kprobes.c 22.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 *  Kernel Probes (KProbes)
 *  arch/ia64/kernel/kprobes.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2002, 2004
 * Copyright (C) Intel Corporation, 2005
 *
 * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
 *              <anil.s.keshavamurthy@intel.com> adapted from i386
 */

#include <linux/config.h>
#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/moduleloader.h>

#include <asm/pgtable.h>
#include <asm/kdebug.h>
36
#include <asm/sections.h>
37

38 39
extern void jprobe_inst_return(void);

40 41
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

enum instruction_type {A, I, M, F, B, L, X, u};
static enum instruction_type bundle_encoding[32][3] = {
  { M, I, I },				/* 00 */
  { M, I, I },				/* 01 */
  { M, I, I },				/* 02 */
  { M, I, I },				/* 03 */
  { M, L, X },				/* 04 */
  { M, L, X },				/* 05 */
  { u, u, u },  			/* 06 */
  { u, u, u },  			/* 07 */
  { M, M, I },				/* 08 */
  { M, M, I },				/* 09 */
  { M, M, I },				/* 0A */
  { M, M, I },				/* 0B */
  { M, F, I },				/* 0C */
  { M, F, I },				/* 0D */
  { M, M, F },				/* 0E */
  { M, M, F },				/* 0F */
  { M, I, B },				/* 10 */
  { M, I, B },				/* 11 */
  { M, B, B },				/* 12 */
  { M, B, B },				/* 13 */
  { u, u, u },  			/* 14 */
  { u, u, u },  			/* 15 */
  { B, B, B },				/* 16 */
  { B, B, B },				/* 17 */
  { M, M, B },				/* 18 */
  { M, M, B },				/* 19 */
  { u, u, u },  			/* 1A */
  { u, u, u },  			/* 1B */
  { M, F, B },				/* 1C */
  { M, F, B },				/* 1D */
  { u, u, u },  			/* 1E */
  { u, u, u },  			/* 1F */
};

79 80 81 82 83
/*
 * In this function we check to see if the instruction
 * is IP relative instruction and update the kprobe
 * inst flag accordingly
 */
84 85 86 87
static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
					      uint major_opcode,
					      unsigned long kprobe_inst,
					      struct kprobe *p)
88
{
R
Rusty Lynch 已提交
89 90
	p->ainsn.inst_flag = 0;
	p->ainsn.target_br_reg = 0;
91

92 93 94 95 96 97 98 99 100 101 102
	/* Check for Break instruction
 	 * Bits 37:40 Major opcode to be zero
	 * Bits 27:32 X6 to be zero
	 * Bits 32:35 X3 to be zero
	 */
	if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
		/* is a break instruction */
	 	p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
		return;
	}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
	if (bundle_encoding[template][slot] == B) {
		switch (major_opcode) {
		  case INDIRECT_CALL_OPCODE:
	 		p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 			break;
		  case IP_RELATIVE_PREDICT_OPCODE:
		  case IP_RELATIVE_BRANCH_OPCODE:
			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
 			break;
		  case IP_RELATIVE_CALL_OPCODE:
 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 			break;
		}
 	} else if (bundle_encoding[template][slot] == X) {
		switch (major_opcode) {
		  case LONG_CALL_OPCODE:
			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
		  break;
		}
	}
	return;
}
129

130 131 132 133 134 135
/*
 * In this function we check to see if the instruction
 * on which we are inserting kprobe is supported.
 * Returns 0 if supported
 * Returns -EINVAL if unsupported
 */
136 137 138 139
static int __kprobes unsupported_inst(uint template, uint  slot,
				      uint major_opcode,
				      unsigned long kprobe_inst,
				      struct kprobe *p)
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
{
	unsigned long addr = (unsigned long)p->addr;

	if (bundle_encoding[template][slot] == I) {
		switch (major_opcode) {
			case 0x0: //I_UNIT_MISC_OPCODE:
			/*
			 * Check for Integer speculation instruction
			 * - Bit 33-35 to be equal to 0x1
			 */
			if (((kprobe_inst >> 33) & 0x7) == 1) {
				printk(KERN_WARNING
					"Kprobes on speculation inst at <0x%lx> not supported\n",
					addr);
				return -EINVAL;
			}

			/*
			 * IP relative mov instruction
			 *  - Bit 27-35 to be equal to 0x30
			 */
			if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
				printk(KERN_WARNING
					"Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
					addr);
				return -EINVAL;

			}
		}
	}
	return 0;
}


174 175 176 177 178 179
/*
 * In this function we check to see if the instruction
 * (qp) cmpx.crel.ctype p1,p2=r2,r3
 * on which we are inserting kprobe is cmp instruction
 * with ctype as unc.
 */
180 181 182
static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
					    uint major_opcode,
					    unsigned long kprobe_inst)
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
{
	cmp_inst_t cmp_inst;
	uint ctype_unc = 0;

	if (!((bundle_encoding[template][slot] == I) ||
		(bundle_encoding[template][slot] == M)))
		goto out;

	if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
		(major_opcode == 0xE)))
		goto out;

	cmp_inst.l = kprobe_inst;
	if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
		/* Integere compare - Register Register (A6 type)*/
		if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
				&&(cmp_inst.f.c == 1))
			ctype_unc = 1;
	} else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
		/* Integere compare - Immediate Register (A8 type)*/
		if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
			ctype_unc = 1;
	}
out:
	return ctype_unc;
}

210 211 212 213
/*
 * In this function we override the bundle with
 * the break instruction at the given slot.
 */
214 215 216 217
static void __kprobes prepare_break_inst(uint template, uint  slot,
					 uint major_opcode,
					 unsigned long kprobe_inst,
					 struct kprobe *p)
218 219 220 221 222 223
{
	unsigned long break_inst = BREAK_INST;
	bundle_t *bundle = &p->ainsn.insn.bundle;

	/*
	 * Copy the original kprobe_inst qualifying predicate(qp)
224 225 226 227
	 * to the break instruction iff !is_cmp_ctype_unc_inst
	 * because for cmp instruction with ctype equal to unc,
	 * which is a special instruction always needs to be
	 * executed regradless of qp
228
	 */
229 230
	if (!is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst))
		break_inst |= (0x3f & kprobe_inst);
231 232 233 234 235 236 237 238 239 240 241 242

	switch (slot) {
	  case 0:
		bundle->quad0.slot0 = break_inst;
		break;
	  case 1:
		bundle->quad0.slot1_p0 = break_inst;
		bundle->quad1.slot1_p1 = break_inst >> (64-46);
		break;
	  case 2:
		bundle->quad1.slot2 = break_inst;
		break;
R
Rusty Lynch 已提交
243
	}
244

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
	/*
	 * Update the instruction flag, so that we can
	 * emulate the instruction properly after we
	 * single step on original instruction
	 */
	update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
}

static inline void get_kprobe_inst(bundle_t *bundle, uint slot,
	       	unsigned long *kprobe_inst, uint *major_opcode)
{
	unsigned long kprobe_inst_p0, kprobe_inst_p1;
	unsigned int template;

	template = bundle->quad0.template;
260 261

	switch (slot) {
262 263 264
	  case 0:
 		*major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
 		*kprobe_inst = bundle->quad0.slot0;
265
		break;
266 267 268 269 270
	  case 1:
 		*major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
  		kprobe_inst_p0 = bundle->quad0.slot1_p0;
  		kprobe_inst_p1 = bundle->quad1.slot1_p1;
  		*kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
271
		break;
272 273 274
	  case 2:
 		*major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
 		*kprobe_inst = bundle->quad1.slot2;
275 276
		break;
	}
277
}
278

279 280 281 282 283 284 285
/* Returns non-zero if the addr is in the Interrupt Vector Table */
static inline int in_ivt_functions(unsigned long addr)
{
	return (addr >= (unsigned long)__start_ivt_text
		&& addr < (unsigned long)__end_ivt_text);
}

286 287
static int __kprobes valid_kprobe_addr(int template, int slot,
				       unsigned long addr)
288 289
{
	if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
290 291
		printk(KERN_WARNING "Attempting to insert unaligned kprobe "
				"at 0x%lx\n", addr);
292
		return -EINVAL;
R
Rusty Lynch 已提交
293
	}
294

295 296 297 298 299 300
 	if (in_ivt_functions(addr)) {
 		printk(KERN_WARNING "Kprobes can't be inserted inside "
				"IVT functions at 0x%lx\n", addr);
 		return -EINVAL;
 	}

301 302 303 304 305 306
	if (slot == 1 && bundle_encoding[template][1] != L) {
		printk(KERN_WARNING "Inserting kprobes on slot #1 "
		       "is not supported\n");
		return -EINVAL;
	}

307 308 309
	return 0;
}

310
static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
311
{
312 313
	kcb->prev_kprobe.kp = kprobe_running();
	kcb->prev_kprobe.status = kcb->kprobe_status;
314 315
}

316
static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
317
{
318 319
	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
	kcb->kprobe_status = kcb->prev_kprobe.status;
320 321
}

322 323
static inline void set_current_kprobe(struct kprobe *p,
			struct kprobe_ctlblk *kcb)
324
{
325
	__get_cpu_var(current_kprobe) = p;
326 327
}

328 329 330 331 332 333 334 335 336 337 338 339
static void kretprobe_trampoline(void)
{
}

/*
 * At this point the target function has been tricked into
 * returning into our trampoline.  Lookup the associated instance
 * and then:
 *    - call the handler function
 *    - cleanup by marking the instance as unused
 *    - long jump back to the original return address
 */
340
int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
341 342 343 344
{
	struct kretprobe_instance *ri = NULL;
	struct hlist_head *head;
	struct hlist_node *node, *tmp;
345
	unsigned long flags, orig_ret_address = 0;
346 347 348
	unsigned long trampoline_address =
		((struct fnptr *)kretprobe_trampoline)->ip;

349
	spin_lock_irqsave(&kretprobe_lock, flags);
350
	head = kretprobe_inst_table_head(current);
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

	/*
	 * It is possible to have multiple instances associated with a given
	 * task either because an multiple functions in the call path
	 * have a return probe installed on them, and/or more then one return
	 * return probe was registered for a target function.
	 *
	 * We can handle this because:
	 *     - instances are always inserted at the head of the list
	 *     - when multiple return probes are registered for the same
	 *       function, the first instance's ret_addr will point to the
	 *       real return address, and all the rest will point to
	 *       kretprobe_trampoline
	 */
	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
366
		if (ri->task != current)
367
			/* another task is sharing our hash bucket */
368
			continue;
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

		if (ri->rp && ri->rp->handler)
			ri->rp->handler(ri, regs);

		orig_ret_address = (unsigned long)ri->ret_addr;
		recycle_rp_inst(ri);

		if (orig_ret_address != trampoline_address)
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
	}

	BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
	regs->cr_iip = orig_ret_address;

388
	reset_current_kprobe();
389
	spin_unlock_irqrestore(&kretprobe_lock, flags);
390 391
	preempt_enable_no_resched();

392 393 394 395 396
	/*
	 * By returning a non-zero value, we are telling
	 * kprobe_handler() that we don't want the post_handler
	 * to run (and have re-enabled preemption)
	 */
397
	return 1;
398 399
}

400
/* Called with kretprobe_lock held */
401 402
void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
				      struct pt_regs *regs)
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
{
	struct kretprobe_instance *ri;

	if ((ri = get_free_rp_inst(rp)) != NULL) {
		ri->rp = rp;
		ri->task = current;
		ri->ret_addr = (kprobe_opcode_t *)regs->b0;

		/* Replace the return addr with trampoline addr */
		regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;

		add_rp_inst(ri);
	} else {
		rp->nmissed++;
	}
}

420
int __kprobes arch_prepare_kprobe(struct kprobe *p)
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
{
	unsigned long addr = (unsigned long) p->addr;
	unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
	unsigned long kprobe_inst=0;
	unsigned int slot = addr & 0xf, template, major_opcode = 0;
	bundle_t *bundle = &p->ainsn.insn.bundle;

	memcpy(&p->opcode.bundle, kprobe_addr, sizeof(bundle_t));
	memcpy(&p->ainsn.insn.bundle, kprobe_addr, sizeof(bundle_t));

 	template = bundle->quad0.template;

	if(valid_kprobe_addr(template, slot, addr))
		return -EINVAL;

	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
 	if (slot == 1 && bundle_encoding[template][1] == L)
  		slot++;

	/* Get kprobe_inst and major_opcode from the bundle */
	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);

443 444 445
	if (unsupported_inst(template, slot, major_opcode, kprobe_inst, p))
			return -EINVAL;

446
	prepare_break_inst(template, slot, major_opcode, kprobe_inst, p);
R
Rusty Lynch 已提交
447 448 449 450

	return 0;
}

451
void __kprobes arch_arm_kprobe(struct kprobe *p)
R
Rusty Lynch 已提交
452 453 454 455 456
{
	unsigned long addr = (unsigned long)p->addr;
	unsigned long arm_addr = addr & ~0xFULL;

	memcpy((char *)arm_addr, &p->ainsn.insn.bundle, sizeof(bundle_t));
457 458 459
	flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
}

460
void __kprobes arch_disarm_kprobe(struct kprobe *p)
461 462 463 464 465 466 467 468 469 470 471 472 473
{
	unsigned long addr = (unsigned long)p->addr;
	unsigned long arm_addr = addr & ~0xFULL;

	/* p->opcode contains the original unaltered bundle */
	memcpy((char *) arm_addr, (char *) &p->opcode.bundle, sizeof(bundle_t));
	flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
}

/*
 * We are resuming execution after a single step fault, so the pt_regs
 * structure reflects the register state after we executed the instruction
 * located in the kprobe (p->ainsn.insn.bundle).  We still need to adjust
474 475 476
 * the ip to point back to the original stack address. To set the IP address
 * to original stack address, handle the case where we need to fixup the
 * relative IP address and/or fixup branch register.
477
 */
478
static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
479
{
R
Rusty Lynch 已提交
480
  	unsigned long bundle_addr = ((unsigned long) (&p->opcode.bundle)) & ~0xFULL;
481 482 483
  	unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
 	unsigned long template;
 	int slot = ((unsigned long)p->addr & 0xf);
484

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
	template = p->opcode.bundle.quad0.template;

 	if (slot == 1 && bundle_encoding[template][1] == L)
 		slot = 2;

	if (p->ainsn.inst_flag) {

		if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
			/* Fix relative IP address */
 			regs->cr_iip = (regs->cr_iip - bundle_addr) + resume_addr;
		}

		if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
		/*
		 * Fix target branch register, software convention is
		 * to use either b0 or b6 or b7, so just checking
		 * only those registers
		 */
			switch (p->ainsn.target_br_reg) {
			case 0:
				if ((regs->b0 == bundle_addr) ||
					(regs->b0 == bundle_addr + 0x10)) {
					regs->b0 = (regs->b0 - bundle_addr) +
						resume_addr;
				}
				break;
			case 6:
				if ((regs->b6 == bundle_addr) ||
					(regs->b6 == bundle_addr + 0x10)) {
					regs->b6 = (regs->b6 - bundle_addr) +
						resume_addr;
				}
				break;
			case 7:
				if ((regs->b7 == bundle_addr) ||
					(regs->b7 == bundle_addr + 0x10)) {
					regs->b7 = (regs->b7 - bundle_addr) +
						resume_addr;
				}
				break;
			} /* end switch */
		}
		goto turn_ss_off;
	}
529

530 531 532 533 534 535 536 537
	if (slot == 2) {
 		if (regs->cr_iip == bundle_addr + 0x10) {
 			regs->cr_iip = resume_addr + 0x10;
 		}
 	} else {
 		if (regs->cr_iip == bundle_addr) {
 			regs->cr_iip = resume_addr;
 		}
538
	}
539

540 541 542
turn_ss_off:
  	/* Turn off Single Step bit */
  	ia64_psr(regs)->ss = 0;
543 544
}

545
static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
546
{
R
Rusty Lynch 已提交
547
	unsigned long bundle_addr = (unsigned long) &p->opcode.bundle;
548 549
	unsigned long slot = (unsigned long)p->addr & 0xf;

550 551 552 553 554
	/* single step inline if break instruction */
	if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
		regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
	else
		regs->cr_iip = bundle_addr & ~0xFULL;
555 556 557 558 559 560 561 562 563 564

	if (slot > 2)
		slot = 0;

	ia64_psr(regs)->ri = slot;

	/* turn on single stepping */
	ia64_psr(regs)->ss = 1;
}

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
{
	unsigned int slot = ia64_psr(regs)->ri;
	unsigned int template, major_opcode;
	unsigned long kprobe_inst;
	unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
	bundle_t bundle;

	memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
	template = bundle.quad0.template;

	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
	if (slot == 1 && bundle_encoding[template][1] == L)
  		slot++;

	/* Get Kprobe probe instruction at given slot*/
	get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);

	/* For break instruction,
	 * Bits 37:40 Major opcode to be zero
	 * Bits 27:32 X6 to be zero
	 * Bits 32:35 X3 to be zero
	 */
	if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
		/* Not a break instruction */
		return 0;
	}

	/* Is a break instruction */
	return 1;
}

597
static int __kprobes pre_kprobes_handler(struct die_args *args)
598 599 600
{
	struct kprobe *p;
	int ret = 0;
601
	struct pt_regs *regs = args->regs;
602
	kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
603 604 605 606 607 608 609 610
	struct kprobe_ctlblk *kcb;

	/*
	 * We don't want to be preempted for the entire
	 * duration of kprobe processing
	 */
	preempt_disable();
	kcb = get_kprobe_ctlblk();
611 612 613 614 615

	/* Handle recursion cases */
	if (kprobe_running()) {
		p = get_kprobe(addr);
		if (p) {
616
			if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
617 618
	 		     (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
  				ia64_psr(regs)->ss = 0;
619 620
				goto no_kprobe;
			}
621 622 623 624 625 626
			/* We have reentered the pre_kprobe_handler(), since
			 * another probe was hit while within the handler.
			 * We here save the original kprobes variables and
			 * just single step on the instruction of the new probe
			 * without calling any user handlers.
			 */
627 628
			save_previous_kprobe(kcb);
			set_current_kprobe(p, kcb);
629
			kprobes_inc_nmissed_count(p);
630
			prepare_ss(p, regs);
631
			kcb->kprobe_status = KPROBE_REENTER;
632
			return 1;
633
		} else if (args->err == __IA64_BREAK_JPROBE) {
634 635 636
			/*
			 * jprobe instrumented function just completed
			 */
637
			p = __get_cpu_var(current_kprobe);
638 639 640
			if (p->break_handler && p->break_handler(p, regs)) {
				goto ss_probe;
			}
641 642 643 644 645 646 647
		} else if (!is_ia64_break_inst(regs)) {
			/* The breakpoint instruction was removed by
			 * another cpu right after we hit, no further
			 * handling of this interrupt is appropriate
			 */
			ret = 1;
			goto no_kprobe;
648 649 650
		} else {
			/* Not our break */
			goto no_kprobe;
651 652 653 654 655
		}
	}

	p = get_kprobe(addr);
	if (!p) {
656 657 658 659 660 661 662 663 664 665 666 667 668
		if (!is_ia64_break_inst(regs)) {
			/*
			 * The breakpoint instruction was removed right
			 * after we hit it.  Another cpu has removed
			 * either a probepoint or a debugger breakpoint
			 * at this address.  In either case, no further
			 * handling of this interrupt is appropriate.
			 */
			ret = 1;

		}

		/* Not one of our break, let kernel handle it */
669 670 671
		goto no_kprobe;
	}

672 673
	set_current_kprobe(p, kcb);
	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
674 675 676 677

	if (p->pre_handler && p->pre_handler(p, regs))
		/*
		 * Our pre-handler is specifically requesting that we just
678 679
		 * do a return.  This is used for both the jprobe pre-handler
		 * and the kretprobe trampoline
680 681 682 683 684
		 */
		return 1;

ss_probe:
	prepare_ss(p, regs);
685
	kcb->kprobe_status = KPROBE_HIT_SS;
686 687 688
	return 1;

no_kprobe:
689
	preempt_enable_no_resched();
690 691 692
	return ret;
}

693
static int __kprobes post_kprobes_handler(struct pt_regs *regs)
694
{
695 696 697 698
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (!cur)
699 700
		return 0;

701 702 703
	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
		kcb->kprobe_status = KPROBE_HIT_SSDONE;
		cur->post_handler(cur, regs, 0);
704
	}
705

706
	resume_execution(cur, regs);
707

708
	/*Restore back the original saved kprobes variables and continue. */
709 710
	if (kcb->kprobe_status == KPROBE_REENTER) {
		restore_previous_kprobe(kcb);
711 712
		goto out;
	}
713
	reset_current_kprobe();
714 715

out:
716 717 718 719
	preempt_enable_no_resched();
	return 1;
}

720
static int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
721
{
722 723 724 725
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
726 727
		return 1;

728 729 730
	if (kcb->kprobe_status & KPROBE_HIT_SS) {
		resume_execution(cur, regs);
		reset_current_kprobe();
731 732 733 734 735 736
		preempt_enable_no_resched();
	}

	return 0;
}

737 738
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
				       unsigned long val, void *data)
739 740
{
	struct die_args *args = (struct die_args *)data;
741 742
	int ret = NOTIFY_DONE;

743 744
	switch(val) {
	case DIE_BREAK:
745
		/* err is break number from ia64_bad_break() */
746
		if (args->err == 0x80200 || args->err == 0x80300 || args->err == 0)
747 748
			if (pre_kprobes_handler(args))
				ret = NOTIFY_STOP;
749
		break;
750 751 752 753 754
	case DIE_FAULT:
		/* err is vector number from ia64_fault() */
		if (args->err == 36)
			if (post_kprobes_handler(args->regs))
				ret = NOTIFY_STOP;
755 756
		break;
	case DIE_PAGE_FAULT:
757 758 759 760
		/* kprobe_running() needs smp_processor_id() */
		preempt_disable();
		if (kprobe_running() &&
			kprobes_fault_handler(args->regs, args->trapnr))
761
			ret = NOTIFY_STOP;
762
		preempt_enable();
763 764 765
	default:
		break;
	}
766
	return ret;
767 768
}

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
struct param_bsp_cfm {
	unsigned long ip;
	unsigned long *bsp;
	unsigned long cfm;
};

static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
{
	unsigned long ip;
	struct param_bsp_cfm *lp = arg;

	do {
		unw_get_ip(info, &ip);
		if (ip == 0)
			break;
		if (ip == lp->ip) {
			unw_get_bsp(info, (unsigned long*)&lp->bsp);
			unw_get_cfm(info, (unsigned long*)&lp->cfm);
			return;
		}
	} while (unw_unwind(info) >= 0);
	lp->bsp = 0;
	lp->cfm = 0;
	return;
}

795
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
796
{
797 798
	struct jprobe *jp = container_of(p, struct jprobe, kp);
	unsigned long addr = ((struct fnptr *)(jp->entry))->ip;
799
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
	struct param_bsp_cfm pa;
	int bytes;

	/*
	 * Callee owns the argument space and could overwrite it, eg
	 * tail call optimization. So to be absolutely safe
	 * we save the argument space before transfering the control
	 * to instrumented jprobe function which runs in
	 * the process context
	 */
	pa.ip = regs->cr_iip;
	unw_init_running(ia64_get_bsp_cfm, &pa);
	bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
				- (char *)pa.bsp;
	memcpy( kcb->jprobes_saved_stacked_regs,
		pa.bsp,
		bytes );
	kcb->bsp = pa.bsp;
	kcb->cfm = pa.cfm;
819

820
	/* save architectural state */
821
	kcb->jprobe_saved_regs = *regs;
822 823 824 825 826 827 828 829 830 831 832 833 834

	/* after rfi, execute the jprobe instrumented function */
	regs->cr_iip = addr & ~0xFULL;
	ia64_psr(regs)->ri = addr & 0xf;
	regs->r1 = ((struct fnptr *)(jp->entry))->gp;

	/*
	 * fix the return address to our jprobe_inst_return() function
	 * in the jprobes.S file
	 */
 	regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;

	return 1;
835 836
}

837
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
838
{
839
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
840
	int bytes;
841

842
	/* restoring architectural state */
843
	*regs = kcb->jprobe_saved_regs;
844 845 846 847 848 849 850 851 852 853

	/* restoring the original argument space */
	flush_register_stack();
	bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
				- (char *)kcb->bsp;
	memcpy( kcb->bsp,
		kcb->jprobes_saved_stacked_regs,
		bytes );
	invalidate_stacked_regs();

854
	preempt_enable_no_resched();
855
	return 1;
856
}
857 858 859 860 861

static struct kprobe trampoline_p = {
	.pre_handler = trampoline_probe_handler
};

862
int __init arch_init_kprobes(void)
863 864 865 866 867
{
	trampoline_p.addr =
		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
	return register_kprobe(&trampoline_p);
}