aes-spe-glue.c 13.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/*
 * Glue code for AES implementation for SPE instructions (PPC)
 *
 * Based on generic implementation. The assembler module takes care
 * about the SPE registers so it can run from interrupt context.
 *
 * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 */

#include <crypto/aes.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/crypto.h>
#include <asm/byteorder.h>
#include <asm/switch_to.h>
#include <crypto/algapi.h>

/*
 * MAX_BYTES defines the number of bytes that are allowed to be processed
 * between preempt_disable() and preempt_enable(). e500 cores can issue two
 * instructions per clock cycle using one 32/64 bit unit (SU1) and one 32
 * bit unit (SU2). One of these can be a memory access that is executed via
 * a single load and store unit (LSU). XTS-AES-256 takes ~780 operations per
 * 16 byte block block or 25 cycles per byte. Thus 768 bytes of input data
 * will need an estimated maximum of 20,000 cycles. Headroom for cache misses
 * included. Even with the low end model clocked at 667 MHz this equals to a
 * critical time window of less than 30us. The value has been choosen to
 * process a 512 byte disk block in one or a large 1400 bytes IPsec network
 * packet in two runs.
 *
 */
#define MAX_BYTES 768

struct ppc_aes_ctx {
	u32 key_enc[AES_MAX_KEYLENGTH_U32];
	u32 key_dec[AES_MAX_KEYLENGTH_U32];
	u32 rounds;
};

struct ppc_xts_ctx {
	u32 key_enc[AES_MAX_KEYLENGTH_U32];
	u32 key_dec[AES_MAX_KEYLENGTH_U32];
	u32 key_twk[AES_MAX_KEYLENGTH_U32];
	u32 rounds;
};

extern void ppc_encrypt_aes(u8 *out, const u8 *in, u32 *key_enc, u32 rounds);
extern void ppc_decrypt_aes(u8 *out, const u8 *in, u32 *key_dec, u32 rounds);
extern void ppc_encrypt_ecb(u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
			    u32 bytes);
extern void ppc_decrypt_ecb(u8 *out, const u8 *in, u32 *key_dec, u32 rounds,
			    u32 bytes);
extern void ppc_encrypt_cbc(u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
			    u32 bytes, u8 *iv);
extern void ppc_decrypt_cbc(u8 *out, const u8 *in, u32 *key_dec, u32 rounds,
			    u32 bytes, u8 *iv);
extern void ppc_crypt_ctr  (u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
			    u32 bytes, u8 *iv);
extern void ppc_encrypt_xts(u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
			    u32 bytes, u8 *iv, u32 *key_twk);
extern void ppc_decrypt_xts(u8 *out, const u8 *in, u32 *key_dec, u32 rounds,
			    u32 bytes, u8 *iv, u32 *key_twk);

extern void ppc_expand_key_128(u32 *key_enc, const u8 *key);
extern void ppc_expand_key_192(u32 *key_enc, const u8 *key);
extern void ppc_expand_key_256(u32 *key_enc, const u8 *key);

extern void ppc_generate_decrypt_key(u32 *key_dec,u32 *key_enc,
				     unsigned int key_len);

static void spe_begin(void)
{
	/* disable preemption and save users SPE registers if required */
	preempt_disable();
	enable_kernel_spe();
}

static void spe_end(void)
{
88
	disable_kernel_spe();
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	/* reenable preemption */
	preempt_enable();
}

static int ppc_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key,
		unsigned int key_len)
{
	struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm);

	if (key_len != AES_KEYSIZE_128 &&
	    key_len != AES_KEYSIZE_192 &&
	    key_len != AES_KEYSIZE_256) {
		tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
		return -EINVAL;
	}

	switch (key_len) {
	case AES_KEYSIZE_128:
		ctx->rounds = 4;
		ppc_expand_key_128(ctx->key_enc, in_key);
		break;
	case AES_KEYSIZE_192:
		ctx->rounds = 5;
		ppc_expand_key_192(ctx->key_enc, in_key);
		break;
	case AES_KEYSIZE_256:
		ctx->rounds = 6;
		ppc_expand_key_256(ctx->key_enc, in_key);
		break;
	}

	ppc_generate_decrypt_key(ctx->key_dec, ctx->key_enc, key_len);

	return 0;
}

static int ppc_xts_setkey(struct crypto_tfm *tfm, const u8 *in_key,
		   unsigned int key_len)
{
	struct ppc_xts_ctx *ctx = crypto_tfm_ctx(tfm);

	key_len >>= 1;

	if (key_len != AES_KEYSIZE_128 &&
	    key_len != AES_KEYSIZE_192 &&
	    key_len != AES_KEYSIZE_256) {
		tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
		return -EINVAL;
	}

	switch (key_len) {
	case AES_KEYSIZE_128:
		ctx->rounds = 4;
		ppc_expand_key_128(ctx->key_enc, in_key);
		ppc_expand_key_128(ctx->key_twk, in_key + AES_KEYSIZE_128);
		break;
	case AES_KEYSIZE_192:
		ctx->rounds = 5;
		ppc_expand_key_192(ctx->key_enc, in_key);
		ppc_expand_key_192(ctx->key_twk, in_key + AES_KEYSIZE_192);
		break;
	case AES_KEYSIZE_256:
		ctx->rounds = 6;
		ppc_expand_key_256(ctx->key_enc, in_key);
		ppc_expand_key_256(ctx->key_twk, in_key + AES_KEYSIZE_256);
		break;
	}

	ppc_generate_decrypt_key(ctx->key_dec, ctx->key_enc, key_len);

	return 0;
}

static void ppc_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
	struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm);

	spe_begin();
	ppc_encrypt_aes(out, in, ctx->key_enc, ctx->rounds);
	spe_end();
}

static void ppc_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
	struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm);

	spe_begin();
	ppc_decrypt_aes(out, in, ctx->key_dec, ctx->rounds);
	spe_end();
}

static int ppc_ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
			   struct scatterlist *src, unsigned int nbytes)
{
	struct ppc_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
	struct blkcipher_walk walk;
	unsigned int ubytes;
	int err;

	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);

	while ((nbytes = walk.nbytes)) {
		ubytes = nbytes > MAX_BYTES ?
			 nbytes - MAX_BYTES : nbytes & (AES_BLOCK_SIZE - 1);
		nbytes -= ubytes;

		spe_begin();
		ppc_encrypt_ecb(walk.dst.virt.addr, walk.src.virt.addr,
				ctx->key_enc, ctx->rounds, nbytes);
		spe_end();

		err = blkcipher_walk_done(desc, &walk, ubytes);
	}

	return err;
}

static int ppc_ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
			   struct scatterlist *src, unsigned int nbytes)
{
	struct ppc_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
	struct blkcipher_walk walk;
	unsigned int ubytes;
	int err;

	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);

	while ((nbytes = walk.nbytes)) {
		ubytes = nbytes > MAX_BYTES ?
			 nbytes - MAX_BYTES : nbytes & (AES_BLOCK_SIZE - 1);
		nbytes -= ubytes;

		spe_begin();
		ppc_decrypt_ecb(walk.dst.virt.addr, walk.src.virt.addr,
				ctx->key_dec, ctx->rounds, nbytes);
		spe_end();

		err = blkcipher_walk_done(desc, &walk, ubytes);
	}

	return err;
}

static int ppc_cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
			   struct scatterlist *src, unsigned int nbytes)
{
	struct ppc_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
	struct blkcipher_walk walk;
	unsigned int ubytes;
	int err;

	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);

	while ((nbytes = walk.nbytes)) {
		ubytes = nbytes > MAX_BYTES ?
			 nbytes - MAX_BYTES : nbytes & (AES_BLOCK_SIZE - 1);
		nbytes -= ubytes;

		spe_begin();
		ppc_encrypt_cbc(walk.dst.virt.addr, walk.src.virt.addr,
				ctx->key_enc, ctx->rounds, nbytes, walk.iv);
		spe_end();

		err = blkcipher_walk_done(desc, &walk, ubytes);
	}

	return err;
}

static int ppc_cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
			   struct scatterlist *src, unsigned int nbytes)
{
	struct ppc_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
	struct blkcipher_walk walk;
	unsigned int ubytes;
	int err;

	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);

	while ((nbytes = walk.nbytes)) {
		ubytes = nbytes > MAX_BYTES ?
			 nbytes - MAX_BYTES : nbytes & (AES_BLOCK_SIZE - 1);
		nbytes -= ubytes;

		spe_begin();
		ppc_decrypt_cbc(walk.dst.virt.addr, walk.src.virt.addr,
				ctx->key_dec, ctx->rounds, nbytes, walk.iv);
		spe_end();

		err = blkcipher_walk_done(desc, &walk, ubytes);
	}

	return err;
}

static int ppc_ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst,
			 struct scatterlist *src, unsigned int nbytes)
{
	struct ppc_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
	struct blkcipher_walk walk;
	unsigned int pbytes, ubytes;
	int err;

	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);

	while ((pbytes = walk.nbytes)) {
		pbytes = pbytes > MAX_BYTES ? MAX_BYTES : pbytes;
		pbytes = pbytes == nbytes ?
			 nbytes : pbytes & ~(AES_BLOCK_SIZE - 1);
		ubytes = walk.nbytes - pbytes;

		spe_begin();
		ppc_crypt_ctr(walk.dst.virt.addr, walk.src.virt.addr,
			      ctx->key_enc, ctx->rounds, pbytes , walk.iv);
		spe_end();

		nbytes -= pbytes;
		err = blkcipher_walk_done(desc, &walk, ubytes);
	}

	return err;
}

static int ppc_xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
			   struct scatterlist *src, unsigned int nbytes)
{
	struct ppc_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
	struct blkcipher_walk walk;
	unsigned int ubytes;
	int err;
	u32 *twk;

	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);
	twk = ctx->key_twk;

	while ((nbytes = walk.nbytes)) {
		ubytes = nbytes > MAX_BYTES ?
			 nbytes - MAX_BYTES : nbytes & (AES_BLOCK_SIZE - 1);
		nbytes -= ubytes;

		spe_begin();
		ppc_encrypt_xts(walk.dst.virt.addr, walk.src.virt.addr,
				ctx->key_enc, ctx->rounds, nbytes, walk.iv, twk);
		spe_end();

		twk = NULL;
		err = blkcipher_walk_done(desc, &walk, ubytes);
	}

	return err;
}

static int ppc_xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
			   struct scatterlist *src, unsigned int nbytes)
{
	struct ppc_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
	struct blkcipher_walk walk;
	unsigned int ubytes;
	int err;
	u32 *twk;

	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);
	twk = ctx->key_twk;

	while ((nbytes = walk.nbytes)) {
		ubytes = nbytes > MAX_BYTES ?
			 nbytes - MAX_BYTES : nbytes & (AES_BLOCK_SIZE - 1);
		nbytes -= ubytes;

		spe_begin();
		ppc_decrypt_xts(walk.dst.virt.addr, walk.src.virt.addr,
				ctx->key_dec, ctx->rounds, nbytes, walk.iv, twk);
		spe_end();

		twk = NULL;
		err = blkcipher_walk_done(desc, &walk, ubytes);
	}

	return err;
}

/*
 * Algorithm definitions. Disabling alignment (cra_alignmask=0) was chosen
 * because the e500 platform can handle unaligned reads/writes very efficently.
 * This improves IPsec thoughput by another few percent. Additionally we assume
 * that AES context is always aligned to at least 8 bytes because it is created
 * with kmalloc() in the crypto infrastructure
 *
 */
static struct crypto_alg aes_algs[] = { {
	.cra_name		=	"aes",
	.cra_driver_name	=	"aes-ppc-spe",
	.cra_priority		=	300,
	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
	.cra_blocksize		=	AES_BLOCK_SIZE,
	.cra_ctxsize		=	sizeof(struct ppc_aes_ctx),
	.cra_alignmask		=	0,
	.cra_module		=	THIS_MODULE,
	.cra_u			=	{
		.cipher = {
			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
			.cia_setkey		=	ppc_aes_setkey,
			.cia_encrypt		=	ppc_aes_encrypt,
			.cia_decrypt		=	ppc_aes_decrypt
		}
	}
}, {
	.cra_name		=	"ecb(aes)",
	.cra_driver_name	=	"ecb-ppc-spe",
	.cra_priority		=	300,
	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
	.cra_blocksize		=	AES_BLOCK_SIZE,
	.cra_ctxsize		=	sizeof(struct ppc_aes_ctx),
	.cra_alignmask		=	0,
	.cra_type		=	&crypto_blkcipher_type,
	.cra_module		=	THIS_MODULE,
	.cra_u = {
		.blkcipher = {
			.min_keysize		=	AES_MIN_KEY_SIZE,
			.max_keysize		=	AES_MAX_KEY_SIZE,
			.ivsize			=	AES_BLOCK_SIZE,
			.setkey			=	ppc_aes_setkey,
			.encrypt		=	ppc_ecb_encrypt,
			.decrypt		=	ppc_ecb_decrypt,
		}
	}
}, {
	.cra_name		=	"cbc(aes)",
	.cra_driver_name	=	"cbc-ppc-spe",
	.cra_priority		=	300,
	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
	.cra_blocksize		=	AES_BLOCK_SIZE,
	.cra_ctxsize		=	sizeof(struct ppc_aes_ctx),
	.cra_alignmask		=	0,
	.cra_type		=	&crypto_blkcipher_type,
	.cra_module		=	THIS_MODULE,
	.cra_u = {
		.blkcipher = {
			.min_keysize		=	AES_MIN_KEY_SIZE,
			.max_keysize		=	AES_MAX_KEY_SIZE,
			.ivsize			=	AES_BLOCK_SIZE,
			.setkey			=	ppc_aes_setkey,
			.encrypt		=	ppc_cbc_encrypt,
			.decrypt		=	ppc_cbc_decrypt,
		}
	}
}, {
	.cra_name		=	"ctr(aes)",
	.cra_driver_name	=	"ctr-ppc-spe",
	.cra_priority		=	300,
	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
	.cra_blocksize		=	1,
	.cra_ctxsize		=	sizeof(struct ppc_aes_ctx),
	.cra_alignmask		=	0,
	.cra_type		=	&crypto_blkcipher_type,
	.cra_module		=	THIS_MODULE,
	.cra_u = {
		.blkcipher = {
			.min_keysize		=	AES_MIN_KEY_SIZE,
			.max_keysize		=	AES_MAX_KEY_SIZE,
			.ivsize			=	AES_BLOCK_SIZE,
			.setkey			=	ppc_aes_setkey,
			.encrypt		=	ppc_ctr_crypt,
			.decrypt		=	ppc_ctr_crypt,
		}
	}
}, {
	.cra_name		=	"xts(aes)",
	.cra_driver_name	=	"xts-ppc-spe",
	.cra_priority		=	300,
	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
	.cra_blocksize		=	AES_BLOCK_SIZE,
	.cra_ctxsize		=	sizeof(struct ppc_xts_ctx),
	.cra_alignmask		=	0,
	.cra_type		=	&crypto_blkcipher_type,
	.cra_module		=	THIS_MODULE,
	.cra_u = {
		.blkcipher = {
			.min_keysize		=	AES_MIN_KEY_SIZE * 2,
			.max_keysize		=	AES_MAX_KEY_SIZE * 2,
			.ivsize			=	AES_BLOCK_SIZE,
			.setkey			=	ppc_xts_setkey,
			.encrypt		=	ppc_xts_encrypt,
			.decrypt		=	ppc_xts_decrypt,
		}
	}
} };

static int __init ppc_aes_mod_init(void)
{
	return crypto_register_algs(aes_algs, ARRAY_SIZE(aes_algs));
}

static void __exit ppc_aes_mod_fini(void)
{
	crypto_unregister_algs(aes_algs, ARRAY_SIZE(aes_algs));
}

module_init(ppc_aes_mod_init);
module_exit(ppc_aes_mod_fini);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS, SPE optimized");

MODULE_ALIAS_CRYPTO("aes");
MODULE_ALIAS_CRYPTO("ecb(aes)");
MODULE_ALIAS_CRYPTO("cbc(aes)");
MODULE_ALIAS_CRYPTO("ctr(aes)");
MODULE_ALIAS_CRYPTO("xts(aes)");
MODULE_ALIAS_CRYPTO("aes-ppc-spe");