chunk and mapped it.  percpu must not mess
 * with the chunk.  Note that @base_addr with 0 @unit_size or non-NULL
 * @populate_pte_fn doesn't make any sense.
 *
 * @populate_pte_fn is used to populate the pagetable.  NULL means the
 * caller already populated the pagetable.
1072
 *
1073 1074 1075 1076 1077 1078 1079
 * If the first chunk ends up with both reserved and dynamic areas, it
 * is served by two chunks - one to serve the core static and reserved
 * areas and the other for the dynamic area.  They share the same vm
 * and page map but uses different area allocation map to stay away
 * from each other.  The latter chunk is circulated in the chunk slots
 * and available for dynamic allocation like any other chunks.
 *
1080 1081 1082 1083
 * RETURNS:
 * The determined pcpu_unit_size which can be used to initialize
 * percpu access.
 */
1084
size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
1085
				     size_t static_size, size_t reserved_size,
1086 1087
				     ssize_t unit_size, ssize_t dyn_size,
				     void *base_addr,
1088
				     pcpu_populate_pte_fn_t populate_pte_fn)
1089
{
1090
	static struct vm_struct first_vm;
1091 1092
	static int smap[2], dmap[2];
	struct pcpu_chunk *schunk, *dchunk = NULL;
1093
	unsigned int cpu;
1094
	int nr_pages;
1095 1096
	int err, i;

1097
	/* santiy checks */
1098 1099
	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1100
	BUG_ON(!static_size);
1101
	if (unit_size >= 0) {
1102
		BUG_ON(unit_size < static_size + reserved_size +
1103 1104 1105 1106 1107 1108
				   (dyn_size >= 0 ? dyn_size : 0));
		BUG_ON(unit_size & ~PAGE_MASK);
	} else {
		BUG_ON(dyn_size >= 0);
		BUG_ON(base_addr);
	}
1109
	BUG_ON(base_addr && populate_pte_fn);
1110

1111
	if (unit_size >= 0)
1112 1113 1114
		pcpu_unit_pages = unit_size >> PAGE_SHIFT;
	else
		pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT,
1115
					PFN_UP(static_size + reserved_size));
1116

1117
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1118 1119
	pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk)
T
Tejun Heo 已提交
1120
		+ num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *);
1121

1122
	if (dyn_size < 0)
1123
		dyn_size = pcpu_unit_size - static_size - reserved_size;
1124

1125 1126 1127 1128 1129
	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1130 1131 1132 1133
	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

1134 1135 1136 1137 1138 1139 1140
	/*
	 * Initialize static chunk.  If reserved_size is zero, the
	 * static chunk covers static area + dynamic allocation area
	 * in the first chunk.  If reserved_size is not zero, it
	 * covers static area + reserved area (mostly used for module
	 * static percpu allocation).
	 */
1141 1142 1143
	schunk = alloc_bootmem(pcpu_chunk_struct_size);
	INIT_LIST_HEAD(&schunk->list);
	schunk->vm = &first_vm;
1144 1145
	schunk->map = smap;
	schunk->map_alloc = ARRAY_SIZE(smap);
1146
	schunk->page = schunk->page_ar;
1147 1148 1149 1150 1151 1152 1153 1154

	if (reserved_size) {
		schunk->free_size = reserved_size;
		pcpu_reserved_chunk = schunk;	/* not for dynamic alloc */
	} else {
		schunk->free_size = dyn_size;
		dyn_size = 0;			/* dynamic area covered */
	}
1155
	schunk->contig_hint = schunk->free_size;
1156

1157 1158 1159 1160
	schunk->map[schunk->map_used++] = -static_size;
	if (schunk->free_size)
		schunk->map[schunk->map_used++] = schunk->free_size;

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	pcpu_reserved_chunk_limit = static_size + schunk->free_size;

	/* init dynamic chunk if necessary */
	if (dyn_size) {
		dchunk = alloc_bootmem(sizeof(struct pcpu_chunk));
		INIT_LIST_HEAD(&dchunk->list);
		dchunk->vm = &first_vm;
		dchunk->map = dmap;
		dchunk->map_alloc = ARRAY_SIZE(dmap);
		dchunk->page = schunk->page_ar;	/* share page map with schunk */

		dchunk->contig_hint = dchunk->free_size = dyn_size;
		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
		dchunk->map[dchunk->map_used++] = dchunk->free_size;
	}

1177
	/* allocate vm address */
1178 1179
	first_vm.flags = VM_ALLOC;
	first_vm.size = pcpu_chunk_size;
1180 1181

	if (!base_addr)
1182
		vm_area_register_early(&first_vm, PAGE_SIZE);
1183 1184 1185
	else {
		/*
		 * Pages already mapped.  No need to remap into
1186 1187
		 * vmalloc area.  In this case the first chunks can't
		 * be mapped or unmapped by percpu and are marked
1188 1189
		 * immutable.
		 */
1190 1191
		first_vm.addr = base_addr;
		schunk->immutable = true;
1192 1193
		if (dchunk)
			dchunk->immutable = true;
1194 1195 1196 1197
	}

	/* assign pages */
	nr_pages = -1;
1198
	for_each_possible_cpu(cpu) {
1199 1200 1201 1202 1203
		for (i = 0; i < pcpu_unit_pages; i++) {
			struct page *page = get_page_fn(cpu, i);

			if (!page)
				break;
1204
			*pcpu_chunk_pagep(schunk, cpu, i) = page;
1205
		}
1206

1207
		BUG_ON(i < PFN_UP(static_size));
1208 1209 1210 1211 1212

		if (nr_pages < 0)
			nr_pages = i;
		else
			BUG_ON(nr_pages != i);
1213 1214
	}

1215 1216 1217 1218
	/* map them */
	if (populate_pte_fn) {
		for_each_possible_cpu(cpu)
			for (i = 0; i < nr_pages; i++)
1219
				populate_pte_fn(pcpu_chunk_addr(schunk,
1220 1221
								cpu, i));

1222
		err = pcpu_map(schunk, 0, nr_pages);
1223 1224 1225 1226
		if (err)
			panic("failed to setup static percpu area, err=%d\n",
			      err);
	}
1227

1228
	/* link the first chunk in */
1229 1230 1231 1232 1233 1234 1235
	if (!dchunk) {
		pcpu_chunk_relocate(schunk, -1);
		pcpu_chunk_addr_insert(schunk);
	} else {
		pcpu_chunk_relocate(dchunk, -1);
		pcpu_chunk_addr_insert(dchunk);
	}
1236 1237

	/* we're done */
1238
	pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
1239 1240
	return pcpu_unit_size;
}