tree_plugin.h 83.1 KB
Newer Older
1 2 3
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
P
Paul E. McKenney 已提交
4
 * or preemptible semantics.
5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
17 18
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
19 20 21 22 23 24 25 26
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
P
Paul E. McKenney 已提交
28
#include <linux/gfp.h>
29
#include <linux/oom.h>
30
#include <linux/smpboot.h>
31
#include "../time/tick-internal.h"
32

33 34 35 36 37 38 39 40
#define RCU_KTHREAD_PRIO 1

#ifdef CONFIG_RCU_BOOST
#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
#else
#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
#endif

P
Paul E. McKenney 已提交
41 42 43
#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
44
static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
P
Paul E. McKenney 已提交
45 46 47
static char __initdata nocb_buf[NR_CPUS * 5];
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */

48 49 50 51 52 53 54 55
/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.  If you like #ifdef, you
 * will love this function.
 */
static void __init rcu_bootup_announce_oddness(void)
{
#ifdef CONFIG_RCU_TRACE
56
	pr_info("\tRCU debugfs-based tracing is enabled.\n");
57 58
#endif
#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
59
	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
60 61 62
	       CONFIG_RCU_FANOUT);
#endif
#ifdef CONFIG_RCU_FANOUT_EXACT
63
	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
64 65
#endif
#ifdef CONFIG_RCU_FAST_NO_HZ
66
	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
67 68
#endif
#ifdef CONFIG_PROVE_RCU
69
	pr_info("\tRCU lockdep checking is enabled.\n");
70 71
#endif
#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
72
	pr_info("\tRCU torture testing starts during boot.\n");
73
#endif
74
#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
75
	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
76 77
#endif
#if defined(CONFIG_RCU_CPU_STALL_INFO)
78
	pr_info("\tAdditional per-CPU info printed with stalls.\n");
79 80
#endif
#if NUM_RCU_LVL_4 != 0
81
	pr_info("\tFour-level hierarchy is enabled.\n");
82
#endif
83
	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
84
		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
85
	if (nr_cpu_ids != NR_CPUS)
86
		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
P
Paul E. McKenney 已提交
87
#ifdef CONFIG_RCU_NOCB_CPU
88 89
#ifndef CONFIG_RCU_NOCB_CPU_NONE
	if (!have_rcu_nocb_mask) {
90
		zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
91 92 93
		have_rcu_nocb_mask = true;
	}
#ifdef CONFIG_RCU_NOCB_CPU_ZERO
94
	pr_info("\tOffload RCU callbacks from CPU 0\n");
95 96 97
	cpumask_set_cpu(0, rcu_nocb_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
#ifdef CONFIG_RCU_NOCB_CPU_ALL
98
	pr_info("\tOffload RCU callbacks from all CPUs\n");
99
	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
100 101
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
P
Paul E. McKenney 已提交
102
	if (have_rcu_nocb_mask) {
103 104 105 106 107
		if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
			pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
			cpumask_and(rcu_nocb_mask, cpu_possible_mask,
				    rcu_nocb_mask);
		}
P
Paul E. McKenney 已提交
108
		cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
109
		pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
P
Paul E. McKenney 已提交
110
		if (rcu_nocb_poll)
111
			pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
P
Paul E. McKenney 已提交
112 113
	}
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
114 115
}

116 117
#ifdef CONFIG_TREE_PREEMPT_RCU

118
RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
119
static struct rcu_state *rcu_state_p = &rcu_preempt_state;
120

121 122
static int rcu_preempted_readers_exp(struct rcu_node *rnp);

123 124 125
/*
 * Tell them what RCU they are running.
 */
126
static void __init rcu_bootup_announce(void)
127
{
128
	pr_info("Preemptible hierarchical RCU implementation.\n");
129
	rcu_bootup_announce_oddness();
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
}

/*
 * Return the number of RCU-preempt batches processed thus far
 * for debug and statistics.
 */
long rcu_batches_completed_preempt(void)
{
	return rcu_preempt_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_preempt();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
P
Paul E. McKenney 已提交
152
 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
153 154 155
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
156 157 158 159
 *
 * Unlike the other rcu_*_qs() functions, callers to this function
 * must disable irqs in order to protect the assignment to
 * ->rcu_read_unlock_special.
160
 */
161
static void rcu_preempt_qs(int cpu)
162 163
{
	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
164

165
	if (rdp->passed_quiesce == 0)
166
		trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
167
	rdp->passed_quiesce = 1;
168
	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
169 170 171
}

/*
172 173 174
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
175 176 177 178 179 180
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
181 182
 *
 * Caller must disable preemption.
183
 */
184
static void rcu_preempt_note_context_switch(int cpu)
185 186
{
	struct task_struct *t = current;
187
	unsigned long flags;
188 189 190
	struct rcu_data *rdp;
	struct rcu_node *rnp;

191
	if (t->rcu_read_lock_nesting > 0 &&
192 193 194
	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {

		/* Possibly blocking in an RCU read-side critical section. */
195
		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
196
		rnp = rdp->mynode;
P
Paul E. McKenney 已提交
197
		raw_spin_lock_irqsave(&rnp->lock, flags);
198
		smp_mb__after_unlock_lock();
199
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
200
		t->rcu_blocked_node = rnp;
201 202 203 204 205 206 207 208 209

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
210 211 212 213 214 215
		 * cannot end.  Note that there is some uncertainty as
		 * to exactly when the current grace period started.
		 * We take a conservative approach, which can result
		 * in unnecessarily waiting on tasks that started very
		 * slightly after the current grace period began.  C'est
		 * la vie!!!
216 217 218
		 *
		 * But first, note that the current CPU must still be
		 * on line!
219
		 */
220
		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
221
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
222 223 224
		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
			rnp->gp_tasks = &t->rcu_node_entry;
225 226 227 228
#ifdef CONFIG_RCU_BOOST
			if (rnp->boost_tasks != NULL)
				rnp->boost_tasks = rnp->gp_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
229 230 231 232 233
		} else {
			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
			if (rnp->qsmask & rdp->grpmask)
				rnp->gp_tasks = &t->rcu_node_entry;
		}
234 235 236 237 238
		trace_rcu_preempt_task(rdp->rsp->name,
				       t->pid,
				       (rnp->qsmask & rdp->grpmask)
				       ? rnp->gpnum
				       : rnp->gpnum + 1);
P
Paul E. McKenney 已提交
239
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
240 241 242 243 244 245 246 247
	} else if (t->rcu_read_lock_nesting < 0 &&
		   t->rcu_read_unlock_special) {

		/*
		 * Complete exit from RCU read-side critical section on
		 * behalf of preempted instance of __rcu_read_unlock().
		 */
		rcu_read_unlock_special(t);
248 249 250 251 252 253 254 255 256 257 258
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
259
	local_irq_save(flags);
260
	rcu_preempt_qs(cpu);
261
	local_irq_restore(flags);
262 263
}

264 265 266 267 268
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
269
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
270
{
271
	return rnp->gp_tasks != NULL;
272 273
}

274 275 276 277 278 279 280
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
P
Paul E. McKenney 已提交
281
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
282 283 284 285 286
	__releases(rnp->lock)
{
	unsigned long mask;
	struct rcu_node *rnp_p;

287
	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
P
Paul E. McKenney 已提交
288
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
289 290 291 292 293 294 295 296 297 298
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
		 * Either there is only one rcu_node in the tree,
		 * or tasks were kicked up to root rcu_node due to
		 * CPUs going offline.
		 */
P
Paul E. McKenney 已提交
299
		rcu_report_qs_rsp(&rcu_preempt_state, flags);
300 301 302 303 304
		return;
	}

	/* Report up the rest of the hierarchy. */
	mask = rnp->grpmask;
P
Paul E. McKenney 已提交
305 306
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
307
	smp_mb__after_unlock_lock();
P
Paul E. McKenney 已提交
308
	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
309 310
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

326 327 328 329 330
/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
331
void rcu_read_unlock_special(struct task_struct *t)
332 333
{
	int empty;
334
	int empty_exp;
335
	int empty_exp_now;
336
	unsigned long flags;
337
	struct list_head *np;
338 339 340
#ifdef CONFIG_RCU_BOOST
	struct rt_mutex *rbmp = NULL;
#endif /* #ifdef CONFIG_RCU_BOOST */
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	struct rcu_node *rnp;
	int special;

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
	 * let it know that we have done so.
	 */
	special = t->rcu_read_unlock_special;
	if (special & RCU_READ_UNLOCK_NEED_QS) {
356
		rcu_preempt_qs(smp_processor_id());
357 358 359 360
		if (!t->rcu_read_unlock_special) {
			local_irq_restore(flags);
			return;
		}
361 362
	}

363 364
	/* Hardware IRQ handlers cannot block, complain if they get here. */
	if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
365 366 367 368 369 370 371 372
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
	if (special & RCU_READ_UNLOCK_BLOCKED) {
		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;

373 374 375 376 377 378
		/*
		 * Remove this task from the list it blocked on.  The
		 * task can migrate while we acquire the lock, but at
		 * most one time.  So at most two passes through loop.
		 */
		for (;;) {
379
			rnp = t->rcu_blocked_node;
P
Paul E. McKenney 已提交
380
			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
381
			smp_mb__after_unlock_lock();
382
			if (rnp == t->rcu_blocked_node)
383
				break;
P
Paul E. McKenney 已提交
384
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
385
		}
386
		empty = !rcu_preempt_blocked_readers_cgp(rnp);
387 388
		empty_exp = !rcu_preempted_readers_exp(rnp);
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
389
		np = rcu_next_node_entry(t, rnp);
390
		list_del_init(&t->rcu_node_entry);
391
		t->rcu_blocked_node = NULL;
392
		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
393
						rnp->gpnum, t->pid);
394 395 396 397
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
398 399 400
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp->boost_tasks = np;
401 402 403 404
		/* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
		if (t->rcu_boost_mutex) {
			rbmp = t->rcu_boost_mutex;
			t->rcu_boost_mutex = NULL;
405
		}
406
#endif /* #ifdef CONFIG_RCU_BOOST */
407 408 409 410

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
411 412
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
		 * so we must take a snapshot of the expedited state.
413
		 */
414
		empty_exp_now = !rcu_preempted_readers_exp(rnp);
415
		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
416
			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
417 418 419 420 421 422
							 rnp->gpnum,
							 0, rnp->qsmask,
							 rnp->level,
							 rnp->grplo,
							 rnp->grphi,
							 !!rnp->gp_tasks);
P
Paul E. McKenney 已提交
423
			rcu_report_unblock_qs_rnp(rnp, flags);
424
		} else {
425
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
426
		}
427

428 429
#ifdef CONFIG_RCU_BOOST
		/* Unboost if we were boosted. */
430
		if (rbmp) {
431
			rt_mutex_unlock(rbmp);
432 433
			complete(&rnp->boost_completion);
		}
434 435
#endif /* #ifdef CONFIG_RCU_BOOST */

436 437 438 439
		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
440
		if (!empty_exp && empty_exp_now)
441
			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
442 443
	} else {
		local_irq_restore(flags);
444 445 446
	}
}

447 448 449 450 451 452 453 454 455 456 457
#ifdef CONFIG_RCU_CPU_STALL_VERBOSE

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

458
	raw_spin_lock_irqsave(&rnp->lock, flags);
459 460 461 462
	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
463 464 465 466 467
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

491 492 493 494
#ifdef CONFIG_RCU_CPU_STALL_INFO

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
495
	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
496 497 498 499 500
	       rnp->level, rnp->grplo, rnp->grphi);
}

static void rcu_print_task_stall_end(void)
{
501
	pr_cont("\n");
502 503 504 505 506 507 508 509 510 511 512 513 514 515
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
}

static void rcu_print_task_stall_end(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */

516 517 518 519
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
520
static int rcu_print_task_stall(struct rcu_node *rnp)
521 522
{
	struct task_struct *t;
523
	int ndetected = 0;
524

525
	if (!rcu_preempt_blocked_readers_cgp(rnp))
526
		return 0;
527
	rcu_print_task_stall_begin(rnp);
528 529
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
530
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
531
		pr_cont(" P%d", t->pid);
532 533
		ndetected++;
	}
534
	rcu_print_task_stall_end();
535
	return ndetected;
536 537
}

538 539 540 541 542 543
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
544 545 546
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
547 548 549
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
550
	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
551 552
	if (!list_empty(&rnp->blkd_tasks))
		rnp->gp_tasks = rnp->blkd_tasks.next;
553
	WARN_ON_ONCE(rnp->qsmask);
554 555
}

556 557
#ifdef CONFIG_HOTPLUG_CPU

558 559 560 561 562 563
/*
 * Handle tasklist migration for case in which all CPUs covered by the
 * specified rcu_node have gone offline.  Move them up to the root
 * rcu_node.  The reason for not just moving them to the immediate
 * parent is to remove the need for rcu_read_unlock_special() to
 * make more than two attempts to acquire the target rcu_node's lock.
564 565
 * Returns true if there were tasks blocking the current RCU grace
 * period.
566
 *
567 568 569
 * Returns 1 if there was previously a task blocking the current grace
 * period on the specified rcu_node structure.
 *
570 571
 * The caller must hold rnp->lock with irqs disabled.
 */
572 573 574
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
575 576 577
{
	struct list_head *lp;
	struct list_head *lp_root;
578
	int retval = 0;
579
	struct rcu_node *rnp_root = rcu_get_root(rsp);
580
	struct task_struct *t;
581

582 583
	if (rnp == rnp_root) {
		WARN_ONCE(1, "Last CPU thought to be offlined?");
584
		return 0;  /* Shouldn't happen: at least one CPU online. */
585
	}
586 587 588

	/* If we are on an internal node, complain bitterly. */
	WARN_ON_ONCE(rnp != rdp->mynode);
589 590

	/*
591 592 593 594 595 596 597
	 * Move tasks up to root rcu_node.  Don't try to get fancy for
	 * this corner-case operation -- just put this node's tasks
	 * at the head of the root node's list, and update the root node's
	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
	 * if non-NULL.  This might result in waiting for more tasks than
	 * absolutely necessary, but this is a good performance/complexity
	 * tradeoff.
598
	 */
599
	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
600 601 602
		retval |= RCU_OFL_TASKS_NORM_GP;
	if (rcu_preempted_readers_exp(rnp))
		retval |= RCU_OFL_TASKS_EXP_GP;
603 604 605 606 607
	lp = &rnp->blkd_tasks;
	lp_root = &rnp_root->blkd_tasks;
	while (!list_empty(lp)) {
		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
608
		smp_mb__after_unlock_lock();
609 610 611 612 613 614 615
		list_del(&t->rcu_node_entry);
		t->rcu_blocked_node = rnp_root;
		list_add(&t->rcu_node_entry, lp_root);
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp_root->gp_tasks = rnp->gp_tasks;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp_root->exp_tasks = rnp->exp_tasks;
616 617 618 619
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp_root->boost_tasks = rnp->boost_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
620
		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
621
	}
622

623 624
	rnp->gp_tasks = NULL;
	rnp->exp_tasks = NULL;
625
#ifdef CONFIG_RCU_BOOST
626
	rnp->boost_tasks = NULL;
627 628 629 630 631
	/*
	 * In case root is being boosted and leaf was not.  Make sure
	 * that we boost the tasks blocking the current grace period
	 * in this case.
	 */
632
	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
633
	smp_mb__after_unlock_lock();
634
	if (rnp_root->boost_tasks != NULL &&
635 636
	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
	    rnp_root->boost_tasks != rnp_root->exp_tasks)
637 638 639 640
		rnp_root->boost_tasks = rnp_root->gp_tasks;
	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
#endif /* #ifdef CONFIG_RCU_BOOST */

641
	return retval;
642 643
}

644 645
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

646 647 648 649 650 651 652 653 654 655 656 657
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
static void rcu_preempt_check_callbacks(int cpu)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
658
		rcu_preempt_qs(cpu);
659 660
		return;
	}
661 662
	if (t->rcu_read_lock_nesting > 0 &&
	    per_cpu(rcu_preempt_data, cpu).qs_pending)
663
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
664 665
}

666 667
#ifdef CONFIG_RCU_BOOST

668 669
static void rcu_preempt_do_callbacks(void)
{
670
	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
671 672
}

673 674
#endif /* #ifdef CONFIG_RCU_BOOST */

675
/*
P
Paul E. McKenney 已提交
676
 * Queue a preemptible-RCU callback for invocation after a grace period.
677 678 679
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
680
	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
681 682 683
}
EXPORT_SYMBOL_GPL(call_rcu);

684 685 686 687 688
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
689 690 691 692 693
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
694 695 696
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
697 698 699
 */
void synchronize_rcu(void)
{
700 701 702 703
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu() in RCU read-side critical section");
704 705
	if (!rcu_scheduler_active)
		return;
706 707 708 709
	if (rcu_expedited)
		synchronize_rcu_expedited();
	else
		wait_rcu_gp(call_rcu);
710 711 712
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

713
static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
714
static unsigned long sync_rcu_preempt_exp_count;
715 716 717 718 719 720 721 722 723 724
static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);

/*
 * Return non-zero if there are any tasks in RCU read-side critical
 * sections blocking the current preemptible-RCU expedited grace period.
 * If there is no preemptible-RCU expedited grace period currently in
 * progress, returns zero unconditionally.
 */
static int rcu_preempted_readers_exp(struct rcu_node *rnp)
{
725
	return rnp->exp_tasks != NULL;
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
}

/*
 * return non-zero if there is no RCU expedited grace period in progress
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
	return !rcu_preempted_readers_exp(rnp) &&
	       ACCESS_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
751 752 753
 * Most callers will set the "wake" flag, but the task initiating the
 * expedited grace period need not wake itself.
 *
754 755
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
756 757
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
758 759 760 761
{
	unsigned long flags;
	unsigned long mask;

P
Paul E. McKenney 已提交
762
	raw_spin_lock_irqsave(&rnp->lock, flags);
763
	smp_mb__after_unlock_lock();
764
	for (;;) {
765 766
		if (!sync_rcu_preempt_exp_done(rnp)) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
767
			break;
768
		}
769
		if (rnp->parent == NULL) {
770
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
771 772
			if (wake) {
				smp_mb(); /* EGP done before wake_up(). */
773
				wake_up(&sync_rcu_preempt_exp_wq);
774
			}
775 776 777
			break;
		}
		mask = rnp->grpmask;
P
Paul E. McKenney 已提交
778
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
779
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
780
		raw_spin_lock(&rnp->lock); /* irqs already disabled */
781
		smp_mb__after_unlock_lock();
782 783 784 785 786 787 788 789 790
		rnp->expmask &= ~mask;
	}
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 * grace period for the specified rcu_node structure.  If there are no such
 * tasks, report it up the rcu_node hierarchy.
 *
791 792
 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
 * CPU hotplug operations.
793 794 795 796
 */
static void
sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
{
797
	unsigned long flags;
798
	int must_wait = 0;
799

800
	raw_spin_lock_irqsave(&rnp->lock, flags);
801
	smp_mb__after_unlock_lock();
802
	if (list_empty(&rnp->blkd_tasks)) {
803
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
804
	} else {
805
		rnp->exp_tasks = rnp->blkd_tasks.next;
806
		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
807 808
		must_wait = 1;
	}
809
	if (!must_wait)
810
		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
811 812
}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
/**
 * synchronize_rcu_expedited - Brute-force RCU grace period
 *
 * Wait for an RCU-preempt grace period, but expedite it.  The basic
 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.
 * In fact, if you are using synchronize_rcu_expedited() in a loop,
 * please restructure your code to batch your updates, and then Use a
 * single synchronize_rcu() instead.
 *
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
829 830 831
 */
void synchronize_rcu_expedited(void)
{
832 833 834
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_preempt_state;
835
	unsigned long snap;
836 837 838 839 840 841
	int trycount = 0;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
	smp_mb(); /* Above access cannot bleed into critical section. */

842 843 844 845 846 847 848 849 850 851
	/*
	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
	 * operation that finds an rcu_node structure with tasks in the
	 * process of being boosted will know that all tasks blocking
	 * this expedited grace period will already be in the process of
	 * being boosted.  This simplifies the process of moving tasks
	 * from leaf to root rcu_node structures.
	 */
	get_online_cpus();

852 853 854 855 856 857
	/*
	 * Acquire lock, falling back to synchronize_rcu() if too many
	 * lock-acquisition failures.  Of course, if someone does the
	 * expedited grace period for us, just leave.
	 */
	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
858 859 860 861 862
		if (ULONG_CMP_LT(snap,
		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
			put_online_cpus();
			goto mb_ret; /* Others did our work for us. */
		}
863
		if (trycount++ < 10) {
864
			udelay(trycount * num_online_cpus());
865
		} else {
866
			put_online_cpus();
867
			wait_rcu_gp(call_rcu);
868 869 870
			return;
		}
	}
871 872
	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
		put_online_cpus();
873
		goto unlock_mb_ret; /* Others did our work for us. */
874
	}
875

876
	/* force all RCU readers onto ->blkd_tasks lists. */
877 878 879 880
	synchronize_sched_expedited();

	/* Initialize ->expmask for all non-leaf rcu_node structures. */
	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
881
		raw_spin_lock_irqsave(&rnp->lock, flags);
882
		smp_mb__after_unlock_lock();
883
		rnp->expmask = rnp->qsmaskinit;
884
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
885 886
	}

887
	/* Snapshot current state of ->blkd_tasks lists. */
888 889 890 891 892
	rcu_for_each_leaf_node(rsp, rnp)
		sync_rcu_preempt_exp_init(rsp, rnp);
	if (NUM_RCU_NODES > 1)
		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));

893
	put_online_cpus();
894

895
	/* Wait for snapshotted ->blkd_tasks lists to drain. */
896 897 898 899 900 901 902 903 904 905 906
	rnp = rcu_get_root(rsp);
	wait_event(sync_rcu_preempt_exp_wq,
		   sync_rcu_preempt_exp_done(rnp));

	/* Clean up and exit. */
	smp_mb(); /* ensure expedited GP seen before counter increment. */
	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
unlock_mb_ret:
	mutex_unlock(&sync_rcu_preempt_exp_mutex);
mb_ret:
	smp_mb(); /* ensure subsequent action seen after grace period. */
907 908 909
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

910 911
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
912 913 914 915 916
 *
 * Note that this primitive does not necessarily wait for an RCU grace period
 * to complete.  For example, if there are no RCU callbacks queued anywhere
 * in the system, then rcu_barrier() is within its rights to return
 * immediately, without waiting for anything, much less an RCU grace period.
917 918 919
 */
void rcu_barrier(void)
{
920
	_rcu_barrier(&rcu_preempt_state);
921 922 923
}
EXPORT_SYMBOL_GPL(rcu_barrier);

924
/*
P
Paul E. McKenney 已提交
925
 * Initialize preemptible RCU's state structures.
926 927 928
 */
static void __init __rcu_init_preempt(void)
{
929
	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
930 931
}

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
/*
 * Check for a task exiting while in a preemptible-RCU read-side
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (likely(list_empty(&current->rcu_node_entry)))
		return;
	t->rcu_read_lock_nesting = 1;
	barrier();
	t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
	__rcu_read_unlock();
}

950 951
#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

952
static struct rcu_state *rcu_state_p = &rcu_sched_state;
953

954 955 956
/*
 * Tell them what RCU they are running.
 */
957
static void __init rcu_bootup_announce(void)
958
{
959
	pr_info("Hierarchical RCU implementation.\n");
960
	rcu_bootup_announce_oddness();
961 962 963 964 965 966 967 968 969 970 971
}

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_sched();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

972 973 974 975 976 977 978 979
/*
 * Because preemptible RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
static void rcu_preempt_note_context_switch(int cpu)
{
}

980
/*
P
Paul E. McKenney 已提交
981
 * Because preemptible RCU does not exist, there are never any preempted
982 983
 * RCU readers.
 */
984
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
985 986 987 988
{
	return 0;
}

989 990 991
#ifdef CONFIG_HOTPLUG_CPU

/* Because preemptible RCU does not exist, no quieting of tasks. */
P
Paul E. McKenney 已提交
992
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
993
{
P
Paul E. McKenney 已提交
994
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
995 996 997 998
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

999
/*
P
Paul E. McKenney 已提交
1000
 * Because preemptible RCU does not exist, we never have to check for
1001 1002 1003 1004 1005 1006
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

1007
/*
P
Paul E. McKenney 已提交
1008
 * Because preemptible RCU does not exist, we never have to check for
1009 1010
 * tasks blocked within RCU read-side critical sections.
 */
1011
static int rcu_print_task_stall(struct rcu_node *rnp)
1012
{
1013
	return 0;
1014 1015
}

1016
/*
P
Paul E. McKenney 已提交
1017
 * Because there is no preemptible RCU, there can be no readers blocked,
1018 1019
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
1020 1021 1022
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
1023
	WARN_ON_ONCE(rnp->qsmask);
1024 1025
}

1026 1027
#ifdef CONFIG_HOTPLUG_CPU

1028
/*
P
Paul E. McKenney 已提交
1029
 * Because preemptible RCU does not exist, it never needs to migrate
1030 1031 1032
 * tasks that were blocked within RCU read-side critical sections, and
 * such non-existent tasks cannot possibly have been blocking the current
 * grace period.
1033
 */
1034 1035 1036
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
1037
{
1038
	return 0;
1039 1040
}

1041 1042
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1043
/*
P
Paul E. McKenney 已提交
1044
 * Because preemptible RCU does not exist, it never has any callbacks
1045 1046
 * to check.
 */
1047
static void rcu_preempt_check_callbacks(int cpu)
1048 1049 1050
{
}

1051 1052
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
P
Paul E. McKenney 已提交
1053
 * But because preemptible RCU does not exist, map to rcu-sched.
1054 1055 1056 1057 1058 1059 1060
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

1061 1062 1063
#ifdef CONFIG_HOTPLUG_CPU

/*
P
Paul E. McKenney 已提交
1064
 * Because preemptible RCU does not exist, there is never any need to
1065 1066 1067
 * report on tasks preempted in RCU read-side critical sections during
 * expedited RCU grace periods.
 */
1068 1069
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
1070 1071 1072 1073 1074
{
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1075
/*
P
Paul E. McKenney 已提交
1076
 * Because preemptible RCU does not exist, rcu_barrier() is just
1077 1078 1079 1080 1081 1082 1083 1084
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

1085
/*
P
Paul E. McKenney 已提交
1086
 * Because preemptible RCU does not exist, it need not be initialized.
1087 1088 1089 1090 1091
 */
static void __init __rcu_init_preempt(void)
{
}

1092 1093 1094 1095 1096 1097 1098 1099
/*
 * Because preemptible RCU does not exist, tasks cannot possibly exit
 * while in preemptible RCU read-side critical sections.
 */
void exit_rcu(void)
{
}

1100
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1101

1102 1103
#ifdef CONFIG_RCU_BOOST

1104
#include "../locking/rtmutex_common.h"
1105

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
#ifdef CONFIG_RCU_TRACE

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
	if (list_empty(&rnp->blkd_tasks))
		rnp->n_balk_blkd_tasks++;
	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
		rnp->n_balk_exp_gp_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
		rnp->n_balk_boost_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
		rnp->n_balk_notblocked++;
	else if (rnp->gp_tasks != NULL &&
1119
		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
		rnp->n_balk_notyet++;
	else
		rnp->n_balk_nos++;
}

#else /* #ifdef CONFIG_RCU_TRACE */

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
}

#endif /* #else #ifdef CONFIG_RCU_TRACE */

T
Thomas Gleixner 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
static void rcu_wake_cond(struct task_struct *t, int status)
{
	/*
	 * If the thread is yielding, only wake it when this
	 * is invoked from idle
	 */
	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
		wake_up_process(t);
}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct rt_mutex mtx;
	struct task_struct *t;
	struct list_head *tb;

	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
		return 0;  /* Nothing left to boost. */

	raw_spin_lock_irqsave(&rnp->lock, flags);
1162
	smp_mb__after_unlock_lock();
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
1179
	if (rnp->exp_tasks != NULL) {
1180
		tb = rnp->exp_tasks;
1181 1182
		rnp->n_exp_boosts++;
	} else {
1183
		tb = rnp->boost_tasks;
1184 1185 1186
		rnp->n_normal_boosts++;
	}
	rnp->n_tasks_boosted++;
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
	rt_mutex_init_proxy_locked(&mtx, t);
	t->rcu_boost_mutex = &mtx;
1207
	init_completion(&rnp->boost_completion);
1208 1209 1210 1211
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */

1212 1213 1214
	/* Wait until boostee is done accessing mtx before reinitializing. */
	wait_for_completion(&rnp->boost_completion);

1215 1216
	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
}

/*
 * Priority-boosting kthread.  One per leaf rcu_node and one for the
 * root rcu_node.
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

1229
	trace_rcu_utilization(TPS("Start boost kthread@init"));
1230
	for (;;) {
1231
		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1232
		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1233
		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1234
		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1235
		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1236 1237 1238 1239 1240 1241
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
T
Thomas Gleixner 已提交
1242
			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1243
			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
T
Thomas Gleixner 已提交
1244
			schedule_timeout_interruptible(2);
1245
			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1246 1247 1248
			spincnt = 0;
		}
	}
1249
	/* NOTREACHED */
1250
	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1251 1252 1253 1254 1255 1256 1257 1258 1259
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
1260 1261 1262
 * The caller must hold rnp->lock, which this function releases.
 * The ->boost_kthread_task is immortal, so we don't need to worry
 * about it going away.
1263
 */
1264
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1265 1266 1267
{
	struct task_struct *t;

1268 1269
	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
		rnp->n_balk_exp_gp_tasks++;
1270
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1271
		return;
1272
	}
1273 1274 1275 1276 1277 1278 1279
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
		if (rnp->exp_tasks == NULL)
			rnp->boost_tasks = rnp->gp_tasks;
1280
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1281
		t = rnp->boost_kthread_task;
T
Thomas Gleixner 已提交
1282 1283
		if (t)
			rcu_wake_cond(t, rnp->boost_kthread_status);
1284
	} else {
1285
		rcu_initiate_boost_trace(rnp);
1286 1287
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
1288 1289
}

1290 1291 1292 1293 1294 1295 1296 1297 1298
/*
 * Wake up the per-CPU kthread to invoke RCU callbacks.
 */
static void invoke_rcu_callbacks_kthread(void)
{
	unsigned long flags;

	local_irq_save(flags);
	__this_cpu_write(rcu_cpu_has_work, 1);
1299
	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
T
Thomas Gleixner 已提交
1300 1301 1302 1303
	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
			      __this_cpu_read(rcu_cpu_kthread_status));
	}
1304 1305 1306
	local_irq_restore(flags);
}

1307 1308 1309 1310 1311 1312
/*
 * Is the current CPU running the RCU-callbacks kthread?
 * Caller must have preemption disabled.
 */
static bool rcu_is_callbacks_kthread(void)
{
1313
	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1314 1315
}

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
1331
static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
T
Thomas Gleixner 已提交
1332
						 struct rcu_node *rnp)
1333
{
T
Thomas Gleixner 已提交
1334
	int rnp_index = rnp - &rsp->node[0];
1335 1336 1337 1338 1339 1340
	unsigned long flags;
	struct sched_param sp;
	struct task_struct *t;

	if (&rcu_preempt_state != rsp)
		return 0;
T
Thomas Gleixner 已提交
1341 1342 1343 1344

	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
		return 0;

1345
	rsp->boost = 1;
1346 1347 1348
	if (rnp->boost_kthread_task != NULL)
		return 0;
	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1349
			   "rcub/%d", rnp_index);
1350 1351 1352
	if (IS_ERR(t))
		return PTR_ERR(t);
	raw_spin_lock_irqsave(&rnp->lock, flags);
1353
	smp_mb__after_unlock_lock();
1354 1355
	rnp->boost_kthread_task = t;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1356
	sp.sched_priority = RCU_BOOST_PRIO;
1357
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1358
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1359 1360 1361
	return 0;
}

1362 1363
static void rcu_kthread_do_work(void)
{
1364 1365
	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1366 1367 1368
	rcu_preempt_do_callbacks();
}

1369
static void rcu_cpu_kthread_setup(unsigned int cpu)
1370 1371 1372
{
	struct sched_param sp;

1373 1374
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1375 1376
}

1377
static void rcu_cpu_kthread_park(unsigned int cpu)
1378
{
1379
	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1380 1381
}

1382
static int rcu_cpu_kthread_should_run(unsigned int cpu)
1383
{
1384
	return __this_cpu_read(rcu_cpu_has_work);
1385 1386 1387 1388
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1389 1390
 * RCU softirq used in flavors and configurations of RCU that do not
 * support RCU priority boosting.
1391
 */
1392
static void rcu_cpu_kthread(unsigned int cpu)
1393
{
1394 1395
	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1396
	int spincnt;
1397

1398
	for (spincnt = 0; spincnt < 10; spincnt++) {
1399
		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1400 1401
		local_bh_disable();
		*statusp = RCU_KTHREAD_RUNNING;
1402 1403
		this_cpu_inc(rcu_cpu_kthread_loops);
		local_irq_disable();
1404 1405
		work = *workp;
		*workp = 0;
1406
		local_irq_enable();
1407 1408 1409
		if (work)
			rcu_kthread_do_work();
		local_bh_enable();
1410
		if (*workp == 0) {
1411
			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1412 1413
			*statusp = RCU_KTHREAD_WAITING;
			return;
1414 1415
		}
	}
1416
	*statusp = RCU_KTHREAD_YIELDING;
1417
	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1418
	schedule_timeout_interruptible(2);
1419
	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1420
	*statusp = RCU_KTHREAD_WAITING;
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
T
Thomas Gleixner 已提交
1432
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1433
{
T
Thomas Gleixner 已提交
1434 1435
	struct task_struct *t = rnp->boost_kthread_task;
	unsigned long mask = rnp->qsmaskinit;
1436 1437 1438
	cpumask_var_t cm;
	int cpu;

T
Thomas Gleixner 已提交
1439
	if (!t)
1440
		return;
T
Thomas Gleixner 已提交
1441
	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
		return;
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
		if ((mask & 0x1) && cpu != outgoingcpu)
			cpumask_set_cpu(cpu, cm);
	if (cpumask_weight(cm) == 0) {
		cpumask_setall(cm);
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
			cpumask_clear_cpu(cpu, cm);
		WARN_ON_ONCE(cpumask_weight(cm) == 0);
	}
T
Thomas Gleixner 已提交
1452
	set_cpus_allowed_ptr(t, cm);
1453 1454 1455
	free_cpumask_var(cm);
}

1456 1457 1458 1459 1460 1461 1462 1463
static struct smp_hotplug_thread rcu_cpu_thread_spec = {
	.store			= &rcu_cpu_kthread_task,
	.thread_should_run	= rcu_cpu_kthread_should_run,
	.thread_fn		= rcu_cpu_kthread,
	.thread_comm		= "rcuc/%u",
	.setup			= rcu_cpu_kthread_setup,
	.park			= rcu_cpu_kthread_park,
};
1464 1465 1466 1467 1468 1469 1470

/*
 * Spawn all kthreads -- called as soon as the scheduler is running.
 */
static int __init rcu_spawn_kthreads(void)
{
	struct rcu_node *rnp;
T
Thomas Gleixner 已提交
1471
	int cpu;
1472

1473
	rcu_scheduler_fully_active = 1;
1474
	for_each_possible_cpu(cpu)
1475
		per_cpu(rcu_cpu_has_work, cpu) = 0;
1476
	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1477 1478
	rnp = rcu_get_root(rcu_state_p);
	(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1479
	if (NUM_RCU_NODES > 1) {
1480 1481
		rcu_for_each_leaf_node(rcu_state_p, rnp)
			(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1482 1483 1484 1485 1486
	}
	return 0;
}
early_initcall(rcu_spawn_kthreads);

1487
static void rcu_prepare_kthreads(int cpu)
1488
{
1489
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1490 1491 1492
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1493
	if (rcu_scheduler_fully_active)
1494
		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1495 1496
}

1497 1498
#else /* #ifdef CONFIG_RCU_BOOST */

1499
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1500
{
1501
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1502 1503
}

1504
static void invoke_rcu_callbacks_kthread(void)
1505
{
1506
	WARN_ON_ONCE(1);
1507 1508
}

1509 1510 1511 1512 1513
static bool rcu_is_callbacks_kthread(void)
{
	return false;
}

1514 1515 1516 1517
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

T
Thomas Gleixner 已提交
1518
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1519 1520 1521
{
}

1522 1523 1524 1525 1526 1527 1528
static int __init rcu_scheduler_really_started(void)
{
	rcu_scheduler_fully_active = 1;
	return 0;
}
early_initcall(rcu_scheduler_really_started);

1529
static void rcu_prepare_kthreads(int cpu)
1530 1531 1532
{
}

1533 1534
#endif /* #else #ifdef CONFIG_RCU_BOOST */

1535 1536 1537 1538 1539 1540 1541 1542
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
1543 1544
 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
 * any flavor of RCU.
1545
 */
1546
#ifndef CONFIG_RCU_NOCB_CPU_ALL
1547
int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1548
{
1549
	*delta_jiffies = ULONG_MAX;
1550
	return rcu_cpu_has_callbacks(cpu, NULL);
1551
}
1552
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1553 1554 1555 1556 1557 1558 1559 1560 1561

/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 * after it.
 */
static void rcu_cleanup_after_idle(int cpu)
{
}

1562
/*
1563
 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1564 1565 1566 1567 1568 1569
 * is nothing.
 */
static void rcu_prepare_for_idle(int cpu)
{
}

1570 1571 1572 1573 1574 1575 1576 1577
/*
 * Don't bother keeping a running count of the number of RCU callbacks
 * posted because CONFIG_RCU_FAST_NO_HZ=n.
 */
static void rcu_idle_count_callbacks_posted(void)
{
}

1578 1579
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
/*
 * This code is invoked when a CPU goes idle, at which point we want
 * to have the CPU do everything required for RCU so that it can enter
 * the energy-efficient dyntick-idle mode.  This is handled by a
 * state machine implemented by rcu_prepare_for_idle() below.
 *
 * The following three proprocessor symbols control this state machine:
 *
 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 *	benchmarkers who might otherwise be tempted to set this to a large
 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 *	system.  And if you are -that- concerned about energy efficiency,
 *	just power the system down and be done with it!
1595 1596 1597
 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
 *	permitted to sleep in dyntick-idle mode with only lazy RCU
 *	callbacks pending.  Setting this too high can OOM your system.
1598 1599 1600 1601 1602
 *
 * The values below work well in practice.  If future workloads require
 * adjustment, they can be converted into kernel config parameters, though
 * making the state machine smarter might be a better option.
 */
1603
#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1604
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1605

1606 1607 1608 1609
static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
module_param(rcu_idle_gp_delay, int, 0644);
static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
module_param(rcu_idle_lazy_gp_delay, int, 0644);
1610

1611
extern int tick_nohz_active;
1612 1613

/*
1614 1615 1616
 * Try to advance callbacks for all flavors of RCU on the current CPU, but
 * only if it has been awhile since the last time we did so.  Afterwards,
 * if there are any callbacks ready for immediate invocation, return true.
1617
 */
1618
static bool __maybe_unused rcu_try_advance_all_cbs(void)
1619
{
1620 1621
	bool cbs_ready = false;
	struct rcu_data *rdp;
1622
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1623 1624
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1625

1626 1627 1628 1629 1630
	/* Exit early if we advanced recently. */
	if (jiffies == rdtp->last_advance_all)
		return 0;
	rdtp->last_advance_all = jiffies;

1631 1632 1633
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		rnp = rdp->mynode;
1634

1635 1636 1637 1638 1639 1640 1641
		/*
		 * Don't bother checking unless a grace period has
		 * completed since we last checked and there are
		 * callbacks not yet ready to invoke.
		 */
		if (rdp->completed != rnp->completed &&
		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1642
			note_gp_changes(rsp, rdp);
1643

1644 1645 1646 1647
		if (cpu_has_callbacks_ready_to_invoke(rdp))
			cbs_ready = true;
	}
	return cbs_ready;
1648 1649
}

1650
/*
1651 1652 1653 1654
 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
 * caller to set the timeout based on whether or not there are non-lazy
 * callbacks.
1655
 *
1656
 * The caller must have disabled interrupts.
1657
 */
1658
#ifndef CONFIG_RCU_NOCB_CPU_ALL
1659
int rcu_needs_cpu(int cpu, unsigned long *dj)
1660 1661 1662
{
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

1663 1664 1665
	/* Snapshot to detect later posting of non-lazy callback. */
	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;

1666
	/* If no callbacks, RCU doesn't need the CPU. */
1667 1668
	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
		*dj = ULONG_MAX;
1669 1670
		return 0;
	}
1671 1672 1673 1674 1675

	/* Attempt to advance callbacks. */
	if (rcu_try_advance_all_cbs()) {
		/* Some ready to invoke, so initiate later invocation. */
		invoke_rcu_core();
1676 1677
		return 1;
	}
1678 1679 1680
	rdtp->last_accelerate = jiffies;

	/* Request timer delay depending on laziness, and round. */
1681
	if (!rdtp->all_lazy) {
1682 1683
		*dj = round_up(rcu_idle_gp_delay + jiffies,
			       rcu_idle_gp_delay) - jiffies;
1684
	} else {
1685
		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1686
	}
1687 1688
	return 0;
}
1689
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1690

1691
/*
1692 1693 1694 1695 1696 1697
 * Prepare a CPU for idle from an RCU perspective.  The first major task
 * is to sense whether nohz mode has been enabled or disabled via sysfs.
 * The second major task is to check to see if a non-lazy callback has
 * arrived at a CPU that previously had only lazy callbacks.  The third
 * major task is to accelerate (that is, assign grace-period numbers to)
 * any recently arrived callbacks.
1698 1699
 *
 * The caller must have disabled interrupts.
1700
 */
1701
static void rcu_prepare_for_idle(int cpu)
1702
{
1703
#ifndef CONFIG_RCU_NOCB_CPU_ALL
1704
	bool needwake;
1705
	struct rcu_data *rdp;
1706
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1707 1708
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1709 1710 1711
	int tne;

	/* Handle nohz enablement switches conservatively. */
1712
	tne = ACCESS_ONCE(tick_nohz_active);
1713
	if (tne != rdtp->tick_nohz_enabled_snap) {
1714
		if (rcu_cpu_has_callbacks(cpu, NULL))
1715 1716 1717 1718 1719 1720
			invoke_rcu_core(); /* force nohz to see update. */
		rdtp->tick_nohz_enabled_snap = tne;
		return;
	}
	if (!tne)
		return;
1721

1722
	/* If this is a no-CBs CPU, no callbacks, just return. */
1723
	if (rcu_is_nocb_cpu(cpu))
1724 1725
		return;

1726
	/*
1727 1728 1729
	 * If a non-lazy callback arrived at a CPU having only lazy
	 * callbacks, invoke RCU core for the side-effect of recalculating
	 * idle duration on re-entry to idle.
1730
	 */
1731 1732
	if (rdtp->all_lazy &&
	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1733 1734
		rdtp->all_lazy = false;
		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1735
		invoke_rcu_core();
1736 1737 1738
		return;
	}

1739
	/*
1740 1741
	 * If we have not yet accelerated this jiffy, accelerate all
	 * callbacks on this CPU.
1742
	 */
1743
	if (rdtp->last_accelerate == jiffies)
1744
		return;
1745 1746 1747 1748 1749 1750 1751
	rdtp->last_accelerate = jiffies;
	for_each_rcu_flavor(rsp) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
		if (!*rdp->nxttail[RCU_DONE_TAIL])
			continue;
		rnp = rdp->mynode;
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1752
		smp_mb__after_unlock_lock();
1753
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1754
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1755 1756
		if (needwake)
			rcu_gp_kthread_wake(rsp);
1757
	}
1758
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1759
}
1760

1761 1762 1763 1764 1765 1766 1767
/*
 * Clean up for exit from idle.  Attempt to advance callbacks based on
 * any grace periods that elapsed while the CPU was idle, and if any
 * callbacks are now ready to invoke, initiate invocation.
 */
static void rcu_cleanup_after_idle(int cpu)
{
1768
#ifndef CONFIG_RCU_NOCB_CPU_ALL
1769
	if (rcu_is_nocb_cpu(cpu))
1770
		return;
1771 1772
	if (rcu_try_advance_all_cbs())
		invoke_rcu_core();
1773
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1774 1775
}

1776
/*
1777 1778 1779 1780 1781 1782
 * Keep a running count of the number of non-lazy callbacks posted
 * on this CPU.  This running counter (which is never decremented) allows
 * rcu_prepare_for_idle() to detect when something out of the idle loop
 * posts a callback, even if an equal number of callbacks are invoked.
 * Of course, callbacks should only be posted from within a trace event
 * designed to be called from idle or from within RCU_NONIDLE().
1783 1784 1785
 */
static void rcu_idle_count_callbacks_posted(void)
{
1786
	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1787 1788
}

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
/*
 * Data for flushing lazy RCU callbacks at OOM time.
 */
static atomic_t oom_callback_count;
static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);

/*
 * RCU OOM callback -- decrement the outstanding count and deliver the
 * wake-up if we are the last one.
 */
static void rcu_oom_callback(struct rcu_head *rhp)
{
	if (atomic_dec_and_test(&oom_callback_count))
		wake_up(&oom_callback_wq);
}

/*
 * Post an rcu_oom_notify callback on the current CPU if it has at
 * least one lazy callback.  This will unnecessarily post callbacks
 * to CPUs that already have a non-lazy callback at the end of their
 * callback list, but this is an infrequent operation, so accept some
 * extra overhead to keep things simple.
 */
static void rcu_oom_notify_cpu(void *unused)
{
	struct rcu_state *rsp;
	struct rcu_data *rdp;

	for_each_rcu_flavor(rsp) {
1818
		rdp = raw_cpu_ptr(rsp->rda);
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
		if (rdp->qlen_lazy != 0) {
			atomic_inc(&oom_callback_count);
			rsp->call(&rdp->oom_head, rcu_oom_callback);
		}
	}
}

/*
 * If low on memory, ensure that each CPU has a non-lazy callback.
 * This will wake up CPUs that have only lazy callbacks, in turn
 * ensuring that they free up the corresponding memory in a timely manner.
 * Because an uncertain amount of memory will be freed in some uncertain
 * timeframe, we do not claim to have freed anything.
 */
static int rcu_oom_notify(struct notifier_block *self,
			  unsigned long notused, void *nfreed)
{
	int cpu;

	/* Wait for callbacks from earlier instance to complete. */
	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1840
	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

	/*
	 * Prevent premature wakeup: ensure that all increments happen
	 * before there is a chance of the counter reaching zero.
	 */
	atomic_set(&oom_callback_count, 1);

	get_online_cpus();
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
		cond_resched();
	}
	put_online_cpus();

	/* Unconditionally decrement: no need to wake ourselves up. */
	atomic_dec(&oom_callback_count);

	return NOTIFY_OK;
}

static struct notifier_block rcu_oom_nb = {
	.notifier_call = rcu_oom_notify
};

static int __init rcu_register_oom_notifier(void)
{
	register_oom_notifier(&rcu_oom_nb);
	return 0;
}
early_initcall(rcu_register_oom_notifier);

1872
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1873 1874 1875 1876 1877 1878 1879

#ifdef CONFIG_RCU_CPU_STALL_INFO

#ifdef CONFIG_RCU_FAST_NO_HZ

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1880
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1881
	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1882

1883 1884 1885 1886 1887
	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
		ulong2long(nlpd),
		rdtp->all_lazy ? 'L' : '.',
		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1888 1889 1890 1891 1892 1893
}

#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1894
	*cp = '\0';
1895 1896 1897 1898 1899 1900 1901
}

#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */

/* Initiate the stall-info list. */
static void print_cpu_stall_info_begin(void)
{
1902
	pr_cont("\n");
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
}

/*
 * Print out diagnostic information for the specified stalled CPU.
 *
 * If the specified CPU is aware of the current RCU grace period
 * (flavor specified by rsp), then print the number of scheduling
 * clock interrupts the CPU has taken during the time that it has
 * been aware.  Otherwise, print the number of RCU grace periods
 * that this CPU is ignorant of, for example, "1" if the CPU was
 * aware of the previous grace period.
 *
 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
 */
static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	char fast_no_hz[72];
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_dynticks *rdtp = rdp->dynticks;
	char *ticks_title;
	unsigned long ticks_value;

	if (rsp->gpnum == rdp->gpnum) {
		ticks_title = "ticks this GP";
		ticks_value = rdp->ticks_this_gp;
	} else {
		ticks_title = "GPs behind";
		ticks_value = rsp->gpnum - rdp->gpnum;
	}
	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1933
	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1934 1935 1936
	       cpu, ticks_value, ticks_title,
	       atomic_read(&rdtp->dynticks) & 0xfff,
	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1937
	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1938 1939 1940 1941 1942 1943
	       fast_no_hz);
}

/* Terminate the stall-info list. */
static void print_cpu_stall_info_end(void)
{
1944
	pr_err("\t");
1945 1946 1947 1948 1949 1950
}

/* Zero ->ticks_this_gp for all flavors of RCU. */
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
	rdp->ticks_this_gp = 0;
1951
	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1952 1953 1954 1955 1956
}

/* Increment ->ticks_this_gp for all flavors of RCU. */
static void increment_cpu_stall_ticks(void)
{
1957 1958 1959
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1960
		raw_cpu_inc(rsp->rda->ticks_this_gp);
1961 1962 1963 1964 1965 1966
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void print_cpu_stall_info_begin(void)
{
1967
	pr_cont(" {");
1968 1969 1970 1971
}

static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
1972
	pr_cont(" %d", cpu);
1973 1974 1975 1976
}

static void print_cpu_stall_info_end(void)
{
1977
	pr_cont("} ");
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
}

static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
}

static void increment_cpu_stall_ticks(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
P
Paul E. McKenney 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

#ifdef CONFIG_RCU_NOCB_CPU

/*
 * Offload callback processing from the boot-time-specified set of CPUs
 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
 * kthread created that pulls the callbacks from the corresponding CPU,
 * waits for a grace period to elapse, and invokes the callbacks.
 * The no-CBs CPUs do a wake_up() on their kthread when they insert
 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
 * has been specified, in which case each kthread actively polls its
 * CPU.  (Which isn't so great for energy efficiency, but which does
 * reduce RCU's overhead on that CPU.)
 *
 * This is intended to be used in conjunction with Frederic Weisbecker's
 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 * running CPU-bound user-mode computations.
 *
 * Offloading of callback processing could also in theory be used as
 * an energy-efficiency measure because CPUs with no RCU callbacks
 * queued are more aggressive about entering dyntick-idle mode.
 */


/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
static int __init rcu_nocb_setup(char *str)
{
	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
	have_rcu_nocb_mask = true;
	cpulist_parse(str, rcu_nocb_mask);
	return 1;
}
__setup("rcu_nocbs=", rcu_nocb_setup);

2023 2024 2025 2026 2027 2028 2029
static int __init parse_rcu_nocb_poll(char *arg)
{
	rcu_nocb_poll = 1;
	return 0;
}
early_param("rcu_nocb_poll", parse_rcu_nocb_poll);

2030
/*
2031 2032
 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 * grace period.
2033
 */
2034
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2035
{
2036
	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2037 2038 2039
}

/*
2040
 * Set the root rcu_node structure's ->need_future_gp field
2041 2042 2043 2044 2045
 * based on the sum of those of all rcu_node structures.  This does
 * double-count the root rcu_node structure's requests, but this
 * is necessary to handle the possibility of a rcu_nocb_kthread()
 * having awakened during the time that the rcu_node structures
 * were being updated for the end of the previous grace period.
2046
 */
2047 2048
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
2049
	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2050 2051 2052
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
2053
{
2054 2055
	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2056 2057
}

2058
#ifndef CONFIG_RCU_NOCB_CPU_ALL
L
Liu Ping Fan 已提交
2059
/* Is the specified CPU a no-CBs CPU? */
2060
bool rcu_is_nocb_cpu(int cpu)
P
Paul E. McKenney 已提交
2061 2062 2063 2064 2065
{
	if (have_rcu_nocb_mask)
		return cpumask_test_cpu(cpu, rcu_nocb_mask);
	return false;
}
2066
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
P
Paul E. McKenney 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

/*
 * Enqueue the specified string of rcu_head structures onto the specified
 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
 * counts are supplied by rhcount and rhcount_lazy.
 *
 * If warranted, also wake up the kthread servicing this CPUs queues.
 */
static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
				    struct rcu_head *rhp,
				    struct rcu_head **rhtp,
2079 2080
				    int rhcount, int rhcount_lazy,
				    unsigned long flags)
P
Paul E. McKenney 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
{
	int len;
	struct rcu_head **old_rhpp;
	struct task_struct *t;

	/* Enqueue the callback on the nocb list and update counts. */
	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
	ACCESS_ONCE(*old_rhpp) = rhp;
	atomic_long_add(rhcount, &rdp->nocb_q_count);
	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);

	/* If we are not being polled and there is a kthread, awaken it ... */
	t = ACCESS_ONCE(rdp->nocb_kthread);
2094
	if (rcu_nocb_poll || !t) {
2095 2096
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
				    TPS("WakeNotPoll"));
P
Paul E. McKenney 已提交
2097
		return;
2098
	}
P
Paul E. McKenney 已提交
2099 2100
	len = atomic_long_read(&rdp->nocb_q_count);
	if (old_rhpp == &rdp->nocb_head) {
2101 2102 2103 2104 2105 2106 2107 2108 2109
		if (!irqs_disabled_flags(flags)) {
			wake_up(&rdp->nocb_wq); /* ... if queue was empty ... */
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmpty"));
		} else {
			rdp->nocb_defer_wakeup = true;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmptyIsDeferred"));
		}
P
Paul E. McKenney 已提交
2110 2111 2112 2113
		rdp->qlen_last_fqs_check = 0;
	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
		wake_up_process(t); /* ... or if many callbacks queued. */
		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2114 2115 2116
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
	} else {
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
P
Paul E. McKenney 已提交
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	}
	return;
}

/*
 * This is a helper for __call_rcu(), which invokes this when the normal
 * callback queue is inoperable.  If this is not a no-CBs CPU, this
 * function returns failure back to __call_rcu(), which can complain
 * appropriately.
 *
 * Otherwise, this function queues the callback where the corresponding
 * "rcuo" kthread can find it.
 */
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2131
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
2132 2133
{

2134
	if (!rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2135
		return 0;
2136
	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2137 2138 2139
	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
					 (unsigned long)rhp->func,
2140 2141
					 -atomic_long_read(&rdp->nocb_q_count_lazy),
					 -atomic_long_read(&rdp->nocb_q_count));
2142 2143
	else
		trace_rcu_callback(rdp->rsp->name, rhp,
2144 2145
				   -atomic_long_read(&rdp->nocb_q_count_lazy),
				   -atomic_long_read(&rdp->nocb_q_count));
P
Paul E. McKenney 已提交
2146 2147 2148 2149 2150 2151 2152 2153
	return 1;
}

/*
 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
 * not a no-CBs CPU.
 */
static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2154 2155
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
2156 2157 2158 2159 2160
{
	long ql = rsp->qlen;
	long qll = rsp->qlen_lazy;

	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2161
	if (!rcu_is_nocb_cpu(smp_processor_id()))
P
Paul E. McKenney 已提交
2162 2163 2164 2165 2166 2167 2168
		return 0;
	rsp->qlen = 0;
	rsp->qlen_lazy = 0;

	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
	if (rsp->orphan_donelist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2169
					rsp->orphan_donetail, ql, qll, flags);
P
Paul E. McKenney 已提交
2170 2171 2172 2173 2174 2175
		ql = qll = 0;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}
	if (rsp->orphan_nxtlist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2176
					rsp->orphan_nxttail, ql, qll, flags);
P
Paul E. McKenney 已提交
2177 2178 2179 2180 2181 2182 2183 2184
		ql = qll = 0;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
	return 1;
}

/*
2185 2186
 * If necessary, kick off a new grace period, and either way wait
 * for a subsequent grace period to complete.
P
Paul E. McKenney 已提交
2187
 */
2188
static void rcu_nocb_wait_gp(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2189
{
2190
	unsigned long c;
2191
	bool d;
2192
	unsigned long flags;
2193
	bool needwake;
2194 2195 2196
	struct rcu_node *rnp = rdp->mynode;

	raw_spin_lock_irqsave(&rnp->lock, flags);
2197
	smp_mb__after_unlock_lock();
2198
	needwake = rcu_start_future_gp(rnp, rdp, &c);
2199
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2200 2201
	if (needwake)
		rcu_gp_kthread_wake(rdp->rsp);
P
Paul E. McKenney 已提交
2202 2203

	/*
2204 2205
	 * Wait for the grace period.  Do so interruptibly to avoid messing
	 * up the load average.
P
Paul E. McKenney 已提交
2206
	 */
2207
	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2208
	for (;;) {
2209 2210 2211 2212
		wait_event_interruptible(
			rnp->nocb_gp_wq[c & 0x1],
			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
		if (likely(d))
2213
			break;
2214
		flush_signals(current);
2215
		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2216
	}
2217
	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2218
	smp_mb(); /* Ensure that CB invocation happens after GP end. */
P
Paul E. McKenney 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227
}

/*
 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
 * callbacks queued by the corresponding no-CBs CPU.
 */
static int rcu_nocb_kthread(void *arg)
{
	int c, cl;
2228
	bool firsttime = 1;
P
Paul E. McKenney 已提交
2229 2230 2231 2232 2233 2234 2235 2236
	struct rcu_head *list;
	struct rcu_head *next;
	struct rcu_head **tail;
	struct rcu_data *rdp = arg;

	/* Each pass through this loop invokes one batch of callbacks */
	for (;;) {
		/* If not polling, wait for next batch of callbacks. */
2237 2238 2239
		if (!rcu_nocb_poll) {
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("Sleep"));
2240
			wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
2241
			/* Memory barrier provide by xchg() below. */
2242 2243 2244 2245 2246
		} else if (firsttime) {
			firsttime = 0;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("Poll"));
		}
P
Paul E. McKenney 已提交
2247 2248
		list = ACCESS_ONCE(rdp->nocb_head);
		if (!list) {
2249 2250 2251
			if (!rcu_nocb_poll)
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WokeEmpty"));
P
Paul E. McKenney 已提交
2252
			schedule_timeout_interruptible(1);
2253
			flush_signals(current);
P
Paul E. McKenney 已提交
2254 2255
			continue;
		}
2256
		firsttime = 1;
2257 2258
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
				    TPS("WokeNonEmpty"));
P
Paul E. McKenney 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

		/*
		 * Extract queued callbacks, update counts, and wait
		 * for a grace period to elapse.
		 */
		ACCESS_ONCE(rdp->nocb_head) = NULL;
		tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
		c = atomic_long_xchg(&rdp->nocb_q_count, 0);
		cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
		ACCESS_ONCE(rdp->nocb_p_count) += c;
		ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
2270
		rcu_nocb_wait_gp(rdp);
P
Paul E. McKenney 已提交
2271 2272 2273 2274 2275 2276 2277 2278

		/* Each pass through the following loop invokes a callback. */
		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
		c = cl = 0;
		while (list) {
			next = list->next;
			/* Wait for enqueuing to complete, if needed. */
			while (next == NULL && &list->next != tail) {
2279 2280
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WaitQueue"));
P
Paul E. McKenney 已提交
2281
				schedule_timeout_interruptible(1);
2282 2283
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WokeQueue"));
P
Paul E. McKenney 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
				next = list->next;
			}
			debug_rcu_head_unqueue(list);
			local_bh_disable();
			if (__rcu_reclaim(rdp->rsp->name, list))
				cl++;
			c++;
			local_bh_enable();
			list = next;
		}
		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
		ACCESS_ONCE(rdp->nocb_p_count) -= c;
		ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2297
		rdp->n_nocbs_invoked += c;
P
Paul E. McKenney 已提交
2298 2299 2300 2301
	}
	return 0;
}

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
/* Is a deferred wakeup of rcu_nocb_kthread() required? */
static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
{
	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
}

/* Do a deferred wakeup of rcu_nocb_kthread(). */
static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
	if (!rcu_nocb_need_deferred_wakeup(rdp))
		return;
	ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
	wake_up(&rdp->nocb_wq);
	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
}

P
Paul E. McKenney 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
	rdp->nocb_tail = &rdp->nocb_head;
	init_waitqueue_head(&rdp->nocb_wq);
}

/* Create a kthread for each RCU flavor for each no-CBs CPU. */
static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
{
	int cpu;
	struct rcu_data *rdp;
	struct task_struct *t;

	if (rcu_nocb_mask == NULL)
		return;
	for_each_cpu(cpu, rcu_nocb_mask) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
2336 2337
		t = kthread_run(rcu_nocb_kthread, rdp,
				"rcuo%c/%d", rsp->abbr, cpu);
P
Paul E. McKenney 已提交
2338 2339 2340 2341 2342 2343
		BUG_ON(IS_ERR(t));
		ACCESS_ONCE(rdp->nocb_kthread) = t;
	}
}

/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2344
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2345 2346 2347
{
	if (rcu_nocb_mask == NULL ||
	    !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2348
		return false;
P
Paul E. McKenney 已提交
2349
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2350
	return true;
P
Paul E. McKenney 已提交
2351 2352
}

2353 2354
#else /* #ifdef CONFIG_RCU_NOCB_CPU */

2355
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
P
Paul E. McKenney 已提交
2356 2357 2358
{
}

2359 2360 2361 2362 2363 2364 2365
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
{
}
P
Paul E. McKenney 已提交
2366 2367

static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2368
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
2369 2370 2371 2372 2373
{
	return 0;
}

static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2374 2375
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
2376 2377 2378 2379 2380 2381 2382 2383
{
	return 0;
}

static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}

2384 2385 2386 2387 2388 2389 2390 2391 2392
static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
{
	return false;
}

static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
}

P
Paul E. McKenney 已提交
2393 2394 2395 2396
static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
{
}

2397
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2398
{
2399
	return false;
P
Paul E. McKenney 已提交
2400 2401 2402
}

#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412

/*
 * An adaptive-ticks CPU can potentially execute in kernel mode for an
 * arbitrarily long period of time with the scheduling-clock tick turned
 * off.  RCU will be paying attention to this CPU because it is in the
 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
 * machine because the scheduling-clock tick has been disabled.  Therefore,
 * if an adaptive-ticks CPU is failing to respond to the current grace
 * period and has not be idle from an RCU perspective, kick it.
 */
2413
static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2414 2415 2416 2417 2418 2419
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(cpu))
		smp_send_reschedule(cpu);
#endif /* #ifdef CONFIG_NO_HZ_FULL */
}
2420 2421 2422 2423


#ifdef CONFIG_NO_HZ_FULL_SYSIDLE

2424 2425 2426 2427 2428
/*
 * Define RCU flavor that holds sysidle state.  This needs to be the
 * most active flavor of RCU.
 */
#ifdef CONFIG_PREEMPT_RCU
2429
static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
2430
#else /* #ifdef CONFIG_PREEMPT_RCU */
2431
static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
2432 2433
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */

2434
static int full_sysidle_state;		/* Current system-idle state. */
2435 2436 2437 2438 2439 2440
#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
/*
 * Invoked to note exit from irq or task transition to idle.  Note that
 * usermode execution does -not- count as idle here!  After all, we want
 * to detect full-system idle states, not RCU quiescent states and grace
 * periods.  The caller must have disabled interrupts.
 */
static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
{
	unsigned long j;

	/* Adjust nesting, check for fully idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting--;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
		if (rdtp->dynticks_idle_nesting != 0)
			return;  /* Still not fully idle. */
	} else {
		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
		    DYNTICK_TASK_NEST_VALUE) {
			rdtp->dynticks_idle_nesting = 0;
		} else {
			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
			return;  /* Still not fully idle. */
		}
	}

	/* Record start of fully idle period. */
	j = jiffies;
	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2471
	smp_mb__before_atomic();
2472
	atomic_inc(&rdtp->dynticks_idle);
2473
	smp_mb__after_atomic();
2474 2475 2476
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
}

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
/*
 * Unconditionally force exit from full system-idle state.  This is
 * invoked when a normal CPU exits idle, but must be called separately
 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
 * is that the timekeeping CPU is permitted to take scheduling-clock
 * interrupts while the system is in system-idle state, and of course
 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
 * interrupt from any other type of interrupt.
 */
void rcu_sysidle_force_exit(void)
{
	int oldstate = ACCESS_ONCE(full_sysidle_state);
	int newoldstate;

	/*
	 * Each pass through the following loop attempts to exit full
	 * system-idle state.  If contention proves to be a problem,
	 * a trylock-based contention tree could be used here.
	 */
	while (oldstate > RCU_SYSIDLE_SHORT) {
		newoldstate = cmpxchg(&full_sysidle_state,
				      oldstate, RCU_SYSIDLE_NOT);
		if (oldstate == newoldstate &&
		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
			rcu_kick_nohz_cpu(tick_do_timer_cpu);
			return; /* We cleared it, done! */
		}
		oldstate = newoldstate;
	}
	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
}

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
/*
 * Invoked to note entry to irq or task transition from idle.  Note that
 * usermode execution does -not- count as idle here!  The caller must
 * have disabled interrupts.
 */
static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
{
	/* Adjust nesting, check for already non-idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting++;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
		if (rdtp->dynticks_idle_nesting != 1)
			return; /* Already non-idle. */
	} else {
		/*
		 * Allow for irq misnesting.  Yes, it really is possible
		 * to enter an irq handler then never leave it, and maybe
		 * also vice versa.  Handle both possibilities.
		 */
		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
			return; /* Already non-idle. */
		} else {
			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
		}
	}

	/* Record end of idle period. */
2538
	smp_mb__before_atomic();
2539
	atomic_inc(&rdtp->dynticks_idle);
2540
	smp_mb__after_atomic();
2541
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577

	/*
	 * If we are the timekeeping CPU, we are permitted to be non-idle
	 * during a system-idle state.  This must be the case, because
	 * the timekeeping CPU has to take scheduling-clock interrupts
	 * during the time that the system is transitioning to full
	 * system-idle state.  This means that the timekeeping CPU must
	 * invoke rcu_sysidle_force_exit() directly if it does anything
	 * more than take a scheduling-clock interrupt.
	 */
	if (smp_processor_id() == tick_do_timer_cpu)
		return;

	/* Update system-idle state: We are clearly no longer fully idle! */
	rcu_sysidle_force_exit();
}

/*
 * Check to see if the current CPU is idle.  Note that usermode execution
 * does not count as idle.  The caller must have disabled interrupts.
 */
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
	int cur;
	unsigned long j;
	struct rcu_dynticks *rdtp = rdp->dynticks;

	/*
	 * If some other CPU has already reported non-idle, if this is
	 * not the flavor of RCU that tracks sysidle state, or if this
	 * is an offline or the timekeeping CPU, nothing to do.
	 */
	if (!*isidle || rdp->rsp != rcu_sysidle_state ||
	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
		return;
2578 2579
	if (rcu_gp_in_progress(rdp->rsp))
		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667

	/* Pick up current idle and NMI-nesting counter and check. */
	cur = atomic_read(&rdtp->dynticks_idle);
	if (cur & 0x1) {
		*isidle = false; /* We are not idle! */
		return;
	}
	smp_mb(); /* Read counters before timestamps. */

	/* Pick up timestamps. */
	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
	/* If this CPU entered idle more recently, update maxj timestamp. */
	if (ULONG_CMP_LT(*maxj, j))
		*maxj = j;
}

/*
 * Is this the flavor of RCU that is handling full-system idle?
 */
static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
	return rsp == rcu_sysidle_state;
}

/*
 * Return a delay in jiffies based on the number of CPUs, rcu_node
 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
 * systems more time to transition to full-idle state in order to
 * avoid the cache thrashing that otherwise occur on the state variable.
 * Really small systems (less than a couple of tens of CPUs) should
 * instead use a single global atomically incremented counter, and later
 * versions of this will automatically reconfigure themselves accordingly.
 */
static unsigned long rcu_sysidle_delay(void)
{
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return 0;
	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
}

/*
 * Advance the full-system-idle state.  This is invoked when all of
 * the non-timekeeping CPUs are idle.
 */
static void rcu_sysidle(unsigned long j)
{
	/* Check the current state. */
	switch (ACCESS_ONCE(full_sysidle_state)) {
	case RCU_SYSIDLE_NOT:

		/* First time all are idle, so note a short idle period. */
		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
		break;

	case RCU_SYSIDLE_SHORT:

		/*
		 * Idle for a bit, time to advance to next state?
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
		break;

	case RCU_SYSIDLE_LONG:

		/*
		 * Do an additional check pass before advancing to full.
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
		break;

	default:
		break;
	}
}

/*
 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
 * back to the beginning.
 */
static void rcu_sysidle_cancel(void)
{
	smp_mb();
2668 2669
	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
}

/*
 * Update the sysidle state based on the results of a force-quiescent-state
 * scan of the CPUs' dyntick-idle state.
 */
static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
			       unsigned long maxj, bool gpkt)
{
	if (rsp != rcu_sysidle_state)
		return;  /* Wrong flavor, ignore. */
	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return;  /* Running state machine from timekeeping CPU. */
	if (isidle)
		rcu_sysidle(maxj);    /* More idle! */
	else
		rcu_sysidle_cancel(); /* Idle is over. */
}

/*
 * Wrapper for rcu_sysidle_report() when called from the grace-period
 * kthread's context.
 */
static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
	rcu_sysidle_report(rsp, isidle, maxj, true);
}

/* Callback and function for forcing an RCU grace period. */
struct rcu_sysidle_head {
	struct rcu_head rh;
	int inuse;
};

static void rcu_sysidle_cb(struct rcu_head *rhp)
{
	struct rcu_sysidle_head *rshp;

	/*
	 * The following memory barrier is needed to replace the
	 * memory barriers that would normally be in the memory
	 * allocator.
	 */
	smp_mb();  /* grace period precedes setting inuse. */

	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
	ACCESS_ONCE(rshp->inuse) = 0;
}

/*
 * Check to see if the system is fully idle, other than the timekeeping CPU.
 * The caller must have disabled interrupts.
 */
bool rcu_sys_is_idle(void)
{
	static struct rcu_sysidle_head rsh;
	int rss = ACCESS_ONCE(full_sysidle_state);

	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
		return false;

	/* Handle small-system case by doing a full scan of CPUs. */
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
		int oldrss = rss - 1;

		/*
		 * One pass to advance to each state up to _FULL.
		 * Give up if any pass fails to advance the state.
		 */
		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
			int cpu;
			bool isidle = true;
			unsigned long maxj = jiffies - ULONG_MAX / 4;
			struct rcu_data *rdp;

			/* Scan all the CPUs looking for nonidle CPUs. */
			for_each_possible_cpu(cpu) {
				rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
				if (!isidle)
					break;
			}
			rcu_sysidle_report(rcu_sysidle_state,
					   isidle, maxj, false);
			oldrss = rss;
			rss = ACCESS_ONCE(full_sysidle_state);
		}
	}

	/* If this is the first observation of an idle period, record it. */
	if (rss == RCU_SYSIDLE_FULL) {
		rss = cmpxchg(&full_sysidle_state,
			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
		return rss == RCU_SYSIDLE_FULL;
	}

	smp_mb(); /* ensure rss load happens before later caller actions. */

	/* If already fully idle, tell the caller (in case of races). */
	if (rss == RCU_SYSIDLE_FULL_NOTED)
		return true;

	/*
	 * If we aren't there yet, and a grace period is not in flight,
	 * initiate a grace period.  Either way, tell the caller that
	 * we are not there yet.  We use an xchg() rather than an assignment
	 * to make up for the memory barriers that would otherwise be
	 * provided by the memory allocator.
	 */
	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
	    !rcu_gp_in_progress(rcu_sysidle_state) &&
	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
		call_rcu(&rsh.rh, rcu_sysidle_cb);
	return false;
2785 2786
}

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
/*
 * Initialize dynticks sysidle state for CPUs coming online.
 */
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
}

#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */

2797 2798 2799 2800 2801 2802 2803 2804
static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
{
}

static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
{
}

2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
}

static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
	return false;
}

static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
}

2820 2821 2822 2823 2824
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
}

#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2825 2826 2827 2828 2829 2830 2831 2832

/*
 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
 * grace-period kthread will do force_quiescent_state() processing?
 * The idea is to avoid waking up RCU core processing on such a
 * CPU unless the grace period has extended for too long.
 *
 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2833
 * CONFIG_RCU_NOCB_CPU CPUs.
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
 */
static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(smp_processor_id()) &&
	    (!rcu_gp_in_progress(rsp) ||
	     ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
		return 1;
#endif /* #ifdef CONFIG_NO_HZ_FULL */
	return 0;
}
2845 2846 2847 2848 2849 2850 2851 2852

/*
 * Bind the grace-period kthread for the sysidle flavor of RCU to the
 * timekeeping CPU.
 */
static void rcu_bind_gp_kthread(void)
{
#ifdef CONFIG_NO_HZ_FULL
2853
	int cpu = tick_do_timer_cpu;
2854 2855 2856 2857 2858 2859 2860

	if (cpu < 0 || cpu >= nr_cpu_ids)
		return;
	if (raw_smp_processor_id() != cpu)
		set_cpus_allowed_ptr(current, cpumask_of(cpu));
#endif /* #ifdef CONFIG_NO_HZ_FULL */
}